Esempio n. 1
0
bool verify_fun(pass_opt_t* opt, ast_t* ast)
{
  assert((ast_id(ast) == TK_BE) || (ast_id(ast) == TK_FUN) ||
    (ast_id(ast) == TK_NEW));
  AST_GET_CHILDREN(ast, cap, id, typeparams, params, type, can_error, body);

  // Run checks tailored to specific kinds of methods, if any apply.
  if(!verify_main_create(opt, ast) ||
    !verify_primitive_init(opt, ast) ||
    !verify_any_final(opt, ast))
    return false;

  // Check partial functions.
  if(ast_id(can_error) == TK_QUESTION)
  {
    // If the function is marked as partial, it must have the potential
    // to raise an error somewhere in the body. This check is skipped for
    // traits and interfaces - they are allowed to give a default implementation
    // of the method that does or does not have the potential to raise an error.
    bool is_trait =
      (ast_id(opt->check.frame->type) == TK_TRAIT) ||
      (ast_id(opt->check.frame->type) == TK_INTERFACE) ||
      (ast_id((ast_t*)ast_data(ast)) == TK_TRAIT) ||
      (ast_id((ast_t*)ast_data(ast)) == TK_INTERFACE);

    if(!is_trait &&
      !ast_canerror(body) &&
      (ast_id(ast_type(body)) != TK_COMPILE_INTRINSIC))
    {
      ast_error(opt->check.errors, can_error, "function signature is marked as "
        "partial but the function body cannot raise an error");
      return false;
    }
  } else {
    // If the function is not marked as partial, it must never raise an error.
    if(ast_canerror(body))
    {
      if(ast_id(ast) == TK_BE)
      {
        ast_error(opt->check.errors, can_error, "a behaviour must handle any "
          "potential error");
      } else if((ast_id(ast) == TK_NEW) &&
        (ast_id(opt->check.frame->type) == TK_ACTOR)) {
        ast_error(opt->check.errors, can_error, "an actor constructor must "
          "handle any potential error");
      } else {
        ast_error(opt->check.errors, can_error, "function signature is not "
          "marked as partial but the function body can raise an error");
      }
      show_partiality(opt, body);
      return false;
    }
  }

  return true;
}
Esempio n. 2
0
bool expr_fun(pass_opt_t* opt, ast_t* ast)
{
    typecheck_t* t = &opt->check;

    AST_GET_CHILDREN(ast,
                     cap, id, typeparams, params, type, can_error, body);

    if(ast_id(body) == TK_NONE)
        return true;

    if(!coerce_literals(&body, type, opt))
        return false;

    bool is_trait =
        (ast_id(t->frame->type) == TK_TRAIT) ||
        (ast_id(t->frame->type) == TK_INTERFACE) ||
        (ast_id((ast_t*)ast_data(ast)) == TK_TRAIT) ||
        (ast_id((ast_t*)ast_data(ast)) == TK_INTERFACE);

    // Check partial functions.
    if(ast_id(can_error) == TK_QUESTION)
    {
        // If a partial function, check that we might actually error.
        if(!is_trait && !ast_canerror(body))
        {
            ast_error(can_error, "function body is not partial but the function is");
            return false;
        }
    } else {
        // If not a partial function, check that we can't error.
        if(ast_canerror(body))
        {
            ast_error(can_error, "function body is partial but the function is not");
            show_partiality(body);
            return false;
        }
    }

    if(!check_primitive_init(t, ast) || !check_finaliser(ast))
        return false;

    switch(ast_id(ast))
    {
    case TK_NEW:
        return check_fields_defined(ast) && check_main_create(t, ast);

    case TK_FUN:
        return check_return_type(ast);

    default:
    {}
    }

    return true;
}
Esempio n. 3
0
static bool show_partiality(ast_t* ast)
{
  ast_t* child = ast_child(ast);
  bool found = false;

  while(child != NULL)
  {
    if(ast_canerror(child))
      found |= show_partiality(child);

    child = ast_sibling(child);
  }

  if(found)
    return true;

  if(ast_canerror(ast))
  {
    ast_error(ast, "an error can be raised here");
    return true;
  }

  return false;
}
Esempio n. 4
0
static bool show_partiality(pass_opt_t* opt, ast_t* ast)
{
  ast_t* child = ast_child(ast);
  bool found = false;

  while(child != NULL)
  {
    if(ast_canerror(child))
      found |= show_partiality(opt, child);

    child = ast_sibling(child);
  }

  if(found)
    return true;

  if(ast_canerror(ast))
  {
    ast_error_continue(opt->check.errors, ast, "an error can be raised here");
    return true;
  }

  return false;
}
Esempio n. 5
0
bool expr_fun(pass_opt_t* opt, ast_t* ast)
{
  typecheck_t* t = &opt->check;

  AST_GET_CHILDREN(ast,
    cap, id, typeparams, params, type, can_error, body);

  if(ast_id(body) == TK_NONE)
    return true;

  if(!coerce_literals(&body, type, opt))
    return false;

  bool is_trait =
    (ast_id(t->frame->type) == TK_TRAIT) ||
    (ast_id(t->frame->type) == TK_INTERFACE) ||
    (ast_id((ast_t*)ast_data(ast)) == TK_TRAIT) ||
    (ast_id((ast_t*)ast_data(ast)) == TK_INTERFACE);

