Esempio n. 1
0
bool arlCore::Mesh::simplify( void )
{
#ifndef ANN
    return false;
#else // ANN
    unsigned int i, j;
    const unsigned int Size = m_pointList->visibleSize();
    const unsigned int Dimension = m_pointList->getDimension();
    ANNpointArray ANNPoints = annAllocPts( Size, Dimension );
    for( i=0 ; i<m_pointList->size() ; ++i )
        for( j=0 ; j<Dimension ; ++j )
            ANNPoints[i][j]=(*m_pointList)[i]->get(j);
    const int BucketSize = 1;
    ANNkd_tree* ANNtree = new ANNkd_tree( ANNPoints, Size, Dimension, BucketSize, ANN_KD_SL_MIDPT );
    const double Epsilon = 1e-8;// Error bound
    const double SquaredEpsilon = Epsilon*Epsilon;
    ANNpoint ANNPt = annAllocPt(Dimension); // Query point
    const unsigned int NbNeighbors = 20;
    ANNidxArray Nn_idx = new ANNidx[NbNeighbors]; // near neighbor indices
    ANNdistArray SquaredDists = new ANNdist[NbNeighbors]; // near neighbor distances
    for( i=0 ; i<m_pointList->size() ; ++i )
        if((*m_pointList)[i]->isVisible())
        {
            std::vector<unsigned int> oldIndex;
            for( j=0 ; j<Dimension; ++j )
                ANNPt[j] = (*m_pointList)[i]->get(j);
            ANNtree->annkSearch( ANNPt, NbNeighbors, Nn_idx, SquaredDists, Epsilon );
            // Cherche points les plus proches
            for( j=0 ; j<NbNeighbors ; ++j )
                if(SquaredDists[j]<=SquaredEpsilon)
                {
                     releasePoint(Nn_idx[j]);
                     oldIndex.push_back(Nn_idx[j]);
                }
            replacePointIndex(oldIndex, i);
        }
    delete ANNtree;
    annDeallocPt( ANNPt );
    annDeallocPts( ANNPoints );
    delete[] Nn_idx;
    delete[] SquaredDists;
    annClose();
    return true;
#endif // ANN
}
Esempio n. 2
0
void ImplicitKdTree::closest_point_normal_query(Vector3 _query, Vector3& point, Vector3& normal)  {
	ANNidxArray nnIdx = new ANNidx[1];
	ANNdistArray dists = new ANNdist[1];

	ANNpoint query_pt = annAllocPt(3);
	query_pt[0] = _query.x;
	query_pt[1] = _query.y;
	query_pt[2] = _query.z;

	kd_tree->annkSearch(query_pt, 1, nnIdx, dists);
	ANNpoint found_pt = point_array[nnIdx[0]];

	point = Vector3(found_pt[0], found_pt[1], found_pt[2]);
	normal = shape->normal(point);

	delete [] nnIdx;
	delete [] dists;
}
Esempio n. 3
0
		void process( FrameData &frameData ) {

			if( configUpdated ) Update();
			
			if( skipCalculation ) return;
				
			vector< FrameData::DetectedFeature > &corresp = frameData.detectedFeatures[DescriptorType];
			if( corresp.empty() ) return;
			
			vector< vector< FrameData::Match > > &matches = frameData.matches;
			matches.resize( models->size() );
			
			
			
			ANNpoint pt = annAllocPt(DescriptorSize);
		
			ANNidxArray	nx = new ANNidx[2];
			ANNdistArray ds = new ANNdist[2];

			for( int i=0; i<(int)corresp.size(); i++)  {
				
				norm( corresp[i].descriptor);
				for (int j = 0; j < DescriptorSize; j++) 
					pt[j] = corresp[i].descriptor[j];
			
			        #pragma omp critical(ANN)	
				kdtree->annkSearch(pt, 2, nx, ds, Quality);	
				
						
				if(  ds[0]/ds[1] < Ratio ) {
					
					int nModel1 = correspModel[nx[0]];
					if( matches[nModel1].capacity() < 1000 ) matches[nModel1].reserve(1000);
					matches[nModel1].resize( matches[nModel1].size() +1 );
					
					FrameData::Match &match = matches[nModel1].back();

					match.imageIdx = corresp[i].imageIdx;
					match.coord3D = *correspFeat[nx[0]];
					match.coord2D = corresp[i].coord2D;
				}
			}
		}
Esempio n. 4
0
vector<int> PointKdTree::ball_query(Vector3 _query, double _radius)  {
	ANNpoint query_pt = annAllocPt(3);
	query_pt[0] = _query.x;
	query_pt[1] = _query.y;
	query_pt[2] = _query.z;
	double sqd_radius = _radius*_radius;

	int the_k = kd_tree->annkFRSearch(query_pt, sqd_radius, 0);
	ANNidxArray nnIdx = new ANNidx[the_k];
	ANNdistArray dists = new ANNdist[the_k];
	kd_tree->annkFRSearch(query_pt, sqd_radius, the_k, nnIdx, dists);

	vector<int> ball_indices;
	for(int i = 0; i < the_k; i++)
		ball_indices.push_back(nnIdx[i]);

	delete [] nnIdx;
	delete [] dists;

	return ball_indices;
}
	ANNpoint CMDPointVector::GetANNpoint(const CMDPoint& pt, const vector<int>& in)const
	{
		ASSERT(pt.GetNbDimension() == GetNbDimension());

		ANNpoint	q = annAllocPt((int)in.size());
		for (size_t i = 0; i < in.size(); i++)
		{
			int k = in[i];
			if (m_bStandardized)
			{
				ASSERT(abs(sqrt(m_dimStats[k][VARIANCE]) - m_dimStats[k][STD_DEV]) < 0.000001);
				q[i] = (pt[k] - m_dimStats[k][MEAN]) / m_dimStats[k][STD_DEV];
			}
			else
			{
				q[i] = pt[k];
			}
		}
		/*
			ANNpoint	q = annAllocPt(198);
			for(size_t i=0; i<in.size(); i++)
			q[GetK(in[i])]=0;

			for(size_t i=0; i<in.size(); i++)
			{
			int k = in[i];
			if( m_bStandardized )
			{
			ASSERT( abs( sqrt(m_dimStats[k][VARIANCE]) - m_dimStats[k][STD_DEV]) < 0.000001);
			q[GetK(in[i])] += (pt[k]-m_dimStats[k][MEAN])/m_dimStats[k][STD_DEV];
			}
			else
			{
			q[GetK(in[i])] += pt[k];
			}
			}
			*/
		return q;
	}
Esempio n. 6
0
//retourne le point de p correspondant au point q des images B et Bp dans A et Ap
//au niveau l
Point* annUse::bestApproximateMatch(Image* B, Image* Bp,int l, Point* q,Image* A, FeatureType Type)
{
  int marge;
  if(gk==0 && pk==0)
    marge=2;
  else
    marge=(gk>=pk*2)?gk*3:pk*4+2;
  //construction de l'ANNpoint correspondant à q et son voisinnage
  ANNpoint queryPt = annAllocPt(dim);
  makeANNPoint(B,Bp,l,q->getX(),q->getY(), Type, queryPt);

