Esempio n. 1
0
/* A background append only file rewriting (BGREWRITEAOF) terminated its work.
 * Handle this. */
void backgroundRewriteDoneHandler(int exitcode, int bysignal) {
    if (!bysignal && exitcode == 0) {
        int newfd, oldfd;
        char tmpfile[256];
        long long now = ustime();

        redisLog(REDIS_NOTICE,
            "Background AOF rewrite terminated with success");

        /* Flush the differences accumulated by the parent to the
         * rewritten AOF. */
        snprintf(tmpfile,256,"temp-rewriteaof-bg-%d.aof",
            (int)server.aof_child_pid);
        newfd = open(tmpfile,O_WRONLY|O_APPEND);
        if (newfd == -1) {
            redisLog(REDIS_WARNING,
                "Unable to open the temporary AOF produced by the child: %s", strerror(errno));
            goto cleanup;
        }

        if (aofRewriteBufferWrite(newfd) == -1) {
            redisLog(REDIS_WARNING,
                "Error trying to flush the parent diff to the rewritten AOF: %s", strerror(errno));
            close(newfd);
            goto cleanup;
        }

        redisLog(REDIS_NOTICE,
            "Parent diff successfully flushed to the rewritten AOF (%lu bytes)", aofRewriteBufferSize());

        /* The only remaining thing to do is to rename the temporary file to
         * the configured file and switch the file descriptor used to do AOF
         * writes. We don't want close(2) or rename(2) calls to block the
         * server on old file deletion.
         *
         * There are two possible scenarios:
         *
         * 1) AOF is DISABLED and this was a one time rewrite. The temporary
         * file will be renamed to the configured file. When this file already
         * exists, it will be unlinked, which may block the server.
         *
         * 2) AOF is ENABLED and the rewritten AOF will immediately start
         * receiving writes. After the temporary file is renamed to the
         * configured file, the original AOF file descriptor will be closed.
         * Since this will be the last reference to that file, closing it
         * causes the underlying file to be unlinked, which may block the
         * server.
         *
         * To mitigate the blocking effect of the unlink operation (either
         * caused by rename(2) in scenario 1, or by close(2) in scenario 2), we
         * use a background thread to take care of this. First, we
         * make scenario 1 identical to scenario 2 by opening the target file
         * when it exists. The unlink operation after the rename(2) will then
         * be executed upon calling close(2) for its descriptor. Everything to
         * guarantee atomicity for this switch has already happened by then, so
         * we don't care what the outcome or duration of that close operation
         * is, as long as the file descriptor is released again. */
        if (server.aof_fd == -1) {
            /* AOF disabled */

             /* Don't care if this fails: oldfd will be -1 and we handle that.
              * One notable case of -1 return is if the old file does
              * not exist. */
             oldfd = open(server.aof_filename,O_RDONLY|O_NONBLOCK);
        } else {
            /* AOF enabled */
            oldfd = -1; /* We'll set this to the current AOF filedes later. */
        }

        /* Rename the temporary file. This will not unlink the target file if
         * it exists, because we reference it with "oldfd". */
        if (rename(tmpfile,server.aof_filename) == -1) {
            redisLog(REDIS_WARNING,
                "Error trying to rename the temporary AOF file: %s", strerror(errno));
            close(newfd);
            if (oldfd != -1) close(oldfd);
            goto cleanup;
        }

        if (server.aof_fd == -1) {
            /* AOF disabled, we don't need to set the AOF file descriptor
             * to this new file, so we can close it. */
            close(newfd);
        } else {
            /* AOF enabled, replace the old fd with the new one. */
            oldfd = server.aof_fd;
            server.aof_fd = newfd;
            if (server.aof_fsync == AOF_FSYNC_ALWAYS)
                aof_fsync(newfd);
            else if (server.aof_fsync == AOF_FSYNC_EVERYSEC)
                aof_background_fsync(newfd);
            server.aof_selected_db = -1; /* Make sure SELECT is re-issued */
            aofUpdateCurrentSize();
            server.aof_rewrite_base_size = server.aof_current_size;