  // Check partial functions.
  if(ast_id(can_error) == TK_QUESTION)
  {
    // If a partial function, check that we might actually error.
    ast_t* body_type = ast_type(body);

    if(body_type == NULL)
    {
      // An error has already occurred.
      assert(get_error_count() > 0);
      return false;
    }

    if(!is_trait &&
      !ast_canerror(body) &&
      (ast_id(body_type) != TK_COMPILE_INTRINSIC))
    {
      ast_error(can_error, "function body is not partial but the function is");
      return false;
    }
  } else {
    // If not a partial function, check that we can't error.
    if(ast_canerror(body))
    {
      ast_error(can_error, "function body is partial but the function is not");
      show_partiality(body);
      return false;
    }
  }

  if(!check_primitive_init(t, ast) || !check_finaliser(t, ast))
    return false;

  switch(ast_id(ast))
  {
    case TK_NEW:
    {
      bool ok = true;

      if(is_machine_word(type))
      {
        if(!check_return_type(ast))
         ok = false;
      }

      if(!check_fields_defined(ast))
        ok = false;

      if(!check_main_create(t, ast))
        ok = false;

      return ok;
    }

    case TK_FUN:
      return check_return_type(ast);

    default: {}
  }

  return true;
}
Esempio n. 6
0
// Sugar for partial application, which we convert to a lambda.
static bool partial_application(pass_opt_t* opt, ast_t** astp)
{
  /* Example that we refer to throughout this function.
   * ```pony
   * class C
   *   fun f[T](a: A, b: B = b_default): R
   *
   * let recv: T = ...
   * recv~f[T2](foo)
   * ```
   *
   * Partial call is converted to:
   * ```pony
   * lambda(b: B = b_default)($0 = recv, a = foo): R => $0.f[T2](a, consume b)
   * ```
   */

  ast_t* ast = *astp;
  typecheck_t* t = &opt->check;

  if(!method_application(opt, ast, true))
    return false;

  AST_GET_CHILDREN(ast, positional, namedargs, lhs);
  assert(ast_id(lhs) == TK_FUNAPP || ast_id(lhs) == TK_BEAPP ||
    ast_id(lhs) == TK_NEWAPP);

  // LHS must be a TK_TILDE, possibly contained in a TK_QUALIFY.
  AST_GET_CHILDREN(lhs, receiver, method);
  ast_t* type_args = NULL;

  switch(ast_id(receiver))
  {
    case TK_NEWAPP:
    case TK_BEAPP:
    case TK_FUNAPP:
      type_args = method;
      AST_GET_CHILDREN_NO_DECL(receiver, receiver, method);
      break;

    default: {}
  }

  // The TK_FUNTYPE of the LHS.
  ast_t* type = ast_type(lhs);

  if(is_typecheck_error(type))
    return false;

  token_id apply_cap = partial_application_cap(opt, type, receiver,
    positional);
  AST_GET_CHILDREN(type, cap, type_params, target_params, result);

  token_id can_error = ast_canerror(lhs) ? TK_QUESTION : TK_NONE;
  const char* recv_name = package_hygienic_id(t);

  // Build captures. We always have at least one capture, for receiver.
  // Capture: `$0 = recv`
  BUILD(captures, receiver,
    NODE(TK_LAMBDACAPTURES,
      NODE(TK_LAMBDACAPTURE,
        ID(recv_name)
        NONE  // Infer type.
        TREE(receiver))));

  // Process arguments.
  ast_t* given_arg = ast_child(positional);
  ast_t* target_param = ast_child(target_params);
  ast_t* lambda_params = ast_from(target_params, TK_NONE);
  ast_t* lambda_call_args = ast_from(positional, TK_NONE);

  while(given_arg != NULL)
  {
    assert(target_param != NULL);
    const char* target_p_name = ast_name(ast_child(target_param));

    if(ast_id(given_arg) == TK_NONE)
    {
      // This argument is not supplied already, must be a lambda parameter.
      // Like `b` in example above.
      // Build a new a new TK_PARAM node rather than copying the target one,
      // since the target has already been processed to expr pass, and we need
      // a clean one.
      AST_GET_CHILDREN(target_param, p_id, p_type, p_default);

      // Parameter: `b: B = b_default`
      BUILD(lambda_param, target_param,
        NODE(TK_PARAM,
          TREE(p_id)
          TREE(sanitise_type(p_type))
          TREE(p_default)));

      ast_append(lambda_params, lambda_param);
      ast_setid(lambda_params, TK_PARAMS);

      // Argument: `consume b`
      BUILD(target_arg, lambda_param,
        NODE(TK_SEQ,
          NODE(TK_CONSUME,
            NONE
            NODE(TK_REFERENCE, ID(target_p_name)))));

      ast_append(lambda_call_args, target_arg);
      ast_setid(lambda_call_args, TK_POSITIONALARGS);
    }
    else
    {
      // This argument is supplied to the partial, capture it.
      // Like `a` in example above.
      // Capture: `a = foo`
      BUILD(capture, given_arg,
        NODE(TK_LAMBDACAPTURE,
          ID(target_p_name)
          NONE
          TREE(given_arg)));

      ast_append(captures, capture);