  //recherche du point correspondant dans A et Ap
  kdTree->annkSearch(queryPt, 1, nnIdx, dists, eps);

  //calcul et retour des coordonnées du point
  uint32 x=nnIdx[0]%(A->getLargeur(l)-marge);
  uint32 y=nnIdx[0]/(A->getLargeur(l)-marge);

  //libération de l'ANNpoint
  annDeallocPt(queryPt);

  return new Point(x+gk,y+gk);
}
Esempio n. 7
0
void KDTree3::BuildTree(const Vector<Vec3f> &Points)
{
    FreeMemory();
    UINT PointCount = Points.Length();
    Console::WriteString(String("Building KD tree, ") + String(PointCount) + String(" points..."));
    queryPt = annAllocPt(3); // allocate query point
    dataPts = annAllocPts(PointCount, 3); // allocate data points
    nnIdx = new ANNidx[KDTree3MaxK];  // allocate near neigh indices
    dists = new ANNdist[KDTree3MaxK]; // allocate near neighbor dists
    for(UINT i = 0; i < PointCount; i++)
    {
        for(UINT ElementIndex = 0; ElementIndex < 3; ElementIndex++)
        {
            dataPts[i][ElementIndex] = Points[i][ElementIndex];
        }
    }

    kdTree = new ANNkd_tree( // build search structure
        dataPts,    // the data points
        PointCount, // number of points
        3);         // dimension of space
    Console::WriteString(String("done.\n"));
}
Esempio n. 8
0
int CANNObject::GetNdxFromVector(std::vector<int>& point)
{
	// allocate query point
	ANNpoint queryPt = annAllocPt(point.size());			
	// read query point
	ReadPointFromVector(point, queryPt);

	// echo query point
	if (DEBUG_ANN)
	{
		printf("Query point: ");				
		PrintPt(std::cout, queryPt);
	}

	// search
	kdTree->annkSearch(	queryPt,						// query point
						k,								// number of near neighbors
						nnIdx,							// nearest neighbors (returned)
						dists,							// distance (returned)
						eps);							// error bound

	// print summary
	if (DEBUG_ANN)
	{
		std::cout << "\tNN:\tIndex\tDistance\n";
		for (int i = 0; i < k; i++) 
		{			
			// unsquare distance
			dists[i] = sqrt(dists[i]);			
			std::cout << "\t" << i << "\t" << nnIdx[i] << "\t" << dists[i] << std::endl;
		}
	}					

	annDeallocPt(queryPt);

	return nnIdx[0];
}
Esempio n. 9
0
  Worker::Worker(int id) : id(id) {
    //TODO:delete
    asdf = new ANNmin_k(1);
    //nnIdx = new ANNidx[1];
    //dists = new ANNdist[1];
    leaf_centers=annAllocPts(pow(2,Globals::dimm2),Globals::dim);
    leaf_reprs=new int[Globals::pow2dimm2];
    qb_center = annAllocPt(Globals::dim);
    std::vector<int> indices;
    //leaf_center=annAllocPt(Globals::dim);
    for (int i=0; i<Globals::dimm2; i++) {
      indices.push_back(0);
      result.push_back(0.0);
      pos_neg_result.push_back(0.0);
      Vc pos_neg_dim;
      pos_neg_dim.push_back(0.0);
      pos_neg_dim.push_back(0.0);
      pos_neg.push_back(pos_neg_dim);
    }
    for (int i=0; i<pow(2,Globals::dimm2); i++) {
      Vc pos_neg_dim_final;
      for (int j=0; j<Globals::dim; j++)
        pos_neg_dim_final.push_back(0.0);
      pos_neg_final.push_back(pos_neg_dim_final);
    }
    for (int i=0; i<Globals::dimm2; i++) {
      Digits d;
      vd2.push_back(d);
    }
    for (int i=0; i<Globals::dimm2; i++) {
      Digits d;
      vd1.push_back(d);
    }

    kdtree = new ANNkd_tree(Globals::ann_points, Globals::len, Globals::dim);
  }
Esempio n. 10
0
ANN::ANN(ANNpointArray points, int n1, int n2, int size, int dim, int *topology, ANNpoint scaling, int NumNeighbors) {
  int n = 0, i = 0, j = 0;

  anncount++;
  if (anncount == 1)
    std::cout << "MPNN library" << std::endl;

  numPoints = size;
  dimension = dim;

  query_pt = annAllocPt(dimension);		// allocate query point
  data_pts = annAllocPts(numPoints, dimension); // allocate data points
  nn_idx = new ANNidx[NumNeighbors];   		// allocate near neighbor indices
  dists = new ANNdist[NumNeighbors];   		// allocate near neighbor dists
  epsilon = 0.0;

  node_indices = new int[numPoints];   		// allocate indices of the points

  // Copy nodes to data_pts
  i = 0;
  for (n = n1; n!= n2; n++) {
    node_indices[i] = n;
    for (j = 0; j < dimension; j++) {
      data_pts[i][j] = scaling[j]*points[n][j];
    }
    i++;
  }

  // Initialize ANN
  the_tree = new ANNkd_tree(data_pts,		// the data points
			    numPoints,		// number of points
			    dimension, 		// dimension of space
			    scaling, 		// scaling of the coordinates
			    topology);		// topology of the space

