Esempio n. 1
0
int
main(int argc, char **argv)
{
	int clkid = clock_open("/dev/ptp0");
	long adj = 0;

	adj = strtol(argv[1], NULL, 0);

	adjFreq(clkid, adj);

	clock_close();
	return 0;
}
Esempio n. 2
0
File: servo.c Progetto: DomChey/ptpd
void
adjFreq_wrapper(RunTimeOpts * rtOpts, PtpClock * ptpClock, double adj)
{
    if (rtOpts->noAdjust){
		DBGV("adjFreq2: noAdjust on, returning\n");
		return;
	}

	// call original adjtime
	DBG2("     adjFreq2: call adjfreq to %.09f us \n", adj / DBG_UNIT);
	adjFreq(adj);

	warn_operator_fast_slewing(rtOpts, ptpClock, adj);
}
Esempio n. 3
0
void initClock(RunTimeOpts *rtOpts, PtpClock *ptpClock)
{
  DBG("initClock:\n");
  
  /* clear vars */

  initClockVars(rtOpts,ptpClock);
  
  /* level clock */

  if(!rtOpts->noAdjust)
  {
    ptpClock->baseAdjustValue = rtOpts->baseAdjustValue;
    if (rtOpts->rememberAdjustValue == TRUE)
    {
       ptpClock->baseAdjustValue += ptpClock->lastAdjustValue;
    }
    adjFreq(ptpClock->baseAdjustValue);
  }
}
Esempio n. 4
0
void updateClock(RunTimeOpts *rtOpts, PtpClock *ptpClock)
{
  Integer32    adj=0;
  TimeInternal timeTmpA;  // AKB: Added values for adjusting calc based on time to get time
  TimeInternal timeTmpB;
  TimeInternal timeTmpC;
  TimeInternal timeTmpD;
  TimeInternal timeTmpE;
  TimeInternal timeTmpF;
  Integer64    delta_time_calc;
  
  DBGV("updateClock:\n");
  
  if(ptpClock->offset_from_master.seconds)
  {
    /* if offset from master seconds is non-zero, then this is a "big jump:
     * in time.  Check Run Time options to see if we will reset the clock or 
     * set frequency adjustment to max to adjust the time
     */
    if(!rtOpts->noAdjust)
    {
      if(!rtOpts->noResetClock)
      {

        if (!isNonZeroTime(&ptpClock->t1_sync_delta_time))
        {
           // Delta time is zero, so this is the first sync to capture and we'll do the major
           // adjustment on the next sync instead of this one
           //
           // Store t1 and t2 times as current delta, next time we'll subtract
           //
           copyTime(&ptpClock->t1_sync_delta_time,
                    &ptpClock->t1_sync_tx_time
                   );
           copyTime(&ptpClock->t2_sync_delta_time,
                    &ptpClock->t2_sync_rx_time
                   );
           NOTIFY("updateClock: Storing current T1 and T2 values for later calc\n");
           DBG("updateClock: Storing T1: %10ds %11dns\n",
               ptpClock->t1_sync_delta_time.seconds,
               ptpClock->t1_sync_delta_time.nanoseconds
              );
           DBG("updateClock: Storing T2: %10ds %11dns\n",
               ptpClock->t2_sync_delta_time.seconds,
               ptpClock->t2_sync_delta_time.nanoseconds
              );
           return;
        }

        // If we are here then t1 and t2 sync delta were set to previous t1 and t2
        // values.  Now we calculate the deltas

           DBG("updateClock: Current T1: %10ds %11dns\n",
               ptpClock->t1_sync_tx_time.seconds,
               ptpClock->t1_sync_tx_time.nanoseconds
              );
           DBG("updateClock: Current T2: %10ds %11dns\n",
               ptpClock->t2_sync_rx_time.seconds,
               ptpClock->t2_sync_rx_time.nanoseconds
              );

        subTime(&ptpClock->t1_sync_delta_time,
                &ptpClock->t1_sync_tx_time,
                &ptpClock->t1_sync_delta_time
               ); 
        subTime(&ptpClock->t2_sync_delta_time,
                &ptpClock->t2_sync_rx_time,
                &ptpClock->t2_sync_delta_time
               );

           DBG("updateClock: Delta   T1: %10ds %11dns\n",
               ptpClock->t1_sync_delta_time.seconds,
               ptpClock->t1_sync_delta_time.nanoseconds
              );
           DBG("updateClock: Delta   T2: %10ds %11dns\n",
               ptpClock->t2_sync_delta_time.seconds,
               ptpClock->t2_sync_delta_time.nanoseconds
              ); 
       