            /* Clear regular AOF buffer since its contents was just written to
             * the new AOF from the background rewrite buffer. */
            sdsfree(server.aof_buf);
            server.aof_buf = sdsempty();
        }

        server.aof_lastbgrewrite_status = REDIS_OK;

        redisLog(REDIS_NOTICE, "Background AOF rewrite finished successfully");
        /* Change state from WAIT_REWRITE to ON if needed */
        if (server.aof_state == REDIS_AOF_WAIT_REWRITE)
            server.aof_state = REDIS_AOF_ON;

        /* Asynchronously close the overwritten AOF. */
        if (oldfd != -1) bioCreateBackgroundJob(REDIS_BIO_CLOSE_FILE,(void*)(long)oldfd,NULL,NULL);

        redisLog(REDIS_VERBOSE,
            "Background AOF rewrite signal handler took %lldus", ustime()-now);
    } else if (!bysignal && exitcode != 0) {
        server.aof_lastbgrewrite_status = REDIS_ERR;

        redisLog(REDIS_WARNING,
            "Background AOF rewrite terminated with error");
    } else {
        server.aof_lastbgrewrite_status = REDIS_ERR;

        redisLog(REDIS_WARNING,
            "Background AOF rewrite terminated by signal %d", bysignal);
    }

cleanup:
    aofRewriteBufferReset();
    aofRemoveTempFile(server.aof_child_pid);
    server.aof_child_pid = -1;
    server.aof_rewrite_time_last = time(NULL)-server.aof_rewrite_time_start;
    server.aof_rewrite_time_start = -1;
    /* Schedule a new rewrite if we are waiting for it to switch the AOF ON. */
    if (server.aof_state == REDIS_AOF_WAIT_REWRITE)
        server.aof_rewrite_scheduled = 1;
}
Esempio n. 2
0
/* Write the append only file buffer on disk.
 *
 * Since we are required to write the AOF before replying to the client,
 * and the only way the client socket can get a write is entering when the
 * the event loop, we accumulate all the AOF writes in a memory
 * buffer and write it on disk using this function just before entering
 * the event loop again.
 *
 * About the 'force' argument:
 *
 * When the fsync policy is set to 'everysec' we may delay the flush if there
 * is still an fsync() going on in the background thread, since for instance
 * on Linux write(2) will be blocked by the background fsync anyway.
 * When this happens we remember that there is some aof buffer to be
 * flushed ASAP, and will try to do that in the serverCron() function.
 *
 * However if force is set to 1 we'll write regardless of the background
 * fsync. */
void flushAppendOnlyFile(int force) {
    ssize_t nwritten;
    int sync_in_progress = 0;

    if (sdslen(server.aof_buf) == 0) return;

    if (server.aof_fsync == AOF_FSYNC_EVERYSEC)
        sync_in_progress = bioPendingJobsOfType(REDIS_BIO_AOF_FSYNC) != 0;

    if (server.aof_fsync == AOF_FSYNC_EVERYSEC && !force) {
        /* With this append fsync policy we do background fsyncing.
         * If the fsync is still in progress we can try to delay
         * the write for a couple of seconds. */
        if (sync_in_progress) {
            if (server.aof_flush_postponed_start == 0) {
                /* No previous write postponinig, remember that we are
                 * postponing the flush and return. */
                server.aof_flush_postponed_start = server.unixtime;
                return;
            } else if (server.unixtime - server.aof_flush_postponed_start < 2) {
                /* We were already waiting for fsync to finish, but for less
                 * than two seconds this is still ok. Postpone again. */
                return;
            }
            /* Otherwise fall trough, and go write since we can't wait
             * over two seconds. */
            server.aof_delayed_fsync++;
            redisLog(REDIS_NOTICE,"Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.");
        }
    }
    /* If you are following this code path, then we are going to write so
     * set reset the postponed flush sentinel to zero. */
    server.aof_flush_postponed_start = 0;