}
Esempio n. 11
0
double arlCore::ICP::computeCriterion( const arlCore::vnl_rigid_matrix &M, vnl_vector< double > &fx )
{
    vnl_vector<double> RMS(1, 0.0), nbPoints(1, 0.0);
    const arlCore::vnl_rigid_matrix InvM = M.computeInverse();
    unsigned int i, j, noTriangle;
    double n = 0.0, result = 0.0;
    if(m_point2PointMode)
    {   // Points to points
#ifdef ANN
        const unsigned int Dimension = 3;
        vnl_vector_fixed<double,3> traInit = InvM.getTranslation();
        vnl_matrix_fixed<double,3,3> rotInit = InvM.getRotation();
        const double Epsilon = 0.0;// Error bound
        ANNpoint Pt = annAllocPt(Dimension); // Query point
        for( i=0 ; i<m_cloudSize ; ++i )
        {   // Search the matching point for every point of cloud
            for( j=0 ; j<3; ++j )
                Pt[j] = rotInit[j][0]*m_cloudPoints[i][0]+rotInit[j][1]*m_cloudPoints[i][1]+rotInit[j][2]*m_cloudPoints[i][2]+traInit[j];
            m_ANNtree->annkSearch( Pt, m_nbNN, m_nn_idx, m_squaredDists, Epsilon );
            if(fx.size()>i) fx[i] = m_squaredDists[0];
            RMS[0] += m_squaredDists[0];
        }
        annDeallocPt(Pt);
        n = (double)m_cloudSize;
#endif // ANN
    }else
    {   // Point to mesh
        assert(m_cloud!=0 && m_modelMesh!=0);
        RMS.set_size((unsigned int)m_modelMesh->getTriangles().size());
        RMS.fill(0.0);
        nbPoints.set_size(RMS.size());
        nbPoints.fill(0.0);
        unsigned int i;
        arlCore::Point::sptr point = arlCore::Point::New(3);
        for( i=0 ; i<m_cloud->size() ; ++i )
            if(m_cloud->get(i))
                if(!m_justVisible || m_cloud->get(i)->isVisible())
                {
                    InvM.trf(m_cloud->get(i), point);
                    const double SquaredDist = m_modelMesh->computeDistance2(point, noTriangle);
                    if(SquaredDist>0.0)
                    {
                        RMS[noTriangle] += SquaredDist;
                        if(fx.size()>i) fx[i] = SquaredDist;
                        nbPoints[noTriangle] += 1;
                    }
                }
    }
    assert(nbPoints.size()==RMS.size());
    if(RMS.size()==1)
    {
        if(nbPoints[0]>0) return sqrt(RMS[i]/nbPoints[i]);
        else return -1.0;
    }
    for( i=0 ; i<RMS.size() ; ++i )
        if(nbPoints[i]>0)
        {
            result += sqrt(RMS[i]/nbPoints[i]);
            n += 1.0;
        }
    if(n>0) return result/n;
    else return -1;
}
Esempio n. 12
0
void ANNCluster::doCluster(mat_f& data, grpEle_vect& grpVect, float radius) {
	//
	
	int ptCnt = data.size().height;
	int dim = data.size().width;
	//this is ANN implementation, but it is changed to FLANN now, please refer the updated block below
	float *ptWeight = new float[ptCnt];
	std::vector<bool> mFlag(ptCnt,false);

#ifdef __USE_ANN__
	ANNpointArray ptArray = annAllocPts(ptCnt, dim);
	//assign point values
	for (int i=0; i<ptCnt; i++) {
		ANNpoint ptPtr = ptArray[i];
		for(int j = 0; j < dim; j++){
			float tmp = data(i,j);
			ptPtr[j] = data(i , j);			
		}
	}
	///
	ANNkd_tree kdt(ptArray, ptCnt, dim);
	ANNpoint queryPt = annAllocPt(dim); 
	ANNidxArray nnIdx = new ANNidx[ptCnt];
	ANNdistArray nnDist = new ANNdist[ptCnt];
	int grpCounter = 0;
	for (int i=0; i<ptCnt; i++) {
		if(mFlag[i])
			continue; //skip matched point
		for(int j = 0; j < dim; j++){
			queryPt[j] = data(i,j);
		}
		
		int resultCnt = kdt.annkFRSearch(queryPt, radius, ptCnt, nnIdx, nnDist);
		std::vector<cv::Vec3f> nnPt;
		GrpEle ge;
		ge.m_gID = grpCounter++ ;
		for (int j=0; j < resultCnt; j++) {
			ANNidx idx = nnIdx[j];
			mFlag[idx] = true;
			ANNpoint tmpNNPt = ptArray[idx];
			cv::Vec3f cvPt(tmpNNPt[0], tmpNNPt[1], tmpNNPt[2]);
			ptWeight[j] = exp(-nnDist[j]/radius);
			ge.m_eMember.push_back(Element(idx,ptWeight[j]));
		}
		grpVect.push_back(ge);
	}
	annDeallocPt(queryPt);
	annDeallocPts(ptArray);
	delete [] nnDist;
	delete [] nnIdx;
	delete [] ptWeight;
#else
	cv::flann::KDTreeIndexParams idxParams(4);
	cv::flann::SearchParams scParams(32);
	cv::flann::Index indexer(data,idxParams);
	std::vector<float> nnDists(dim);
	std::vector<int> nnInds(dim);
	std::vector<float> queryPt(dim);
	for(int i = 0; i < ptCnt; i++){
		if(mFlag[i])
			continue;
		for(int j = 0; j < dim; j++)
			queryPt[j] = data(i,j);
		int nnCnt = indexer.radiusSearch(queryPt,nnInds,nnDists,radius,scParams);
		GrpEle ge;
		for(int k = 0; k < nnCnt; k++){
			int tmpIdx = nnInds[k];
			float tmpDist = nnDists[k];
			float tmpWeight = exp(-tmpDist/radius);
			ge.m_eMember.push_back(Element(tmpIdx,tmpWeight));
		}
		grpVect.push_back(ge);
	}
#endif
}
Esempio n. 13
0
  void Worker::operator()() {
    for (private_index=get_index(); private_index!=-1; private_index=get_index()) {
      {boost::mutex::scoped_lock lock(io_mutex);
      std::cout << "THREAD " << id << " GOT " << private_index+1 << "/" << Globals::wspd_centers.size() << std::endl;}
    //Find the side length, radius, radius squared and center of circle/ring for
    //each one of the circle/rings that I'm going to draw
      for (int j=0; j<=Globals::wspd_circs_num[private_index]; j++) {
        //1 as argument because I insert parents of leaves
        //This means that when I do find a square with this side, I'm going to call
        //bear_children method again. This essentially reduces processing time by 3/4
        sides.push_back(side_discr(pow(2,j)*Globals::wspd_distances[private_index]/denominator,3));//1
//        sides.push_back(side_discr(pow(2,j)*Globals::wspd_distances[private_index]/denominator,0));
        //make radius an exact multiple of side
        radiuses.push_back(radius_discr(pow(2,j)*Globals::wspd_distances[private_index], sides[j]));
        radiuses_sqr.push_back(radiuses[j]*radiuses[j]);
        //Center of circle should fall neatly on the center of a grid square
        ANNpoint center = annAllocPt(Globals::dim);
        for (int k=0; k<Globals::dim; k++) {
          center[k] = center_discr(Globals::wspd_centers[private_index][k], sides[j], 0.5);
        }
        centers.push_back(center);
      }