      // Argument: `a`
      BUILD(target_arg, given_arg,
        NODE(TK_SEQ,
          NODE(TK_REFERENCE, ID(target_p_name))));

      ast_append(lambda_call_args, target_arg);
      ast_setid(lambda_call_args, TK_POSITIONALARGS);
    }

    given_arg = ast_sibling(given_arg);
    target_param = ast_sibling(target_param);
  }

  assert(target_param == NULL);

  // Build lambda expression.
  // `$0.f`
  BUILD(call_receiver, ast,
    NODE(TK_DOT,
      NODE(TK_REFERENCE, ID(recv_name))
      TREE(method)));

  if(type_args != NULL)
  {
    // The partial call has type args, add them to the actual call in apply().
    // `$0.f[T2]`
    BUILD(qualified, type_args,
      NODE(TK_QUALIFY,
        TREE(call_receiver)
        TREE(type_args)));
    call_receiver = qualified;
  }

  REPLACE(astp,
    NODE(TK_LAMBDA,
      NODE(apply_cap)
      NONE  // Lambda function name.
      NONE  // Lambda type params.
      TREE(lambda_params)
      TREE(captures)
      TREE(sanitise_type(result))
      NODE(can_error)
      NODE(TK_SEQ,
        NODE(TK_CALL,
          TREE(lambda_call_args)
          NONE  // Named args.
          TREE(call_receiver)))));

  // Need to preserve various lambda children.
  ast_setflag(ast_childidx(*astp, 2), AST_FLAG_PRESERVE); // Type params.
  ast_setflag(ast_childidx(*astp, 3), AST_FLAG_PRESERVE); // Parameters.
  ast_setflag(ast_childidx(*astp, 5), AST_FLAG_PRESERVE); // Return type.
  ast_setflag(ast_childidx(*astp, 7), AST_FLAG_PRESERVE); // Body.

  // Catch up to this pass.
  return ast_passes_subtree(astp, opt, PASS_EXPR);
}
Esempio n. 7
0
LLVMValueRef gen_call(compile_t* c, ast_t* ast)
{
  // Special case calls.
  LLVMValueRef special;

  if(special_case_call(c, ast, &special))
    return special;

  AST_GET_CHILDREN(ast, positional, named, postfix);
  AST_GET_CHILDREN(postfix, receiver, method);
  ast_t* typeargs = NULL;

  // Dig through function qualification.
  switch(ast_id(receiver))
  {
    case TK_NEWREF:
    case TK_NEWBEREF:
    case TK_BEREF:
    case TK_FUNREF:
    case TK_BECHAIN:
    case TK_FUNCHAIN:
      typeargs = method;
      AST_GET_CHILDREN_NO_DECL(receiver, receiver, method);
      break;

    default: {}
  }

  // Get the receiver type.
  const char* method_name = ast_name(method);
  ast_t* type = ast_type(receiver);
  reach_type_t* t = reach_type(c->reach, type);
  pony_assert(t != NULL);

  // Generate the arguments.
  size_t count = ast_childcount(positional) + 1;
  size_t buf_size = count * sizeof(void*);

  LLVMValueRef* args = (LLVMValueRef*)ponyint_pool_alloc_size(buf_size);
  ast_t* arg = ast_child(positional);
  int i = 1;

  while(arg != NULL)
  {
    LLVMValueRef value = gen_expr(c, arg);

    if(value == NULL)
    {
      ponyint_pool_free_size(buf_size, args);
      return NULL;
    }

    args[i] = value;
    arg = ast_sibling(arg);
    i++;
  }

  bool is_new_call = false;

  // Generate the receiver. Must be done after the arguments because the args
  // could change things in the receiver expression that must be accounted for.
  if(call_needs_receiver(postfix, t))
  {
    switch(ast_id(postfix))
    {
      case TK_NEWREF:
      case TK_NEWBEREF:
      {
        call_tuple_indices_t tuple_indices = {NULL, 0, 4};
        tuple_indices.data =
          (size_t*)ponyint_pool_alloc_size(4 * sizeof(size_t));

        ast_t* current = ast;
        ast_t* parent = ast_parent(current);
        while((parent != NULL) && (ast_id(parent) != TK_ASSIGN) &&
          (ast_id(parent) != TK_CALL))
        {
          if(ast_id(parent) == TK_TUPLE)
          {
            size_t index = 0;
            ast_t* child = ast_child(parent);
            while(current != child)
            {
              ++index;
              child = ast_sibling(child);
            }
            tuple_indices_push(&tuple_indices, index);
          }
          current = parent;
          parent = ast_parent(current);
        }