    /* We want to perform a single write. This should be guaranteed atomic
     * at least if the filesystem we are writing is a real physical one.
     * While this will save us against the server being killed I don't think
     * there is much to do about the whole server stopping for power problems
     * or alike */
    nwritten = write(server.aof_fd,server.aof_buf,sdslen(server.aof_buf));
    if (nwritten != (signed)sdslen(server.aof_buf)) {
        /* Ooops, we are in troubles. The best thing to do for now is
         * aborting instead of giving the illusion that everything is
         * working as expected. */
        if (nwritten == -1) {
            redisLog(REDIS_WARNING,"Exiting on error writing to the append-only file: %s",strerror(errno));
        } else {
            redisLog(REDIS_WARNING,"Exiting on short write while writing to "
                                   "the append-only file: %s (nwritten=%ld, "
                                   "expected=%ld)",
                                   strerror(errno),
                                   (long)nwritten,
                                   (long)sdslen(server.aof_buf));

            if (ftruncate(server.aof_fd, server.aof_current_size) == -1) {
                redisLog(REDIS_WARNING, "Could not remove short write "
                         "from the append-only file.  Redis may refuse "
                         "to load the AOF the next time it starts.  "
                         "ftruncate: %s", strerror(errno));
            }
        }
        exit(1);
    }
    server.aof_current_size += nwritten;

    /* Re-use AOF buffer when it is small enough. The maximum comes from the
     * arena size of 4k minus some overhead (but is otherwise arbitrary). */
    if ((sdslen(server.aof_buf)+sdsavail(server.aof_buf)) < 4000) {
        sdsclear(server.aof_buf);
    } else {
        sdsfree(server.aof_buf);
        server.aof_buf = sdsempty();
    }

    /* Don't fsync if no-appendfsync-on-rewrite is set to yes and there are
     * children doing I/O in the background. */
    if (server.aof_no_fsync_on_rewrite &&
        (server.aof_child_pid != -1 || server.rdb_child_pid != -1))
            return;

    /* Perform the fsync if needed. */
    if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
        /* aof_fsync is defined as fdatasync() for Linux in order to avoid
         * flushing metadata. */
        aof_fsync(server.aof_fd); /* Let's try to get this data on the disk */
        server.aof_last_fsync = server.unixtime;
    } else if ((server.aof_fsync == AOF_FSYNC_EVERYSEC &&
                server.unixtime > server.aof_last_fsync)) {
        if (!sync_in_progress) aof_background_fsync(server.aof_fd);
        server.aof_last_fsync = server.unixtime;
    }
}
Esempio n. 3
0
/* Write the append only file buffer on disk.
 *
 * Since we are required to write the AOF before replying to the client,
 * and the only way the client socket can get a write is entering when the
 * the event loop, we accumulate all the AOF writes in a memory
 * buffer and write it on disk using this function just before entering
 * the event loop again.
 *
 * About the 'force' argument:
 *
 * When the fsync policy is set to 'everysec' we may delay the flush if there
 * is still an fsync() going on in the background thread, since for instance
 * on Linux write(2) will be blocked by the background fsync anyway.
 * When this happens we remember that there is some aof buffer to be
 * flushed ASAP, and will try to do that in the serverCron() function.
 *
 * However if force is set to 1 we'll write regardless of the background
 * fsync. */
#define AOF_WRITE_LOG_ERROR_RATE 30 /* Seconds between errors logging. */
void flushAppendOnlyFile(int force) {
    ssize_t nwritten;
    int sync_in_progress = 0;

    if (sdslen(server.aof_buf) == 0) return;

    if (server.aof_fsync == AOF_FSYNC_EVERYSEC)
        sync_in_progress = bioPendingJobsOfType(REDIS_BIO_AOF_FSYNC) != 0;

    if (server.aof_fsync == AOF_FSYNC_EVERYSEC && !force) {
        /* With this append fsync policy we do background fsyncing.
         * If the fsync is still in progress we can try to delay
         * the write for a couple of seconds. */
        if (sync_in_progress) {
            if (server.aof_flush_postponed_start == 0) {
                /* No previous write postponinig, remember that we are
                 * postponing the flush and return. */
                server.aof_flush_postponed_start = server.unixtime;
                return;
            } else if (server.unixtime - server.aof_flush_postponed_start < 2) {
                /* We were already waiting for fsync to finish, but for less
                 * than two seconds this is still ok. Postpone again. */
                return;
            }
            /* Otherwise fall trough, and go write since we can't wait
             * over two seconds. */
            server.aof_delayed_fsync++;
            redisLog(REDIS_NOTICE,"Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.");
        }
    }
    /* If you are following this code path, then we are going to write so
     * set reset the postponed flush sentinel to zero. */
    server.aof_flush_postponed_start = 0;