      //first iteration is for the core, the inner circle which is completely filled
      //the rest of the iteration are rings, essentially 2 concentric cirles where I fill
      //the difference
      core=true;
      for (int circ=0; circ<=Globals::wspd_circs_num[private_index]; circ++) {
        //Generate all the possible values of a coordinate, based on side and radius
        //for example if radius is 8 and side is 2 this is going to be 0,2,4,6,8
        for (ANNcoord v=0.0; v<=radiuses[circ]; v+=sides[circ]) {
          all_values.push_back(v);
        }
        //cart_prod_counter=0;
        cart_product(all_values, result, circ);
        if (Globals::qbs[id]->children!=0)
        depth_all_reprs(Globals::qbs[id]);

//        find_all_reprs(Globals::qbs[id], &Globals::hypercube_center, 1.0, kdtree, asdf, id);
        
        //CLEANUP
        all_values.clear();
        core=false;
      }
    
      //CLEANUP
      radiuses.clear();
      radiuses_sqr.clear();
      sides.clear();
      for (unsigned int d=0; d<centers.size(); d++)
        annDeallocPt(centers[d]);
      centers.clear();

    }
    std::cout << "THREAD " << id << " DIES" << std::endl;
    annDeallocPt(qb_center);
    annDeallocPts(leaf_centers);
    delete[] leaf_reprs;
    pos_neg_result.clear();
    pos_neg_final.clear();
    vd1.clear();
    vd2.clear();
    delete asdf;
    delete kdtree;
//    delete qb;
    return;
  }
Esempio n. 14
0
void PointKdTree::add_point(int _ind, Vector3 _point)  {
	point_array[_ind] = annAllocPt(3);
	point_array[_ind][0] = _point.x;
	point_array[_ind][1] = _point.y;
	point_array[_ind][2] = _point.z;
}
Esempio n. 15
0
File: icp.cpp Progetto: hayborl/ctok
Mat ICP::getClosestPointsSet( const Mat &objSet, Mat &lambda, Method method )
{
	int rows = objSet.rows;
	Mat closestSet(rows, 1, DataType<Point3d>::type);
	vector<double> dists(rows);
	double threshold = 0;
	int cnt = 0;

	switch (method)
	{
	case BASIC:
		for (int i = 0; i < rows; i++)
		{
			int minIndex = 0;
			double minDistance = DISTANCE_MAX;
			Point3d oPoint = objSet.at<Point3d>(i, 0);
			for (int j = 0; j < m_modSet.rows; j++)
			{
				Point3d p = m_modSet.at<Point3d>(j, 0) - oPoint;
				double distance = sqrt(p.dot(p));
				if (distance < minDistance)
				{
					minDistance = distance;
					minIndex = j;
				}
			}
			closestSet.at<Point3d>(i, 0) = m_modSet.at<Point3d>(minIndex, 0);
			dists[i] = minDistance;
			threshold += minDistance;
			cnt++;
		}
		break;
	case KDTREE:
	default:
		for (int i = 0; i < rows; i++)
		{
			Vec3d oPoint = objSet.at<Vec3d>(i, 0);
			ANNpoint qp = annAllocPt(ICP_DIMS);
			qp[0] = oPoint[0]; 
			qp[1] = oPoint[1];
			qp[2] = oPoint[2];
			ANNidx idx[1];
			ANNdist dist[1];
			m_kdTree->annkSearch(qp, 1, idx, dist);
			closestSet.at<Point3d>(i, 0) = Point3d(
				m_modPts[idx[0]][0], m_modPts[idx[0]][1], 
				m_modPts[idx[0]][2]);
			dists[i] = dist[0];
			threshold += dist[0];
			cnt++;
		}
		break;
	case POINT_TO_PLANE:
		{
// 			int cnt = 0;
// 			for (int i = 0; i < rows; i++)
// 			{
// 				Vec3d oPoint = Vec3d(objSet.at<Point3d>(i, 0));
// 				_Examplar exm(ICP_DIMS);
// 				for (int j = 0; j < ICP_DIMS; j++)
// 				{
// 					exm[j] = oPoint[j];
// 				}
// 				vector<pair<_Examplar, double>> results;
// 				if (m_kdTree.findNearest(exm, DISTANCE_RANGE, results) < 3)
// 				{
// 					closestSet.at<Point3d>(i, 0) = Point3d(0, 0, 0);
// 					dists[i] = -1;
// 				}
// 				else
// 				{
// 					ExamplarPairCompare epc;
// 					sort(results.begin(), results.end(), epc);
// 					Vec3d normal = computeNormal(results);
// 					_Examplar mExm = results[0].first;
// 					Vec3d v((double)mExm[0], (double)mExm[1], (double)mExm[2]);
// 					v = v - oPoint;
// 					double dotProd = v.dot(normal);
// 					double distance = fabs(dotProd);
// 					Vec3d mPoint = oPoint - dotProd * normal;
// 					closestSet.at<Point3d>(i, 0) = Point3d(mPoint);
// 					dists[i] = (double)distance;
// 					threshold += distance;
// 					cnt++;
// 				}
// 			}
		}
		break;
	case CUDA:
/*		cuda_getClosestPoints(objSet, m_modSet, dists, threshold, &closestSet);*/
		break;
	}

	threshold /= (double)cnt;
	for (int r = 0; r < rows; r++)
	{
		double dist = dists[r];
		if (dist < threshold && dist > 0)
		{
			double l = 1.0f;
			lambda.at<double>(r, 0) = l;
		}
		else
		{
			lambda.at<double>(r, 0) = 0;
		}
	}
	return closestSet.clone();
}
Esempio n. 16
0
Foam::labelListList Foam::parcelCloud::findParticlesIn()
{
	if(useAllParticles_)
	{
		particlesIn_.resize(particlesInSubDomain_.size(),labelList(nPInParcel_,-1));
	}else
	{
		particlesIn_.resize(particlesInSubDomain_.size()/nPInParcel_,labelList(nPInParcel_,-1));
	}
	