        // If we're constructing an embed field, pass a pointer to the field
        // as the receiver. Otherwise, allocate an object.
        if((parent != NULL) && (ast_id(parent) == TK_ASSIGN))
        {
          size_t index = 1;
          current = ast_childidx(parent, 1);
          while((ast_id(current) == TK_TUPLE) || (ast_id(current) == TK_SEQ))
          {
            parent = current;
            if(ast_id(current) == TK_TUPLE)
            {
              // If there are no indices left, we're destructuring a tuple.
              // Errors in those cases have already been catched by the expr
              // pass.
              if(tuple_indices.count == 0)
                break;
              index = tuple_indices_pop(&tuple_indices);
              current = ast_childidx(parent, index);
            } else {
              current = ast_childlast(parent);
            }
          }
          if(ast_id(current) == TK_EMBEDREF)
          {
            args[0] = gen_fieldptr(c, current);
            set_descriptor(c, t, args[0]);
          } else {
            args[0] = gencall_alloc(c, t);
          }
        } else {
          args[0] = gencall_alloc(c, t);
        }
        is_new_call = true;
        ponyint_pool_free_size(tuple_indices.alloc * sizeof(size_t),
          tuple_indices.data);
        break;
      }

      case TK_BEREF:
      case TK_FUNREF:
      case TK_BECHAIN:
      case TK_FUNCHAIN:
        args[0] = gen_expr(c, receiver);
        break;

      default:
        pony_assert(0);
        return NULL;
    }
  } else {
    // Use a null for the receiver type.
    args[0] = LLVMConstNull(t->use_type);
  }

  // Static or virtual dispatch.
  token_id cap = cap_dispatch(type);
  reach_method_t* m = reach_method(t, cap, method_name, typeargs);
  LLVMValueRef func = dispatch_function(c, t, m, args[0]);

  bool is_message = false;

  if((ast_id(postfix) == TK_NEWBEREF) || (ast_id(postfix) == TK_BEREF) ||
    (ast_id(postfix) == TK_BECHAIN))
  {
    switch(t->underlying)
    {
      case TK_ACTOR:
        is_message = true;
        break;

      case TK_UNIONTYPE:
      case TK_ISECTTYPE:
      case TK_INTERFACE:
      case TK_TRAIT:
        if(m->cap == TK_TAG)
          is_message = can_inline_message_send(t, m, method_name);
        break;

      default: {}
    }
  }

  // Cast the arguments to the parameter types.
  LLVMTypeRef f_type = LLVMGetElementType(LLVMTypeOf(func));
  LLVMTypeRef* params = (LLVMTypeRef*)ponyint_pool_alloc_size(buf_size);
  LLVMGetParamTypes(f_type, params);

  arg = ast_child(positional);
  i = 1;

  LLVMValueRef r = NULL;

  if(is_message)
  {
    // If we're sending a message, trace and send here instead of calling the
    // sender to trace the most specific types possible.
    LLVMValueRef* cast_args = (LLVMValueRef*)ponyint_pool_alloc_size(buf_size);
    cast_args[0] = args[0];
    while(arg != NULL)
    {
      cast_args[i] = gen_assign_cast(c, params[i], args[i], ast_type(arg));
      arg = ast_sibling(arg);
      i++;
    }

    token_id cap = cap_dispatch(type);
    reach_method_t* m = reach_method(t, cap, method_name, typeargs);

    codegen_debugloc(c, ast);
    gen_send_message(c, m, args, cast_args, positional);
    codegen_debugloc(c, NULL);
    switch(ast_id(postfix))
    {
      case TK_NEWREF:
      case TK_NEWBEREF:
        r = args[0];
        break;

      default:
        r = c->none_instance;
        break;
    }
    ponyint_pool_free_size(buf_size, cast_args);
  } else {
    while(arg != NULL)
    {
      args[i] = gen_assign_cast(c, params[i], args[i], ast_type(arg));
      arg = ast_sibling(arg);
      i++;
    }

    if(func != NULL)
    {
      // If we can error out and we have an invoke target, generate an invoke
      // instead of a call.
      codegen_debugloc(c, ast);

      if(ast_canerror(ast) && (c->frame->invoke_target != NULL))
        r = invoke_fun(c, func, args, i, "", true);
      else
        r = codegen_call(c, func, args, i);

      if(is_new_call)
      {
        LLVMValueRef md = LLVMMDNodeInContext(c->context, NULL, 0);
        LLVMSetMetadataStr(r, "pony.newcall", md);
      }

      codegen_debugloc(c, NULL);
    }
  }

  // Class constructors return void, expression result is the receiver.
  if(((ast_id(postfix) == TK_NEWREF) || (ast_id(postfix) == TK_NEWBEREF)) &&
     (t->underlying == TK_CLASS))
    r = args[0];

  // Chained methods forward their receiver.
  if((ast_id(postfix) == TK_BECHAIN) || (ast_id(postfix) == TK_FUNCHAIN))
    r = args[0];

  ponyint_pool_free_size(buf_size, args);
  ponyint_pool_free_size(buf_size, params);
  return r;
}
Esempio n. 8
0
File: control.c Progetto: ozra/ponyc
bool expr_try(pass_opt_t* opt, ast_t* ast)
{
    AST_GET_CHILDREN(ast, body, else_clause, then_clause);

    // It has to be possible for the left side to result in an error.
    if((ast_id(ast) == TK_TRY) && !ast_canerror(body))
    {
        ast_error(body, "try expression never results in an error");
        return false;
    }

    ast_t* body_type = ast_type(body);
    ast_t* else_type = ast_type(else_clause);
    ast_t* then_type = ast_type(then_clause);

    if(is_typecheck_error(body_type) ||
            is_typecheck_error(else_type) ||
            is_typecheck_error(then_type))
        return false;

    ast_t* type = NULL;

    if(!is_control_type(body_type))
        type = control_type_add_branch(type, body);

    if(!is_control_type(else_type))
        type = control_type_add_branch(type, else_clause);

    if(type == NULL)
    {
        if(ast_sibling(ast) != NULL)
        {
            ast_error(ast_sibling(ast), "unreachable code");
            return false;
        }

        type = ast_from(ast, TK_TRY);
    }

    // The then clause does not affect the type of the expression.
    if(is_control_type(then_type))
    {
        ast_error(then_clause, "then clause always terminates the function");
        return false;
    }

    if(is_type_literal(then_type))
    {
        ast_error(then_clause, "Cannot infer type of unused literal");
        return false;
    }

    ast_settype(ast, type);

