Esempio n. 1
0
File: fprint.c Progetto: isuruf/arb
void
arf_fprintd(FILE * file, const arf_t x, slong d)
{
    if (arf_is_finite(x) && (ARF_EXP(x) <= MPFR_EMIN_MIN + 1 ||
                             ARF_EXP(x) >= MPFR_EMAX_MAX - 1))
    {
        arf_fprint(file, x);
    }
    else
    {
        mpfr_t t;
        mpfr_init2(t, d * 3.33 + 10);
        mpfr_set_emin(MPFR_EMIN_MIN);
        mpfr_set_emax(MPFR_EMAX_MAX);
        arf_get_mpfr(t, x, MPFR_RNDN);
        mpfr_fprintf(file, "%.*Rg", FLINT_MAX(d, 1), t);
        mpfr_clear(t);
    }
}
Esempio n. 2
0
File: submul.c Progetto: isuruf/arb
int
arf_submul_mpz(arf_ptr z, arf_srcptr x, const mpz_t y, slong prec, arf_rnd_t rnd)
{
    mp_size_t xn, yn, zn, tn, alloc;
    mp_srcptr xptr, yptr, zptr;
    mp_ptr tptr, tptr2;
    fmpz_t texp, yexp;
    slong shift;
    int tsgnbit, ysgnbit, inexact;
    ARF_MUL_TMP_DECL

    yn = FLINT_ABS(y->_mp_size);

    if (arf_is_special(x) || yn == 0 || arf_is_special(z))
    {
        if (arf_is_zero(z))
        {
            /* TODO: make more efficient */
            arf_mul_mpz(z, x, y, ARF_PREC_EXACT, rnd);
            return arf_neg_round(z, z, prec, rnd);
        }
        else if (arf_is_finite(x))
        {
            return arf_set_round(z, z, prec, rnd);
        }
        else
        {
            /* todo: speed up */
            arf_t t;
            arf_init(t);
            arf_mul_mpz(t, x, y, ARF_PREC_EXACT, ARF_RND_DOWN);
            inexact = arf_sub(z, z, t, prec, rnd);
            arf_clear(t);
            return inexact;
        }
    }

    ARF_GET_MPN_READONLY(xptr, xn, x);

    yptr = y->_mp_d;
    ysgnbit = (y->_mp_size > 0);
    *yexp = yn * FLINT_BITS;

    ARF_GET_MPN_READONLY(zptr, zn, z);

    fmpz_init(texp);

    tsgnbit = ARF_SGNBIT(x) ^ ysgnbit;

    alloc = tn = xn + yn;
    ARF_MUL_TMP_ALLOC(tptr2, alloc)
    tptr = tptr2;

    ARF_MPN_MUL(tptr, xptr, xn, yptr, yn);

    shift = (tptr[tn - 1] == 0) * FLINT_BITS;
    tn -= (tptr[tn - 1] == 0);

    _fmpz_add2_fast(texp, ARF_EXPREF(x), yexp, -shift);
    shift = _fmpz_sub_small(ARF_EXPREF(z), texp);

    if (shift >= 0)
        inexact = _arf_add_mpn(z, zptr, zn, ARF_SGNBIT(z), ARF_EXPREF(z),
            tptr, tn, tsgnbit, shift, prec, rnd);
    else
        inexact = _arf_add_mpn(z, tptr, tn, tsgnbit, texp,
            zptr, zn, ARF_SGNBIT(z), -shift, prec, rnd);