	// Number of particles in a parcel
	int k = nPInParcel_; 

	// Dimensions, exact OR approximate  
	int dim =3; double eps = 0;

	// Number of points
	int nPts;
	nPts = particlesInSubDomain_.size();

	Pout << tab << "Number of particles in a parcel = " << nPInParcel_ << endl;		

	// Domain Min/Max
	const fvMesh& mesh = refCast<const fvMesh>(obr_);
	const pointField& pp = mesh.points();	
	
	// Min, max x-coordinates	
	scalar minX = Foam::min(pp & vector(1,0,0));
	scalar maxX = Foam::max(pp & vector(1,0,0));

	// Min, max y-coordinates		
	scalar minY = Foam::min(pp & vector(0,1,0));
	scalar maxY = Foam::max(pp & vector(0,1,0));

	// Min, max z-coordinates		
	scalar minZ = Foam::min(pp & vector(0,0,1));
	scalar maxZ = Foam::max(pp & vector(0,0,1));

	// Squared radius
	const scalar sqRad = pow( (maxX - minX) * (maxX - minX) 
				 +(maxY - minY) * (maxY - minY)
				 +(maxZ - minZ) * (maxZ - minZ), 0.5);

	Pout << tab << "Squared radius = " << sqRad << endl;

	// Data points
	ANNpointArray dataPts;
	// Query points
	ANNpoint queryPt;

	ANNidxArray	nnIdx;          // 	near neighbour indices
	ANNdistArray 	dists;		//	near neighbour distances
	ANNkd_tree* 	kdTree;		//	search structure

	Pout << tab << "Created kdTree variables " << endl;

	// Allocate 
	queryPt = annAllocPt(dim);
	dataPts = annAllocPts(nPts, dim);
	nnIdx = new ANNidx[k];
	dists = new ANNdist[k];

	Pout << tab << "Allocated kdTree variables " << endl;

        labelList particleCreateParcelList(particlesInSubDomain_.size());

        for(int ii =0; ii < particlesInSubDomain_.size(); ii++)
	{
			label particleGlobalID = particlesInSubDomain_[ii];
			dataPts[ii][0] = sm_.position(particleGlobalID).x();
			dataPts[ii][1] = sm_.position(particleGlobalID).y();
			dataPts[ii][2] = sm_.position(particleGlobalID).z();
                	particleCreateParcelList[ii] = particleGlobalID;
	}

        Pout << tab << "Creating kdTree..." << endl;
        kdTree = new ANNkd_tree(dataPts, nPts, dim);

	Pout << tab << "Entering particle loops to create parcel" << endl; 

    	label parcelI = 0;
    	forAll(particlesInSubDomain_,ii)
	{				
	    	label particleGlobalID = particlesInSubDomain_[ii];

        	if ( particleCreateParcelList[ii] > -1 )
        	{
        	    queryPt[0] = sm_.position(particleGlobalID).x();
        	    queryPt[1] = sm_.position(particleGlobalID).y();
        	    queryPt[2] = sm_.position(particleGlobalID).z();

        	    kdTree->annkFRSearch(
                                	    queryPt,				// query point					
                                	    sqRad,				// squared radius
                                	    k,                  		// number of the near neighbours to return
                                	    nnIdx,				// nearest neighbor array
                                	    dists,				// dist to near neighbours
                                	    eps			);

        	    int partSum = 0;
		    int i = 0;
			
		    while( i < k && partSum < nPInParcel_ )
		    {
						
			if ( particleCreateParcelList[nnIdx[i]] != -1 )
                	{
			    //Info  << " parcelI " << parcelI << " partSum " << partSum << " Neighbour part " 
			    //      << nnIdx[i] << " particlesInSubDomain " << particlesInSubDomain_[nnIdx[i]] 
			    //      << " particlesIn " << particlesIn_[parcelI][partSum] << endl;
			    
                	    if (!useAllParticles_) particleCreateParcelList[nnIdx[i]] = -1 ;
                	    particlesIn_[parcelI][partSum] = particlesInSubDomain_[nnIdx[i]];
                	    partSum++;
			    if( partSum == nPInParcel_ ) parcelI++;
                	};
			i++;				
        	    };

        	}

    	}
Esempio n. 17
0
mitk::ContourElement::VertexType* mitk::ContourElement::OptimizedGetVertexAt(const mitk::Point3D &point, float eps)
{
  if( (eps > 0) && (this->m_Vertices->size()>0) )
  {
      int k = 1;
      int dim = 3;
      int nPoints = this->m_Vertices->size();
      ANNpointArray pointsArray;
      ANNpoint queryPoint;
      ANNidxArray indexArray;
      ANNdistArray distanceArray;
      ANNkd_tree* kdTree;

      queryPoint = annAllocPt(dim);
      pointsArray = annAllocPts(nPoints, dim);
      indexArray = new ANNidx[k];
      distanceArray = new ANNdist[k];


       int i = 0;

      //fill points array with our control points
      for(VertexIterator it = this->m_Vertices->begin(); it != this->m_Vertices->end(); it++, i++)
      {
        mitk::Point3D cur = (*it)->Coordinates;
        pointsArray[i][0]= cur[0];
        pointsArray[i][1]= cur[1];
        pointsArray[i][2]= cur[2];
      }

      //create the kd tree
      kdTree = new ANNkd_tree(pointsArray,nPoints, dim);

      //fill mitk::Point3D into ANN query point
      queryPoint[0] = point[0];
      queryPoint[1] = point[1];
      queryPoint[2] = point[2];

      //k nearest neighbour search
      kdTree->annkSearch(queryPoint, k, indexArray, distanceArray, eps);

      VertexType* ret = NULL;

      try
      {
        ret = this->m_Vertices->at(indexArray[0]);
      }
      catch(std::out_of_range ex)
      {
        //ret stays NULL
        return ret;
      }

      //clean up ANN
      delete [] indexArray;
      delete [] distanceArray;
      delete kdTree;
      annClose();

      return ret;
  }
  return NULL;
}
Esempio n. 18
0
// Driver program
int main(int argc, char **argv)
{
	int					num_points = 0;			// Actual number of data points
	ANNpointArray		data_points;			// Data points
	ANNpoint			query_point;			// Query point
	ANNidxArray			near_neighbor_idx;		// Near neighbor indices
	ANNdistArray		near_neighbor_distances;// Near neighbor distances
	ANNkd_tree *		kd_tree_adt;			// ADT search structure