    // Doesn't inherit error from the body.
    if(ast_canerror(else_clause) || ast_canerror(then_clause))
        ast_seterror(ast);

    if(ast_cansend(body) || ast_cansend(else_clause) || ast_cansend(then_clause))
        ast_setsend(ast);

    if(ast_mightsend(body) || ast_mightsend(else_clause) ||
            ast_mightsend(then_clause))
        ast_setmightsend(ast);

    literal_unify_control(ast, opt);

    // Push the symbol status from the then clause to our parent scope.
    ast_inheritstatus(ast_parent(ast), then_clause);
    return true;
}
Esempio n. 9
0
LLVMValueRef gen_call(compile_t* c, ast_t* ast)
{
  // Special case calls.
  LLVMValueRef special;

  if(special_case_call(c, ast, &special))
    return special;

  AST_GET_CHILDREN(ast, positional, named, postfix);
  AST_GET_CHILDREN(postfix, receiver, method);
  ast_t* typeargs = NULL;

  // Dig through function qualification.
  switch(ast_id(receiver))
  {
    case TK_NEWREF:
    case TK_NEWBEREF:
    case TK_BEREF:
    case TK_FUNREF:
      typeargs = method;
      AST_GET_CHILDREN_NO_DECL(receiver, receiver, method);
      break;

    default: {}
  }

  // Generate the receiver type.
  const char* method_name = ast_name(method);
  ast_t* type = ast_type(receiver);
  gentype_t g;

  if(!gentype(c, type, &g))
    return NULL;

  // Generate the arguments.
  LLVMTypeRef f_type = genfun_sig(c, &g, method_name, typeargs);

  if(f_type == NULL)
  {
    ast_error(ast, "couldn't create a signature for '%s'", method_name);
    return NULL;
  }

  size_t count = ast_childcount(positional) + 1;
  size_t buf_size = count * sizeof(void*);

  LLVMValueRef* args = (LLVMValueRef*)ponyint_pool_alloc_size(buf_size);
  LLVMTypeRef* params = (LLVMTypeRef*)ponyint_pool_alloc_size(buf_size);
  LLVMGetParamTypes(f_type, params);

  ast_t* arg = ast_child(positional);
  int i = 1;

  while(arg != NULL)
  {
    LLVMValueRef value = make_arg(c, params[i], arg);

    if(value == NULL)
    {
      ponyint_pool_free_size(buf_size, args);
      ponyint_pool_free_size(buf_size, params);
      return NULL;
    }

    args[i] = value;
    arg = ast_sibling(arg);
    i++;
  }

  // Generate the receiver. Must be done after the arguments because the args
  // could change things in the receiver expression that must be accounted for.
  if(call_needs_receiver(postfix, &g))
  {
    switch(ast_id(postfix))
    {
      case TK_NEWREF:
      case TK_NEWBEREF:
      {
        ast_t* parent = ast_parent(ast);
        ast_t* sibling = ast_sibling(ast);

        // If we're constructing an embed field, pass a pointer to the field
        // as the receiver. Otherwise, allocate an object.
        if((ast_id(parent) == TK_ASSIGN) && (ast_id(sibling) == TK_EMBEDREF))
          args[0] = gen_fieldptr(c, sibling);
        else
          args[0] = gencall_alloc(c, &g);
        break;
      }

      case TK_BEREF:
      case TK_FUNREF:
        args[0] = gen_expr(c, receiver);
        break;

      default:
        assert(0);
        return NULL;
    }
  } else {
    // Use a null for the receiver type.
    args[0] = LLVMConstNull(g.use_type);
  }

  // Always emit location info for a call, to prevent inlining errors. This may
  // be disabled in dispatch_function, if the target function has no debug
  // info set.
  ast_setdebug(ast, true);
  dwarf_location(&c->dwarf, ast);

  // Static or virtual dispatch.
  LLVMValueRef func = dispatch_function(c, ast, &g, args[0], method_name,
    typeargs);

  LLVMValueRef r = NULL;

  if(func != NULL)
  {
    // If we can error out and we have an invoke target, generate an invoke
    // instead of a call.
    if(ast_canerror(ast) && (c->frame->invoke_target != NULL))
      r = invoke_fun(c, func, args, i, "", true);
    else
      r = codegen_call(c, func, args, i);
  }

  ponyint_pool_free_size(buf_size, args);
  ponyint_pool_free_size(buf_size, params);
  return r;
}
Esempio n. 10
0
LLVMValueRef gen_call(compile_t* c, ast_t* ast)
{
  // Special case calls.
  LLVMValueRef special;

  if(special_case_call(c, ast, &special))
    return special;

  AST_GET_CHILDREN(ast, postfix, positional, named, question);
  AST_GET_CHILDREN(postfix, receiver, method);
  ast_t* typeargs = NULL;

  deferred_reification_t* reify = c->frame->reify;

