bool isLinear(const Cubic& cubic, int startIndex, int endIndex) { LineParameters lineParameters; lineParameters.cubicEndPoints(cubic, startIndex, endIndex); double normalSquared = lineParameters.normalSquared(); double distance[2]; // distance is not normalized int mask = other_two(startIndex, endIndex); int inner1 = startIndex ^ mask; int inner2 = endIndex ^ mask; lineParameters.controlPtDistance(cubic, inner1, inner2, distance); double limit = normalSquared; int index; for (index = 0; index < 2; ++index) { double distSq = distance[index]; distSq *= distSq; if (approximately_greater(distSq, limit)) { return false; } } return true; }
// return false if unable to clip (e.g., unable to create implicit line) // caller should subdivide, or create degenerate if the values are too small bool bezier_clip(const Cubic& cubic1, const Cubic& cubic2, double& minT, double& maxT) { minT = 1; maxT = 0; // determine normalized implicit line equation for pt[0] to pt[3] // of the form ax + by + c = 0, where a*a + b*b == 1 // find the implicit line equation parameters LineParameters endLine; endLine.cubicEndPoints(cubic1); if (!endLine.normalize()) { printf("line cannot be normalized: need more code here\n"); return false; } double distance[2]; endLine.controlPtDistance(cubic1, distance); // find fat line double top = distance[0]; double bottom = distance[1]; if (top > bottom) { std::swap(top, bottom); } if (top * bottom >= 0) { const double scale = 3/4.0; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf (13) if (top < 0) { top *= scale; bottom = 0; } else { top = 0; bottom *= scale; } } else { const double scale = 4/9.0; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf (15) top *= scale; bottom *= scale; } // compute intersecting candidate distance Cubic distance2y; // points with X of (0, 1/3, 2/3, 1) endLine.cubicDistanceY(cubic2, distance2y); int flags = 0; if (approximately_lesser(distance2y[0].y, top)) { flags |= kFindTopMin; } else if (approximately_greater(distance2y[0].y, bottom)) { flags |= kFindBottomMin; } else { minT = 0; } if (approximately_lesser(distance2y[3].y, top)) { flags |= kFindTopMax; } else if (approximately_greater(distance2y[3].y, bottom)) { flags |= kFindBottomMax; } else { maxT = 1; } // Find the intersection of distance convex hull and fat line. char to_0[2]; char to_3[2]; bool do_1_2_edge = convex_x_hull(distance2y, to_0, to_3); x_at(distance2y[0], distance2y[to_0[0]], top, bottom, flags, minT, maxT); if (to_0[0] != to_0[1]) { x_at(distance2y[0], distance2y[to_0[1]], top, bottom, flags, minT, maxT); } x_at(distance2y[to_3[0]], distance2y[3], top, bottom, flags, minT, maxT); if (to_3[0] != to_3[1]) { x_at(distance2y[to_3[1]], distance2y[3], top, bottom, flags, minT, maxT); } if (do_1_2_edge) { x_at(distance2y[1], distance2y[2], top, bottom, flags, minT, maxT); } return minT < maxT; // returns false if distance shows no intersection }
// return false if unable to clip (e.g., unable to create implicit line) // caller should subdivide, or create degenerate if the values are too small bool bezier_clip(const Quadratic& q1, const Quadratic& q2, double& minT, double& maxT) { minT = 1; maxT = 0; // determine normalized implicit line equation for pt[0] to pt[3] // of the form ax + by + c = 0, where a*a + b*b == 1 // find the implicit line equation parameters LineParameters endLine; endLine.quadEndPoints(q1); if (!endLine.normalize()) { printf("line cannot be normalized: need more code here\n"); assert(0); return false; } double distance = endLine.controlPtDistance(q1); // find fat line double top = 0; double bottom = distance / 2; // http://students.cs.byu.edu/~tom/557/text/cic.pdf (7.6) if (top > bottom) { std::swap(top, bottom); } // compute intersecting candidate distance Quadratic distance2y; // points with X of (0, 1/2, 1) endLine.quadDistanceY(q2, distance2y); int flags = 0; if (approximately_lesser(distance2y[0].y, top)) { flags |= kFindTopMin; } else if (approximately_greater(distance2y[0].y, bottom)) { flags |= kFindBottomMin; } else { minT = 0; } if (approximately_lesser(distance2y[2].y, top)) { flags |= kFindTopMax; } else if (approximately_greater(distance2y[2].y, bottom)) { flags |= kFindBottomMax; } else { maxT = 1; } // Find the intersection of distance convex hull and fat line. int idx = 0; do { int next = idx + 1; if (next == 3) { next = 0; } x_at(distance2y[idx], distance2y[next], top, bottom, flags, minT, maxT); idx = next; } while (idx); #if DEBUG_BEZIER_CLIP _Rect r1, r2; r1.setBounds(q1); r2.setBounds(q2); _Point testPt = {0.487, 0.337}; if (r1.contains(testPt) && r2.contains(testPt)) { printf("%s q1=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" " q2=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g) minT=%1.9g maxT=%1.9g\n", __FUNCTION__, q1[0].x, q1[0].y, q1[1].x, q1[1].y, q1[2].x, q1[2].y, q2[0].x, q2[0].y, q2[1].x, q2[1].y, q2[2].x, q2[2].y, minT, maxT); } #endif return minT < maxT; // returns false if distance shows no intersection }