    /* We want to perform a single write. This should be guaranteed atomic
     * at least if the filesystem we are writing is a real physical one.
     * While this will save us against the server being killed I don't think
     * there is much to do about the whole server stopping for power problems
     * or alike */
    nwritten = write(server.aof_fd,server.aof_buf,sdslen(server.aof_buf));
    if (nwritten != (signed)sdslen(server.aof_buf)) {
        static time_t last_write_error_log = 0;
        int can_log = 0;

        /* Limit logging rate to 1 line per AOF_WRITE_LOG_ERROR_RATE seconds. */
        if ((server.unixtime - last_write_error_log) > AOF_WRITE_LOG_ERROR_RATE) {
            can_log = 1;
            last_write_error_log = server.unixtime;
        }

        /* Lof the AOF write error and record the error code. */
        if (nwritten == -1) {
            if (can_log) {
                redisLog(REDIS_WARNING,"Error writing to the AOF file: %s",
                    strerror(errno));
                server.aof_last_write_errno = errno;
            }
        } else {
            if (can_log) {
                redisLog(REDIS_WARNING,"Short write while writing to "
                                       "the AOF file: (nwritten=%lld, "
                                       "expected=%lld)",
                                       (long long)nwritten,
                                       (long long)sdslen(server.aof_buf));
            }

            if (ftruncate(server.aof_fd, server.aof_current_size) == -1) {
                if (can_log) {
                    redisLog(REDIS_WARNING, "Could not remove short write "
                             "from the append-only file.  Redis may refuse "
                             "to load the AOF the next time it starts.  "
                             "ftruncate: %s", strerror(errno));
                }
            } else {
                /* If the ftrunacate() succeeded we can set nwritten to
                 * -1 since there is no longer partial data into the AOF. */
                nwritten = -1;
            }
            server.aof_last_write_errno = ENOSPC;
        }

        /* Handle the AOF write error. */
        if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
            /* We can't recover when the fsync policy is ALWAYS since the
             * reply for the client is already in the output buffers, and we
             * have the contract with the user that on acknowledged write data
             * is synched on disk. */
            redisLog(REDIS_WARNING,"Can't recover from AOF write error when the AOF fsync policy is 'always'. Exiting...");
            exit(1);
        } else {
            /* Recover from failed write leaving data into the buffer. However
             * set an error to stop accepting writes as long as the error
             * condition is not cleared. */
            server.aof_last_write_status = REDIS_ERR;

            /* Trim the sds buffer if there was a partial write, and there
             * was no way to undo it with ftruncate(2). */
            if (nwritten > 0) {
                server.aof_current_size += nwritten;
                sdsrange(server.aof_buf,nwritten,-1);
            }
            return; /* We'll try again on the next call... */
        }
    } else {
        /* Successful write(2). If AOF was in error state, restore the
         * OK state and log the event. */
        if (server.aof_last_write_status == REDIS_ERR) {
            redisLog(REDIS_WARNING,
                "AOF write error looks solved, Redis can write again.");
            server.aof_last_write_status = REDIS_OK;
        }
    }
    server.aof_current_size += nwritten;

    /* Re-use AOF buffer when it is small enough. The maximum comes from the
     * arena size of 4k minus some overhead (but is otherwise arbitrary). */
    if ((sdslen(server.aof_buf)+sdsavail(server.aof_buf)) < 4000) {
        sdsclear(server.aof_buf);
    } else {
        sdsfree(server.aof_buf);
        server.aof_buf = sdsempty();
    }

    /* Don't fsync if no-appendfsync-on-rewrite is set to yes and there are
     * children doing I/O in the background. */
    if (server.aof_no_fsync_on_rewrite &&
        (server.aof_child_pid != -1 || server.rdb_child_pid != -1))
            return;

    /* Perform the fsync if needed. */
    if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
        /* aof_fsync is defined as fdatasync() for Linux in order to avoid
         * flushing metadata. */
        aof_fsync(server.aof_fd); /* Let's try to get this data on the disk */
        server.aof_last_fsync = server.unixtime;
    } else if ((server.aof_fsync == AOF_FSYNC_EVERYSEC &&
                server.unixtime > server.aof_last_fsync)) {
        if (!sync_in_progress) aof_background_fsync(server.aof_fd);
        server.aof_last_fsync = server.unixtime;
    }
}