  // Dig through function qualification.
  switch(ast_id(receiver))
  {
    case TK_NEWREF:
    case TK_NEWBEREF:
    case TK_BEREF:
    case TK_FUNREF:
    case TK_BECHAIN:
    case TK_FUNCHAIN:
      typeargs = deferred_reify(reify, method, c->opt);
      AST_GET_CHILDREN_NO_DECL(receiver, receiver, method);
      break;

    default: {}
  }

  // Get the receiver type.
  const char* method_name = ast_name(method);
  ast_t* type = deferred_reify(reify, ast_type(receiver), c->opt);
  reach_type_t* t = reach_type(c->reach, type);
  pony_assert(t != NULL);

  token_id cap = cap_dispatch(type);
  reach_method_t* m = reach_method(t, cap, method_name, typeargs);

  ast_free_unattached(type);
  ast_free_unattached(typeargs);

  // Generate the arguments.
  size_t count = m->param_count + 1;
  size_t buf_size = count * sizeof(void*);

  LLVMValueRef* args = (LLVMValueRef*)ponyint_pool_alloc_size(buf_size);
  ast_t* arg = ast_child(positional);
  int i = 1;

  while(arg != NULL)
  {
    LLVMValueRef value = gen_expr(c, arg);

    if(value == NULL)
    {
      ponyint_pool_free_size(buf_size, args);
      return NULL;
    }

    args[i] = value;
    arg = ast_sibling(arg);
    i++;
  }

  bool is_new_call = false;

  // Generate the receiver. Must be done after the arguments because the args
  // could change things in the receiver expression that must be accounted for.
  if(call_needs_receiver(postfix, t))
  {
    switch(ast_id(postfix))
    {
      case TK_NEWREF:
      case TK_NEWBEREF:
        args[0] = gen_constructor_receiver(c, t, ast);
        is_new_call = true;
        break;

      case TK_BEREF:
      case TK_FUNREF:
      case TK_BECHAIN:
      case TK_FUNCHAIN:
        args[0] = gen_expr(c, receiver);
        break;

      default:
        pony_assert(0);
        return NULL;
    }
  } else {
    // Use a null for the receiver type.
    args[0] = LLVMConstNull(((compile_type_t*)t->c_type)->use_type);
  }

  // Static or virtual dispatch.
  LLVMValueRef func = dispatch_function(c, t, m, args[0]);

  bool is_message = false;

  if((ast_id(postfix) == TK_NEWBEREF) || (ast_id(postfix) == TK_BEREF) ||
    (ast_id(postfix) == TK_BECHAIN))
  {
    switch(t->underlying)
    {
      case TK_ACTOR:
        is_message = true;
        break;

      case TK_UNIONTYPE:
      case TK_ISECTTYPE:
      case TK_INTERFACE:
      case TK_TRAIT:
        if(m->cap == TK_TAG)
          is_message = can_inline_message_send(t, m, method_name);
        break;

      default: {}
    }
  }

  bool bare = m->cap == TK_AT;
  LLVMValueRef r = NULL;

  if(is_message)
  {
    // If we're sending a message, trace and send here instead of calling the
    // sender to trace the most specific types possible.
    codegen_debugloc(c, ast);
    gen_send_message(c, m, args, positional);
    codegen_debugloc(c, NULL);
    switch(ast_id(postfix))
    {
      case TK_NEWREF:
      case TK_NEWBEREF:
        r = args[0];
        break;

      default:
        r = c->none_instance;
        break;
    }
  } else {
    LLVMTypeRef f_type = LLVMGetElementType(LLVMTypeOf(func));
    LLVMTypeRef* params = (LLVMTypeRef*)ponyint_pool_alloc_size(buf_size);
    LLVMGetParamTypes(f_type, params + (bare ? 1 : 0));

    arg = ast_child(positional);
    i = 1;

    while(arg != NULL)
    {
      ast_t* arg_type = deferred_reify(reify, ast_type(arg), c->opt);
      args[i] = gen_assign_cast(c, params[i], args[i], arg_type);
      ast_free_unattached(arg_type);
      arg = ast_sibling(arg);
      i++;
    }

    uintptr_t arg_offset = 0;
    if(bare)
    {
      arg_offset = 1;
      i--;
    }

    if(func != NULL)
    {
      // If we can error out and we have an invoke target, generate an invoke
      // instead of a call.
      codegen_debugloc(c, ast);

      if(ast_canerror(ast) && (c->frame->invoke_target != NULL))
        r = invoke_fun(c, func, args + arg_offset, i, "", !bare);
      else
        r = codegen_call(c, func, args + arg_offset, i, !bare);

      if(is_new_call)
      {
        LLVMValueRef md = LLVMMDNodeInContext(c->context, NULL, 0);
        LLVMSetMetadataStr(r, "pony.newcall", md);
      }

      codegen_debugloc(c, NULL);
      ponyint_pool_free_size(buf_size, params);
    }
  }

  // Bare methods with None return type return void, special case a None return
  // value.
  if(bare && is_none(m->result->ast))
    r = c->none_instance;

  // Class constructors return void, expression result is the receiver.
  if(((ast_id(postfix) == TK_NEWREF) || (ast_id(postfix) == TK_NEWBEREF)) &&
     (t->underlying == TK_CLASS))
    r = args[0];