	UserInterface UI;

	// Read command-line arguments
	UI.getArgs(argc, argv);						

	// Allocate query point
	query_point = annAllocPt(UI.dimension);

	// Allocate data points
	data_points = annAllocPts(UI.max_points, UI.dimension);

	// Allocate near neighbor indices
	near_neighbor_idx = new ANNidx[UI.k];

	// Allocate near neighbor distances
	near_neighbor_distances = new ANNdist[UI.k];														

	// Echo data points
	cout << "Data Points: \n";

	if (UI.results_out != NULL)
		*(UI.results_out) << "Data points: \n";

	while (num_points < UI.max_points && UI.readPoint(*(UI.data_in), data_points[num_points])) 
	{
		UI.printPoint(cout, data_points[num_points], num_points);

		if (UI.results_out != NULL)
		{
			UI.printPoint(*(UI.results_out), data_points[num_points], num_points);
		}

		num_points++;
	}

	// Construct k-d tree abstract data type search structure
	// Params: data points, number of points, dimension of space
	kd_tree_adt = new ANNkd_tree(data_points, num_points, UI.dimension);						

	// Echo query point(s)
	cout << "\n\nQuery points: \n";

	if (UI.results_out != NULL)
		*(UI.results_out) << "\n\nQuery points: \n";

	// Read query points
	while (UI.readPoint(*(UI.query_in), query_point)) 
	{		
		UI.printPoint(cout, query_point, UI.dimension);

		if (UI.results_out != NULL)
		{
			UI.printPoint(*(UI.results_out), query_point, UI.dimension);
		}

		// Perform the search
		// Params: query point, number of near neighbors, nearest neighbors (returned), distance (returned), error bound
		kd_tree_adt->annkSearch(query_point, UI.k, near_neighbor_idx, near_neighbor_distances, UI.eps);

		UI.printSummary(cout, &near_neighbor_idx, &near_neighbor_distances);

		if (UI.results_out != NULL)
			UI.printSummary(*(UI.results_out), &near_neighbor_idx, &near_neighbor_distances);
	}

	// Perform house cleaning tasks
	delete kd_tree_adt;
    delete [] near_neighbor_idx;							
    delete [] near_neighbor_distances;

	annClose();

	cin.get();

	return EXIT_SUCCESS;
}
Esempio n. 19
0
//Should be a method inside Worker
//this one both fills out the leaves and also merges all reprs in one map
void replace_reprs(QNode* qb, ANNpoint* center, double side, ANNidxArray nnIdx, ANNdistArray dists) {
  if (qb->children == 0) {
    myset rs(qb->representatives[0]);


    if (Globals::fill) {
      if (rs.size() < Globals::reprs_num) {
        Globals::kdtree->annkSearch(center[0], Globals::reprs_num, nnIdx, dists, 0.0);
        for (unsigned int i=0; i<Globals::reprs_num; i++) {
          if ((!repr_exists(&rs, nnIdx[i])) && (rs.size()<Globals::reprs_num)) {
            rs.insert(nnIdx[i]);
          }
        }
      }
    }

    //if (qb->representatives==0) {
    //  std::cout << "err" << std::endl;
    //}
    //This really doesn't work as expected mmm

/*    qb->bear_children();
    for (int i=0; i<Globals::pow2dim; i++) {
      qb->children[0][i].representatives = qb->representatives;
    }
    qb->remove_representatives();
    int it;
    int new_repr;
    ANNpoint child_center = annAllocPt(Globals::dim);
    for (int i=0; i<Globals::pow2dim; i++) {
      it = 1;
      for (int j=0; j<Globals::dim; j++) {
        if ((i&it) != 0) {
          child_center[j] = (*center)[j]+(side/4.0);
        } else {
          child_center[j] = (*center)[j]-(side/4.0);
        }
        it = it << 1;
      }
      
      //new_repr=kdtree->ann1Search(child_center,asdf);
      //new_repr = Globals::kdtree->annkSearch(child_center, 1, nnIdx, dists, 0.0);
      Globals::kdtree->annkSearch(child_center, 1, nnIdx, dists, 0.0);

      new_repr=nnIdx[0];

      myset rs(qb->children[0][i].representatives[0]);
      if (rs.size() == Globals::reprs_num-1) {
        //remove the furthest away
        double mdist=0.0;
        double tmp_dist;
        myset::iterator it_rem;
        for (myset::iterator it = rs.begin(); it != rs.end(); it++) {
          tmp_dist = annDist(Globals::dim,child_center,Globals::points[*it]);
          if (tmp_dist > mdist) {
            mdist=tmp_dist;
            it_rem=it;
          }
        }
        rs.erase(it_rem);
      }
      rs.insert(new_repr);
      if (Globals::final_set.count(rs) == 0)
        Globals::final_set[rs] = new myset(rs);
      qb->children[0][i].representatives = Globals::final_set[rs];
    }*/
    
    if (Globals::final_set.count(rs) == 0)
      Globals::final_set[rs]=new myset(rs);
    qb->representatives = Globals::final_set[rs];

    /*if (Globals::final_set.count(qb->representatives[0]) == 0)
      Globals::final_set[qb->representatives[0]] = new myset(qb->representatives[0]);
    qb->representatives = Globals::final_set[qb->representatives[0]];*/

   // annDeallocPt(child_center);
  } else {
    /* This is an inner node. First we recurse to each leaf.
     * Notice that we need to compute the coordinates of the centers
     * of each child, since that information is not stored in QNode
     */
    int it;
    //A local container to consume the result of our recursive calls
    //std::vector<Globals::QLeaf*> new_children;
    //Just a fancy array of arrays. We have pow2dim children and each one
    //needs dim coordinates to express its center
    ANNpoint child_center = annAllocPt(Globals::dim);

    for (int i=0; i<Globals::pow2dim; i++) {
      it = 1;
      for (int j=0; j<Globals::dim; j++) {
        if ((i&it) != 0) {
          child_center[j] = (*center)[j]+(side/4.0);
        } else {
          child_center[j] = (*center)[j]-(side/4.0);
        }
        it = it << 1;
      }
      replace_reprs(qb->children[0]+i, &child_center, side/2.0, nnIdx, dists);
    }
    annDeallocPt(child_center);
  }
}
Esempio n. 20
0
void NormalEstimator::fitNormal(){
	//
	//compute surface normal
	int ptCnt = m_pt.size();
	if (ptCnt <= 0)
	{
		std::cout << "no point set provided" << std::endl;
		return;
	}
	ANNpointArray ptArray = annAllocPts(ptCnt, 3);
	//assign point values
	for (int i=0; i<ptCnt; i++) {
		cv::Vec3f pt = m_pt[i];
		ANNpoint ptPtr = ptArray[i];
		ptPtr[0] = pt[0];
		ptPtr[1] = pt[1];
		ptPtr[2] = pt[2];
	}