    ARF_MUL_TMP_FREE(tptr2, alloc)
    fmpz_clear(texp);

    return inexact;
}
Esempio n. 3
0
File: submul.c Progetto: isuruf/arb
int
arf_submul(arf_ptr z, arf_srcptr x, arf_srcptr y, slong prec, arf_rnd_t rnd)
{
    mp_size_t xn, yn, zn, tn, alloc;
    mp_srcptr xptr, yptr, zptr;
    mp_ptr tptr, tptr2;
    fmpz_t texp;
    slong shift;
    int tsgnbit, inexact;
    ARF_MUL_TMP_DECL

    if (arf_is_special(x) || arf_is_special(y) || arf_is_special(z))
    {
        if (arf_is_zero(z))
        {
            return arf_neg_mul(z, x, y, prec, rnd);
        }
        else if (arf_is_finite(x) && arf_is_finite(y))
        {
            return arf_set_round(z, z, prec, rnd);
        }
        else
        {
            /* todo: speed up */
            arf_t t;
            arf_init(t);
            arf_mul(t, x, y, ARF_PREC_EXACT, ARF_RND_DOWN);
            inexact = arf_sub(z, z, t, prec, rnd);
            arf_clear(t);
            return inexact;
        }
    }

    tsgnbit = ARF_SGNBIT(x) ^ ARF_SGNBIT(y) ^ 1;
    ARF_GET_MPN_READONLY(xptr, xn, x);
    ARF_GET_MPN_READONLY(yptr, yn, y);
    ARF_GET_MPN_READONLY(zptr, zn, z);

    fmpz_init(texp);

    _fmpz_add2_fast(texp, ARF_EXPREF(x), ARF_EXPREF(y), 0);
    shift = _fmpz_sub_small(ARF_EXPREF(z), texp);

    alloc = tn = xn + yn;
    ARF_MUL_TMP_ALLOC(tptr2, alloc)
    tptr = tptr2;

    ARF_MPN_MUL(tptr, xptr, xn, yptr, yn);

    tn -= (tptr[0] == 0);
    tptr += (tptr[0] == 0);

    if (shift >= 0)
        inexact = _arf_add_mpn(z, zptr, zn, ARF_SGNBIT(z), ARF_EXPREF(z),
            tptr, tn, tsgnbit, shift, prec, rnd);
    else
        inexact = _arf_add_mpn(z, tptr, tn, tsgnbit, texp,
            zptr, zn, ARF_SGNBIT(z), -shift, prec, rnd);

    ARF_MUL_TMP_FREE(tptr2, alloc)
    fmpz_clear(texp);

    return inexact;
}
Esempio n. 4
0
void
_arb_sin_cos_generic(arb_t s, arb_t c, const arf_t x, const mag_t xrad, slong prec)
{
    int want_sin, want_cos;
    slong maglim;

    want_sin = (s != NULL);
    want_cos = (c != NULL);

    if (arf_is_zero(x) && mag_is_zero(xrad))
    {
        if (want_sin) arb_zero(s);
        if (want_cos) arb_one(c);
        return;
    }

    if (!arf_is_finite(x) || !mag_is_finite(xrad))
    {
        if (arf_is_nan(x))
        {
            if (want_sin) arb_indeterminate(s);
            if (want_cos) arb_indeterminate(c);
        }
        else
        {
            if (want_sin) arb_zero_pm_one(s);
            if (want_cos) arb_zero_pm_one(c);
        }
        return;
    }

    maglim = FLINT_MAX(65536, 4 * prec);

    if (mag_cmp_2exp_si(xrad, -16) > 0 || arf_cmpabs_2exp_si(x, maglim) > 0)
    {
        _arb_sin_cos_wide(s, c, x, xrad, prec);
        return;
    }

    if (arf_cmpabs_2exp_si(x, -(prec/2) - 2) <= 0)
    {
        mag_t t, u, v;
        mag_init(t);
        mag_init(u);
        mag_init(v);

        arf_get_mag(t, x);
        mag_add(t, t, xrad);
        mag_mul(u, t, t);

        /* |sin(z)-z| <= z^3/6 */
        if (want_sin)
        {
            arf_set(arb_midref(s), x);
            mag_set(arb_radref(s), xrad);
            arb_set_round(s, s, prec);
            mag_mul(v, u, t);
            mag_div_ui(v, v, 6);
            arb_add_error_mag(s, v);
        }