        // Now we get the difference between the two time bases and store in the T2 time delta
        // as we will use the T1 time as the divisor (so master clock drives the time)

        subTime(&ptpClock->t2_sync_delta_time,
                &ptpClock->t2_sync_delta_time,
                &ptpClock->t1_sync_delta_time
               );

           DBG("updateClock: Delta T2 - Delta T1: %10ds %11dns\n",
               ptpClock->t2_sync_delta_time.seconds,
               ptpClock->t2_sync_delta_time.nanoseconds
              );  

        delta_time_calc =  getNanoseconds(&ptpClock->t2_sync_delta_time)
                           * 1000000000;
        delta_time_calc /= getNanoseconds(&ptpClock->t1_sync_delta_time);

           DBG("updateClock: Calculated Parts/billion: %d\n",
               (int)delta_time_calc
              );  


        /* clamp the accumulator to ADJ_FREQ_MAX for sanity */
        if(     delta_time_calc > ADJ_FREQ_MAX)
          adj =  ADJ_FREQ_MAX;
        else if(delta_time_calc < -ADJ_FREQ_MAX)
          adj = -ADJ_FREQ_MAX;
        else
          adj = (UInteger32)delta_time_calc;

        NOTIFY("updateClock: Initial clock adjust: %d, base: %d\n",
                adj, 
                ptpClock->baseAdjustValue
              );

        NOTIFY("updateClock: Offset from Master %ds.%9.9d seconds\n", 
                ptpClock->offset_from_master.seconds,
                ptpClock->offset_from_master.nanoseconds
              );
        DBG( "updateClock: offset_from_master seconds != 0\n");
        DBGV("  master-to-slave delay:   %10ds %11dns\n",
             ptpClock->master_to_slave_delay.seconds,
             ptpClock->master_to_slave_delay.nanoseconds
            );
        DBGV("  slave-to-master delay:   %10ds %11dns\n",
             ptpClock->slave_to_master_delay.seconds,
             ptpClock->slave_to_master_delay.nanoseconds
            );
        DBGV("  one-way delay:           %10ds %11dns\n",
             ptpClock->one_way_delay.seconds,
             ptpClock->one_way_delay.nanoseconds
            );
        DBG( "  offset from master:      %10ds %11dns\n",
             ptpClock->offset_from_master.seconds, 
             ptpClock->offset_from_master.nanoseconds
           );
        DBG( "  observed drift:          %10d\n", 
            ptpClock->observed_drift
           );

        getTime(&timeTmpA, ptpClock->current_utc_offset);   // Get current time #1

        getTime(&timeTmpB, ptpClock->current_utc_offset);   // Get current time #2

        subTime(&timeTmpC,    // Calculate time   #3, time elapsed between calls
                &timeTmpB,
                &timeTmpA
               );

        getTime(&timeTmpD, ptpClock->current_utc_offset);   // Get current time #4

        subTime(&timeTmpE,    // Subtract calculated offset from master
                &timeTmpD,
                &ptpClock->offset_from_master
               );

        addTime(&timeTmpF,    // Add calculated time to get timer value
                &timeTmpE,
                &timeTmpC
               );

        setTime(&timeTmpF, ptpClock->current_utc_offset);   // Set new PTP time

        DBGV(" get  Time A           :   %10ds %11dns\n",
             timeTmpA.seconds,
             timeTmpA.nanoseconds
            );
        DBGV(" get  Time B           :   %10ds %11dns\n",
             timeTmpB.seconds,
             timeTmpB.nanoseconds
            );
        DBGV(" calc Time C (B-A)     :   %10ds %11dns\n",
             timeTmpC.seconds,
             timeTmpC.nanoseconds
            );
        DBGV(" get  Time D           :   %10ds %11dns\n",
             timeTmpD.seconds,
             timeTmpD.nanoseconds
            );
        DBGV(" offset from master    :   %10ds %11dns\n",
             ptpClock->offset_from_master.seconds,
             ptpClock->offset_from_master.nanoseconds
            );
        DBGV(" calc Time E (D+offset):   %10ds %11dns\n",
             timeTmpE.seconds,
             timeTmpE.nanoseconds
            );
        DBGV(" calc Time F (E+C)     :   %10ds %11dns\n",
             timeTmpF.seconds,
             timeTmpF.nanoseconds
            );
        DBGV("updateClock: set time to Time F\n");

        // Initialize clock variables based on run time options (rtOpts)

        initClockVars(rtOpts, ptpClock);

        // Adjust clock based on calculation from Delta T1, T2 times

        adjFreq(ptpClock->baseAdjustValue - adj);

        // Set initial observed drift to this calculated value

        ptpClock->observed_drift = adj;