	///
	ANNkd_tree kdt(ptArray, ptCnt, 3);
	
	ANNpoint queryPt = annAllocPt(3);
	int nnCnt = 100;

	ANNidxArray nnIdx = new ANNidx[nnCnt];
	ANNdistArray nnDist = new ANNdist[nnCnt];

	float sigma = -1;
	float evalRatio = 0.05;
	//estimate sigma
	for (int i=0; i < ptCnt; i++) {
		cv::Vec3f pt = m_pt[i];
		queryPt[0] = pt[0];
		queryPt[1] = pt[1];
		queryPt[2] = pt[2];

		//kdt.annkSearch(queryPt,nnCnt, nnIdx, nnDist);
		kdt.annkSearch(queryPt,50, nnIdx, nnDist);
		if (nnDist[49] < sigma ||sigma == -1 )
		{
			sigma = nnDist[49];
		}
	}
	sigma = 0.001;
	std::cout << "search radius:" << sigma << std::endl;
	std::cout << "estimating normals for point set by PCA, be patient..." << std::endl;
	for (int i=0; i < ptCnt; i++) {
		cv::Vec3f pt = m_pt[i];
		queryPt[0] = pt[0];
		queryPt[1] = pt[1];
		queryPt[2] = pt[2];

		//kdt.annkSearch(queryPt,nnCnt, nnIdx, nnDist);
		kdt.annkFRSearch(queryPt, sigma, nnCnt, nnIdx, nnDist);
		int validCnt = 0;
		for (int j = 0; j < nnCnt; j++)
		{
			if (nnIdx[j] == ANN_NULL_IDX)
			{
				break;
			}
			validCnt++;
		}
		//std::cout << validCnt << std::endl;
		if (validCnt < 3)
		{
			continue;
		}
		
		cv::Mat pcaVec(validCnt,3,CV_64FC1);
		cv::Mat pcaMean(1,3,CV_64FC1);
		for (int j = 0; j < validCnt; j++)
		{
			pcaVec.at<double>(j,0) = m_pt[nnIdx[j]][0];
			pcaVec.at<double>(j,1) = m_pt[nnIdx[j]][1];
			pcaVec.at<double>(j,2) = m_pt[nnIdx[j]][2];
		}
		cv::PCA pca(pcaVec,cv::Mat(),CV_PCA_DATA_AS_ROW);

		if (pca.eigenvalues.at<double>(2,0) / pca.eigenvalues.at<double>(1,0) > evalRatio)
		{
			continue;
		}

		m_ptNorm[i] = cv::Vec3f(pca.eigenvectors.at<double>(2,0),pca.eigenvectors.at<double>(2,1),pca.eigenvectors.at<double>(2,2));
		float nr = cv::norm(m_ptNorm[i]);
		m_ptNorm[i][0] /= nr;
		m_ptNorm[i][1] /= nr;
		m_ptNorm[i][2] /= nr;
		//std::cout << m_ptNorm[i][0] << " " << m_ptNorm[i][1] << " " << m_ptNorm[i][2] << std::endl;
		m_ptNormFlag[i] = true;

	}

	//
	std::cout << "done..." << std::endl;
//////////////////////////////////////////////////////////////////////////

	//std::cout << "correct normal direction..." << std::endl;
	//sigma *= 1; //
	//nnCnt *= 1; //
	////reallocate the space for nn idx and nn dist array
	//delete [] nnDist;
	//delete [] nnIdx;
	//nnIdx = new ANNidx[nnCnt];
	//nnDist = new ANNdist[nnCnt];

	//int invertCnt = 0;
	//for (int i = 0; i < ptCnt; i++)
	//{
	//	if (!m_ptNormFlag[i])
	//	{
	//		continue;
	//	}
	//	
	//	cv::Vec3f pt = m_pt[i];
	//	queryPt[0] = pt[0];
	//	queryPt[1] = pt[1];
	//	queryPt[2] = pt[2];

	//	kdt.annkFRSearch(queryPt, sigma, nnCnt, nnIdx, nnDist);
	//	int validCnt = 0, normConsCnt = 0, distConsCnt = 0;
	//	for (int j = 0; j < nnCnt; j++)
	//	{
	//		if (nnIdx[j] == ANN_NULL_IDX)
	//		{
	//			break;
	//		}
	//		else{
	//			//check the direction
	//			cv::Vec3f v1 = m_ptNorm[i];
	//			cv::Vec3f v2 = m_ptNorm[nnIdx[j]];
	//			
	//			if (!m_ptNormFlag[nnIdx[j]])
	//			{
	//				continue;
	//			}else{
	//				//
	//				validCnt++;
	//				if( v2.ddot(v1) > 0 )
	//					normConsCnt++;
	//			}
	//		}
	//	}
	//	//inconsistency detected, invert the direction
	//	if (normConsCnt / validCnt < 0.9)
	//	{
	//		//std::cout << "invert" << std::endl;
	//		invertCnt++;
	//		m_ptNorm[i] = cv::Vec3f(0,0,0) - m_ptNorm[i];
	//	}
	//}
	//std::cout << "# of inverted vertex:" << invertCnt << std::endl;
	////////////////////////////////////////////////////////////////////////////
	
	annDeallocPt(queryPt);
	annDeallocPts(ptArray);
	delete [] nnDist;
	delete [] nnIdx;

}
Esempio n. 21
0
 	void createParcels
	(
		const fvMesh& mesh,			
		cfdemCloud& sm,
		const int& parcelSize_,		
		int**& parcelCloud_,
		double**& parcelPositions_,
		double**& parcelVelocities_,
		int*& parcelNparts_,				
		double** & parcelKinStress_,
		scalar& aveSubQparcel2_,
		vector& meanParcelVel_,
		const bool verbose_ 			
	)
	{		

		if ( parcelSize_ * parcelSize_ * parcelSize_  > sm.numberOfParticles() )
		{
			FatalError << " Number of particles in a parcel > number of particles" << abort(FatalError);
		}
		
		if ( parcelSize_ < 1 )
		{
			FatalError << " Number of particles < 0 in a parcel " << abort(FatalError);
		}
		