        /* |cos(z)-1| <= z^2/2 */
        if (want_cos)
        {
            arf_one(arb_midref(c));
            mag_mul_2exp_si(arb_radref(c), u, -1);
        }

        mag_clear(t);
        mag_clear(u);
        mag_clear(v);
        return;
    }

    if (mag_is_zero(xrad))
    {
        arb_sin_cos_arf_generic(s, c, x, prec);
    }
    else
    {
        mag_t t;
        slong exp, radexp;

        mag_init_set(t, xrad);

        exp = arf_abs_bound_lt_2exp_si(x);
        radexp = MAG_EXP(xrad);
        if (radexp < MAG_MIN_LAGOM_EXP || radexp > MAG_MAX_LAGOM_EXP)
            radexp = MAG_MIN_LAGOM_EXP;

        if (want_cos && exp < -2)
            prec = FLINT_MIN(prec, 20 - FLINT_MAX(exp, radexp) - radexp);
        else
            prec = FLINT_MIN(prec, 20 - radexp);

        arb_sin_cos_arf_generic(s, c, x, prec);

        /* todo: could use quadratic bound */
        if (want_sin) mag_add(arb_radref(s), arb_radref(s), t);
        if (want_cos) mag_add(arb_radref(c), arb_radref(c), t);

        mag_clear(t);
    }
}
Esempio n. 5
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("is_int_2exp_si....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        arf_t x, y;
        fmpz_t t;
        slong e;
        int res1, res2;

        arf_init(x);
        arf_init(y);
        fmpz_init(t);

        arf_randtest_special(x, state, 2000, 100);
        e = n_randtest(state);
        arf_mul_2exp_si(y, x, e);

        res1 = arf_is_int(x);
        res2 = arf_is_int_2exp_si(y, e);

        if (res1 != res2)
        {
            flint_printf("FAIL! (1)\n");
            flint_printf("x = "); arf_print(x); flint_printf("\n\n");
            flint_printf("y = "); arf_print(y); flint_printf("\n\n");
            flint_printf("res1 = %d, res2 = %d\n\n", res1, res2);
            abort();
        }

        if (res1)
        {
            if (n_randint(state, 2))
                arf_floor(y, x);
            else
                arf_ceil(y, x);

            if (!arf_equal(x, y) || !arf_is_finite(x))
            {
                flint_printf("FAIL! (2)\n");
                flint_printf("x = "); arf_print(x); flint_printf("\n\n");
                flint_printf("y = "); arf_print(y); flint_printf("\n\n");
                flint_printf("res1 = %d\n\n", res1);
                abort();
            }
        }

        if (arf_is_finite(x) && !arf_is_zero(x))
        {
            arf_bot(t, x);
            fmpz_neg(t, t);
            arf_mul_2exp_fmpz(x, x, t);
            res1 = arf_is_int(x);
            arf_mul_2exp_si(y, x, -1);
            res2 = arf_is_int(y);

            if (!arf_is_int(x) || arf_is_int(y))
            {
                flint_printf("FAIL! (3)\n");
                flint_printf("x = "); arf_print(x); flint_printf("\n\n");
                flint_printf("y = "); arf_print(y); flint_printf("\n\n");
                flint_printf("res1 = %d, res2 = %d\n\n", res1, res2);
                abort();
            }
        }

        arf_clear(x);
        arf_clear(y);
        fmpz_clear(t);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Esempio n. 6
0
File: t-floor.c Progetto: isuruf/arb
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("floor....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 10000; iter++)
    {
        arf_t x, y;
        int result;

        arf_init(x);
        arf_init(y);

        arf_randtest_special(x, state, 2000, 100);
        arf_randtest_special(y, state, 2000, 100);

        arf_floor(y, x);

        result = 1;

        if (arf_is_int(x) || !arf_is_finite(x))
        {
            result = arf_equal(y, x);
        }
        else if (!arf_is_int(y))
        {
            result = 0;
        }
        else if (arf_cmp(y, x) >= 0)
        {
            result = 0;
        }
        else
        {
            arf_t s, t[3];