  // Chained methods forward their receiver.
  if((ast_id(postfix) == TK_BECHAIN) || (ast_id(postfix) == TK_FUNCHAIN))
    r = args[0];

  ponyint_pool_free_size(buf_size, args);
  return r;
}
Esempio n. 11
0
LLVMValueRef gen_ffi(compile_t* c, ast_t* ast)
{
  AST_GET_CHILDREN(ast, id, typeargs, args);

  // Get the function name, +1 to skip leading @
  const char* f_name = ast_name(id) + 1;

  // Generate the return type.
  ast_t* type = ast_type(ast);
  gentype_t g;

  // Emit dwarf location of ffi call
  dwarf_location(&c->dwarf, ast);

  if(!gentype(c, type, &g))
    return NULL;

  // Get the function.
  LLVMValueRef func = LLVMGetNamedFunction(c->module, f_name);

  if(func == NULL)
  {
    // If we have no prototype, declare one.
    if(!strncmp(f_name, "llvm.", 5))
    {
      // Intrinsic, so use the exact types we supply.
      int count = (int)ast_childcount(args);
      size_t buf_size = count * sizeof(LLVMTypeRef);
      LLVMTypeRef* f_params = (LLVMTypeRef*)pool_alloc_size(buf_size);
      count = 0;

      ast_t* arg = ast_child(args);

      while(arg != NULL)
      {
        ast_t* p_type = ast_type(arg);
        gentype_t param_g;

        if(!gentype(c, p_type, &param_g))
          return NULL;

        f_params[count++] = param_g.use_type;
        arg = ast_sibling(arg);
      }

      // We may have generated the function by generating a parameter type.
      func = LLVMGetNamedFunction(c->module, f_name);

      if(func == NULL)
      {
        LLVMTypeRef r_type;

        if(g.underlying == TK_TUPLETYPE)
        {
          // Can't use the named type. Build an unnamed type with the same
          // elements.
          unsigned int count = LLVMCountStructElementTypes(g.use_type);
          size_t buf_size = count * sizeof(LLVMTypeRef);
          LLVMTypeRef* e_types = (LLVMTypeRef*)pool_alloc_size(buf_size);
          LLVMGetStructElementTypes(g.use_type, e_types);
          r_type = LLVMStructTypeInContext(c->context, e_types, count, false);
          pool_free_size(buf_size, e_types);
        } else {
          r_type = g.use_type;
        }

        LLVMTypeRef f_type = LLVMFunctionType(r_type, f_params, count,
          false);
        func = LLVMAddFunction(c->module, f_name, f_type);

        if(!ast_canerror(ast))
          LLVMAddFunctionAttr(func, LLVMNoUnwindAttribute);
      }

      pool_free_size(buf_size, f_params);
    } else {
      // Make it varargs.
      LLVMTypeRef f_type = LLVMFunctionType(g.use_type, NULL, 0, true);
      func = LLVMAddFunction(c->module, f_name, f_type);

      if(!ast_canerror(ast))
        LLVMAddFunctionAttr(func, LLVMNoUnwindAttribute);
    }
  }

  // Generate the arguments.
  int count = (int)ast_childcount(args);
  size_t buf_size = count * sizeof(LLVMValueRef);
  LLVMValueRef* f_args = (LLVMValueRef*)pool_alloc_size(buf_size);
  ast_t* arg = ast_child(args);

  for(int i = 0; i < count; i++)
  {
    f_args[i] = gen_expr(c, arg);

    if(f_args[i] == NULL)
    {
      pool_free_size(buf_size, f_args);
      return NULL;
    }

    arg = ast_sibling(arg);
  }

  // If we can error out and we have an invoke target, generate an invoke
  // instead of a call.
  LLVMValueRef result;

  if(ast_canerror(ast) && (c->frame->invoke_target != NULL))
    result = invoke_fun(c, func, f_args, count, "", false);
  else
    result = LLVMBuildCall(c->builder, func, f_args, count, "");

  pool_free_size(buf_size, f_args);

  // Special case a None return value, which is used for void functions.
  if(is_none(type))
    return g.instance;

  return result;
}
Esempio n. 12
0
static bool partial_application(pass_opt_t* opt, ast_t** astp)
{
  ast_t* ast = *astp;
  typecheck_t* t = &opt->check;

  if(!method_application(opt, ast, true))
    return false;

  AST_GET_CHILDREN(ast, positional, namedargs, lhs);

  // LHS must be a TK_TILDE, possibly contained in a TK_QUALIFY.
  AST_GET_CHILDREN(lhs, receiver, method);

  switch(ast_id(receiver))
  {
    case TK_NEWAPP:
    case TK_BEAPP:
    case TK_FUNAPP:
      AST_GET_CHILDREN_NO_DECL(receiver, receiver, method);
      break;

    default: {}
  }

  // The TK_FUNTYPE of the LHS.
  ast_t* type = ast_type(lhs);

  if(is_typecheck_error(type))
    return false;

  token_id apply_cap = partial_application_cap(type, receiver, positional);
  AST_GET_CHILDREN(type, cap, typeparams, params, result);

  // Create a new anonymous type.
  ast_t* c_id = ast_from_string(ast, package_hygienic_id(t));