        DBG( "updateClock: after initClock:\n");
        DBGV("  master-to-slave delay:   %10ds %11dns\n",
             ptpClock->master_to_slave_delay.seconds,
             ptpClock->master_to_slave_delay.nanoseconds
            );
        DBGV("  slave-to-master delay:   %10ds %11dns\n",
             ptpClock->slave_to_master_delay.seconds,
             ptpClock->slave_to_master_delay.nanoseconds
            );
        DBG( "  one-way delay:           %10ds %11dns\n",
             ptpClock->one_way_delay.seconds,
             ptpClock->one_way_delay.nanoseconds
           );
        DBG( "  offset from master:      %10ds %11dns\n",
             ptpClock->offset_from_master.seconds,
             ptpClock->offset_from_master.nanoseconds
           );
        DBG( "  observed drift:          %10d\n",
             ptpClock->observed_drift
           );

      }
      else
      {
        /* Run time options indicate we can't reset the clock, so we slow
         * it down or speed it up based on ADJ_FREQ_MAX adjustment rather
         * than actually setting the time.
         */
        adj = ptpClock->offset_from_master.nanoseconds > 0 ? ADJ_FREQ_MAX : -ADJ_FREQ_MAX;
        adjFreq(ptpClock->baseAdjustValue - adj);
      }
    }
  }
  else
  {
    /* Offset from master is less than one second.  Use the the PI controller
     * to adjust the time 
     */

    DBGV("updateClock: using PI controller to update clock\n");

    /* no negative or zero attenuation */
    if(rtOpts->ap < 1)
     rtOpts->ap = 1;
    if(rtOpts->ai < 1)
      rtOpts->ai = 1;

    DBGV("  previous observed drift: %10d\n",
         ptpClock->observed_drift
        );
    DBGV("  run time opts P:         %10d\n",
         rtOpts->ap
        );
    DBGV("  run time opts I:         %10d\n",
         rtOpts->ai
        );
    
    DBGV("  current observed drift:  %d\n",
         ptpClock->observed_drift
        );


    DBGV("  current offset           %dns\n",
         rtOpts->ai
        );

    /* the accumulator for the I component */
    ptpClock->observed_drift += ptpClock->offset_from_master.nanoseconds/rtOpts->ai;
    
    DBGV("  new observed drift (I):  %d\n",
         ptpClock->observed_drift
        );

    /* clamp the accumulator to ADJ_FREQ_MAX for sanity */
    if(     ptpClock->observed_drift > ADJ_FREQ_MAX)
      ptpClock->observed_drift =  ADJ_FREQ_MAX;
    else if(ptpClock->observed_drift < -ADJ_FREQ_MAX)
      ptpClock->observed_drift = -ADJ_FREQ_MAX;

    DBGV("  clamped drift:           %d\n",
         ptpClock->observed_drift
        );
    
    adj = ptpClock->offset_from_master.nanoseconds/rtOpts->ap + ptpClock->observed_drift;

    DBGV("  calculated adjust:       %d\n",
         adj
        );
    
    DBGV("  base adjust:             %d\n",
         ptpClock->baseAdjustValue
        );

    /* apply controller output as a clock tick rate adjustment */
    if(!rtOpts->noAdjust)
    {
      DBGV("  calling adjFreq with:    %d\n",
           (ptpClock->baseAdjustValue-adj)
          );

      adjFreq(ptpClock->baseAdjustValue - adj);
      if (rtOpts->rememberAdjustValue == TRUE)
      {
         if (   ptpClock->offset_from_master.nanoseconds <= 100
             && ptpClock->offset_from_master.nanoseconds >= -100
            )
         {
           ptpClock->lastAdjustValue = -adj;  // Store value if it gave a good clock
                                              // result.
         }
      }
    }
  }
  
  /* Display statistics (save to a file if -f specified) if run time option enabled */
  if(rtOpts->displayStats)
    displayStats(rtOpts, ptpClock);
  
  DBGV("  offset from master:      %10ds %11dns\n",
       ptpClock->offset_from_master.seconds,
       ptpClock->offset_from_master.nanoseconds
      );
  DBGV("  master-to-slave delay:   %10ds %11dns\n",
       ptpClock->master_to_slave_delay.seconds,
       ptpClock->master_to_slave_delay.nanoseconds
      );
  DBGV("  slave-to-master delay:   %10ds %11dns\n",
       ptpClock->slave_to_master_delay.seconds,
       ptpClock->slave_to_master_delay.nanoseconds
      );
  DBGV("  one-way delay:           %10ds %11dns\n",
       ptpClock->one_way_delay.seconds,
       ptpClock->one_way_delay.nanoseconds
      );
  DBGV( "  current observed drift:  %10d\n",
       ptpClock->observed_drift
      );
  DBGV("  clock adjust value:      %10d\n",
       (ptpClock->baseAdjustValue - adj)
      );
}