            /* check floor(x) - x + 1 > 0 */

            arf_init(s);
            arf_init(t[0]);
            arf_init(t[1]);
            arf_init(t[2]);

            arf_set(t[0], y);
            arf_neg(t[1], x);
            arf_one(t[2]);

            arf_sum(s, (arf_ptr) t, 3, 32, ARF_RND_DOWN);

            result = arf_sgn(s) > 0;

            arf_clear(s);
            arf_clear(t[0]);
            arf_clear(t[1]);
            arf_clear(t[2]);
        }

        if (!result)
        {
            flint_printf("FAIL!\n");
            flint_printf("x = "); arf_print(x); flint_printf("\n\n");
            flint_printf("y = "); arf_print(y); flint_printf("\n\n");
            abort();
        }

        arf_floor(x, x);

        if (!arf_equal(x, y))
        {
            flint_printf("FAIL (aliasing)!\n");
            flint_printf("x = "); arf_print(x); flint_printf("\n\n");
            flint_printf("y = "); arf_print(y); flint_printf("\n\n");
            abort();
        }

        arf_clear(x);
        arf_clear(y);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
int
acb_calc_integrate_taylor(acb_t res,
    acb_calc_func_t func, void * param,
    const acb_t a, const acb_t b,
    const arf_t inner_radius,
    const arf_t outer_radius,
    long accuracy_goal, long prec)
{
    long num_steps, step, N, bp;
    int result;

    acb_t delta, m, x, y1, y2, sum;
    acb_ptr taylor_poly;
    arf_t err;

    acb_init(delta);
    acb_init(m);
    acb_init(x);
    acb_init(y1);
    acb_init(y2);
    acb_init(sum);
    arf_init(err);

    acb_sub(delta, b, a, prec);

    /* precision used for bounds calculations */
    bp = MAG_BITS;

    /* compute the number of steps */
    {
        arf_t t;
        arf_init(t);
        acb_get_abs_ubound_arf(t, delta, bp);
        arf_div(t, t, inner_radius, bp, ARF_RND_UP);
        arf_mul_2exp_si(t, t, -1);
        num_steps = (long) (arf_get_d(t, ARF_RND_UP) + 1.0);
        /* make sure it's not something absurd */
        num_steps = FLINT_MIN(num_steps, 10 * prec);
        num_steps = FLINT_MAX(num_steps, 1);
        arf_clear(t);
    }

    result = ARB_CALC_SUCCESS;

    acb_zero(sum);

    for (step = 0; step < num_steps; step++)
    {
        /* midpoint of subinterval */
        acb_mul_ui(m, delta, 2 * step + 1, prec);
        acb_div_ui(m, m, 2 * num_steps, prec);
        acb_add(m, m, a, prec);

        if (arb_calc_verbose)
        {
            printf("integration point %ld/%ld: ", 2 * step + 1, 2 * num_steps);
            acb_printd(m, 15); printf("\n");
        }

        /* evaluate at +/- x */
        /* TODO: exactify m, and include error in x? */
        acb_div_ui(x, delta, 2 * num_steps, prec);

        /* compute bounds and number of terms to use */
        {
            arb_t cbound, xbound, rbound;
            arf_t C, D, R, X, T;
            double DD, TT, NN;

            arb_init(cbound);
            arb_init(xbound);
            arb_init(rbound);
            arf_init(C);
            arf_init(D);
            arf_init(R);
            arf_init(X);
            arf_init(T);

            /* R is the outer radius */
            arf_set(R, outer_radius);

            /* X = upper bound for |x| */
            acb_get_abs_ubound_arf(X, x, bp);
            arb_set_arf(xbound, X);