		// Number of particles in a parcel
		int k = parcelSize_ * parcelSize_ * parcelSize_; 		
				
		// Dimensions, exact OR approximate  
		int dim =3; double eps = 0;
						
		// Number of points
		int nPts;
		nPts =  sm.numberOfParticles();		
				
		// Data points
		ANNpointArray dataPts;
		// Query points
		ANNpoint queryPt;
		
		ANNidxArray	nnIdx;			// 	near neighbour indices
		ANNdistArray 	dists;			//	near neighbour distances
		ANNkd_tree* 	kdTree;			//	search structure
		
		// Allocate 
		queryPt = annAllocPt(dim);
		dataPts = annAllocPts(nPts, dim);
		nnIdx = new ANNidx[k];
		dists = new ANNdist[k];		
		 		
		for(int index = 0; index < sm.numberOfParticles(); index++)
	        {			
				dataPts[index][0] = sm.position(index).x();		
				dataPts[index][1] = sm.position(index).y();		
				dataPts[index][2] = sm.position(index).z();
		}
				
		kdTree = new ANNkd_tree(dataPts, nPts, dim);
		
		// Initialize sub-parcel agitation	
		aveSubQparcel2_ = 0.;
		
		// Initialize parcel velocity
		meanParcelVel_ = vector(0,0,0);	
		
		for(int index = 0; index <  sm.numberOfParticles(); index++)
	        {				
			
			// Particle neighbouring search distance
			scalar sqRad = parcelSize_ * sm.radius(index);		
									
			queryPt[0] = sm.position(index).x();
			queryPt[1] = sm.position(index).y();
			queryPt[2] = sm.position(index).z();

			kdTree->annkFRSearch(
					        queryPt,			// query point					
						sqRad,				// squared radius
						k,				// number of the near neighbours to return
						nnIdx,				// nearest neighbor array
						dists,				// dist to near neighbours
						eps			);					
 				
			int nParts = 0;
			scalar dist = 0;	
			
			// Initialize parcel velocities & positions & kinetic stresses
			for(int j=0;j<3;j++) 
			{
				parcelVelocities_[index][j] = 0.;
				 parcelPositions_[index][j] = 0.;
				 parcelKinStress_[index][j] = 0.;
			       parcelKinStress_[index][2*j] = 0.;
			}
			
			for (int i = 0; i < k; i++)
			{
				parcelCloud_[index][i] = nnIdx[i];
				
				dist = mag( sm.position(nnIdx[i]) - sm.position(index) ) - sqRad;
				if ( dist < SMALL ) 
				{				
					for(int j=0;j<3;j++) 
					{	
							// Parcel velocity 
							parcelVelocities_[index][j] += sm.velocity(nnIdx[i])[j];	
							// Parcel center of mass
							 parcelPositions_[index][j] += sm.position(nnIdx[i])[j];	

					}				
					nParts++;
				}							
			}

			for(int j=0;j<3;j++) parcelPositions_[index][j] /= nParts;			
			parcelNparts_[index] = nParts;	
																													
			// Parcel kinetic stresses
			for(int i = 0; i < parcelNparts_[index]; i++)
			{
				int particleID = parcelCloud_[index][i]; 
				
				// U'xU'x
				parcelKinStress_[index][0] +=  ( sm.velocity(particleID)[0] - parcelVelocities_[index][0] )   
						   	      *( sm.velocity(particleID)[0] - parcelVelocities_[index][0] );

				// U'yU'y
                                parcelKinStress_[index][1] +=  ( sm.velocity(particleID)[1] - parcelVelocities_[index][1] )
                                                              *( sm.velocity(particleID)[1] - parcelVelocities_[index][1] );

				// U'zU'z
                                parcelKinStress_[index][2] +=  ( sm.velocity(particleID)[2] - parcelVelocities_[index][2] )
                                                              *( sm.velocity(particleID)[2] - parcelVelocities_[index][2] );
 
				// U'xU'y
                                parcelKinStress_[index][3] +=  ( sm.velocity(particleID)[0] - parcelVelocities_[index][0] )
                                                              *( sm.velocity(particleID)[1] - parcelVelocities_[index][1] );

				// U'xU'z
                                parcelKinStress_[index][4] +=  ( sm.velocity(particleID)[0] - parcelVelocities_[index][0] )
                                                              *( sm.velocity(particleID)[2] - parcelVelocities_[index][2] );

				// U'yU'z
                                parcelKinStress_[index][5] +=  ( sm.velocity(particleID)[1] - parcelVelocities_[index][1] )
                                                              *( sm.velocity(particleID)[2] - parcelVelocities_[index][2] );
			}
			
			// Mean parcel velocity
			for(int j=0;j<3;j++) meanParcelVel_[j] += parcelVelocities_[index][j];

			// Domain-averaged parcel agitation
			aveSubQparcel2_ += 1./2. * ( parcelKinStress_[index][0] + parcelKinStress_[index][1] + parcelKinStress_[index][2] );

		}
		
		for(int j=0;j<3;j++) meanParcelVel_[j] /= sm.numberOfParticles();
		
		if ( verbose_ )
		{							
			int index = 0;
			Info << " Parcel particle list ";
			for (int i = 0; i < parcelNparts_[index]; i++) 
			{
				Info << parcelCloud_[index][i] << " " ;
			}
			Info << endl;
			
			Info << " Parcel center     " <<  parcelPositions_[index][0] << "," <<  parcelPositions_[index][1] << "," <<  parcelPositions_[index][2] << endl;	
			Info << " Parcel velocity   " << parcelVelocities_[index][0] << "," << parcelVelocities_[index][1] << "," << parcelVelocities_[index][2] << endl;
					
			for (int i = 0; i < parcelNparts_[index]; i++)			
			{
				Info << " Particle " << parcelCloud_[index][i] << endl;
				Info << " Particle center    " <<        sm.position(parcelCloud_[index][i])   << endl;
				Info << " Particle velocity  " <<        sm.velocity(parcelCloud_[index][i])   << endl;
			}			
		}
																
	}