            /* Compute C(m,R). Important subtlety: due to rounding when
               computing m, we will in general be farther than R away from
               the integration path. But since acb_calc_cauchy_bound
               actually integrates over the area traced by a complex
               interval, it will catch any extra singularities (giving
               an infinite bound). */
            arb_set_arf(rbound, outer_radius);
            acb_calc_cauchy_bound(cbound, func, param, m, rbound, 8, bp);
            arf_set_mag(C, arb_radref(cbound));
            arf_add(C, arb_midref(cbound), C, bp, ARF_RND_UP);

            /* Sanity check: we need C < inf and R > X */
            if (arf_is_finite(C) && arf_cmp(R, X) > 0)
            {
                /* Compute upper bound for D = C * R * X / (R - X) */
                arf_mul(D, C, R, bp, ARF_RND_UP);
                arf_mul(D, D, X, bp, ARF_RND_UP);
                arf_sub(T, R, X, bp, ARF_RND_DOWN);
                arf_div(D, D, T, bp, ARF_RND_UP);

                /* Compute upper bound for T = (X / R) */
                arf_div(T, X, R, bp, ARF_RND_UP);

                /* Choose N */
                /* TODO: use arf arithmetic to avoid overflow */
                /* TODO: use relative accuracy (look at |f(m)|?) */
                DD = arf_get_d(D, ARF_RND_UP);
                TT = arf_get_d(T, ARF_RND_UP);
                NN = -(accuracy_goal * 0.69314718055994530942 + log(DD)) / log(TT);
                N = NN + 0.5;
                N = FLINT_MIN(N, 100 * prec);
                N = FLINT_MAX(N, 1);

                /* Tail bound: D / (N + 1) * T^N */
                {
                    mag_t TT;
                    mag_init(TT);
                    arf_get_mag(TT, T);
                    mag_pow_ui(TT, TT, N);
                    arf_set_mag(T, TT);
                    mag_clear(TT);
                }
                arf_mul(D, D, T, bp, ARF_RND_UP);
                arf_div_ui(err, D, N + 1, bp, ARF_RND_UP);
            }
            else
            {
                N = 1;
                arf_pos_inf(err);
                result = ARB_CALC_NO_CONVERGENCE;
            }

            if (arb_calc_verbose)
            {
                printf("N = %ld; bound: ", N); arf_printd(err, 15); printf("\n");
                printf("R: "); arf_printd(R, 15); printf("\n");
                printf("C: "); arf_printd(C, 15); printf("\n");
                printf("X: "); arf_printd(X, 15); printf("\n");
            }

            arb_clear(cbound);
            arb_clear(xbound);
            arb_clear(rbound);
            arf_clear(C);
            arf_clear(D);
            arf_clear(R);
            arf_clear(X);
            arf_clear(T);
        }

        /* evaluate Taylor polynomial */
        taylor_poly = _acb_vec_init(N + 1);
        func(taylor_poly, m, param, N, prec);
        _acb_poly_integral(taylor_poly, taylor_poly, N + 1, prec);
        _acb_poly_evaluate(y2, taylor_poly, N + 1, x, prec);
        acb_neg(x, x);
        _acb_poly_evaluate(y1, taylor_poly, N + 1, x, prec);
        acb_neg(x, x);

        /* add truncation error */
        arb_add_error_arf(acb_realref(y1), err);
        arb_add_error_arf(acb_imagref(y1), err);
        arb_add_error_arf(acb_realref(y2), err);
        arb_add_error_arf(acb_imagref(y2), err);

        acb_add(sum, sum, y2, prec);
        acb_sub(sum, sum, y1, prec);

        if (arb_calc_verbose)
        {
            printf("values:  ");
            acb_printd(y1, 15); printf("  ");
            acb_printd(y2, 15); printf("\n");
        }

        _acb_vec_clear(taylor_poly, N + 1);

        if (result == ARB_CALC_NO_CONVERGENCE)
            break;
    }

    acb_set(res, sum);

    acb_clear(delta);
    acb_clear(m);
    acb_clear(x);
    acb_clear(y1);
    acb_clear(y2);
    acb_clear(sum);
    arf_clear(err);

    return result;
}