  BUILD(def, ast,
    NODE(TK_CLASS, AST_SCOPE
      TREE(c_id)
      NONE
      NONE
      NONE
      NODE(TK_MEMBERS)
      NONE
      NONE));

  // We will have a create method in the type.
  BUILD(create, ast,
    NODE(TK_NEW, AST_SCOPE
      NONE
      ID("create")
      NONE
      NODE(TK_PARAMS)
      NONE
      NONE
      NODE(TK_SEQ)
      NONE));

  // We will have an apply method in the type.
  token_id can_error = ast_canerror(lhs) ? TK_QUESTION : TK_NONE;

  BUILD(apply, ast,
    NODE(TK_FUN, AST_SCOPE
      NODE(apply_cap)
      ID("apply")
      NONE
      NODE(TK_PARAMS)
      TREE(result)
      NODE(can_error)
      NODE(TK_SEQ)
      NONE));

  // We will replace partial application with $0.create(...)
  BUILD(call_receiver, ast, NODE(TK_REFERENCE, TREE(c_id)));
  BUILD(call_dot, ast, NODE(TK_DOT, TREE(call_receiver) ID("create")));

  BUILD(call, ast,
    NODE(TK_CALL,
      NONE
      NODE(TK_NAMEDARGS)
      TREE(call_dot)));

  ast_t* class_members = ast_childidx(def, 4);
  ast_t* create_params = ast_childidx(create, 3);
  ast_t* create_body = ast_childidx(create, 6);
  ast_t* apply_params = ast_childidx(apply, 3);
  ast_t* apply_body = ast_childidx(apply, 6);
  ast_t* call_namedargs = ast_childidx(call, 1);

  // Add the receiver to the anonymous type.
  ast_t* r_id = ast_from_string(receiver, package_hygienic_id(t));
  ast_t* r_field_id = ast_from_string(receiver, package_hygienic_id(t));
  ast_t* r_type = ast_type(receiver);

  if(is_typecheck_error(r_type))
    return false;

  // A field in the type.
  BUILD(r_field, receiver, NODE(TK_FLET, TREE(r_field_id) TREE(r_type) NONE));

  // A parameter of the constructor.
  BUILD(r_ctor_param, receiver, NODE(TK_PARAM, TREE(r_id) TREE(r_type) NONE));

  // An assignment in the constructor body.
  BUILD(r_assign, receiver,
    NODE(TK_ASSIGN,
      NODE(TK_CONSUME, NODE(TK_NONE) NODE(TK_REFERENCE, TREE(r_id)))
      NODE(TK_REFERENCE, TREE(r_field_id))));

  // A named argument at the call site.
  BUILD(r_call_seq, receiver, NODE(TK_SEQ, TREE(receiver)));
  BUILD(r_call_arg, receiver, NODE(TK_NAMEDARG, TREE(r_id) TREE(r_call_seq)));
  ast_settype(r_call_seq, r_type);

  ast_append(class_members, r_field);
  ast_append(create_params, r_ctor_param);
  ast_append(create_body, r_assign);
  ast_append(call_namedargs, r_call_arg);

  // Add a call to the original method to the apply body.
  BUILD(apply_call, ast,
    NODE(TK_CALL,
      NODE(TK_POSITIONALARGS)
      NONE
      NODE(TK_DOT, NODE(TK_REFERENCE, TREE(r_field_id)) TREE(method))));

  ast_append(apply_body, apply_call);
  ast_t* apply_args = ast_child(apply_call);

  // Add the arguments to the anonymous type.
  ast_t* arg = ast_child(positional);
  ast_t* param = ast_child(params);

  while(arg != NULL)
  {
    AST_GET_CHILDREN(param, id, p_type);

    if(ast_id(arg) == TK_NONE)
    {
      // A parameter of the apply method, using the same name, type and default
      // argument.
      ast_append(apply_params, param);

      // An arg in the call to the original method.
      BUILD(apply_arg, param,
        NODE(TK_SEQ,
          NODE(TK_CONSUME,
            NODE(TK_NONE)
            NODE(TK_REFERENCE, TREE(id)))));

      ast_append(apply_args, apply_arg);
    } else {
      ast_t* p_id = ast_from_string(id, package_hygienic_id(t));

      // A field in the type.
      BUILD(field, arg, NODE(TK_FLET, TREE(id) TREE(p_type) NONE));

      // A parameter of the constructor.
      BUILD(ctor_param, arg, NODE(TK_PARAM, TREE(p_id) TREE(p_type) NONE));

      // An assignment in the constructor body.
      BUILD(assign, arg,
        NODE(TK_ASSIGN,
          NODE(TK_CONSUME, NODE(TK_NONE) NODE(TK_REFERENCE, TREE(p_id)))
          NODE(TK_REFERENCE, TREE(id))));

      // A named argument at the call site.
      BUILD(call_arg, arg, NODE(TK_NAMEDARG, TREE(p_id) TREE(arg)));

      // An arg in the call to the original method.
      BUILD(apply_arg, arg, NODE(TK_SEQ, NODE(TK_REFERENCE, TREE(id))));

      ast_append(class_members, field);
      ast_append(create_params, ctor_param);
      ast_append(create_body, assign);
      ast_append(call_namedargs, call_arg);
      ast_append(apply_args, apply_arg);
    }

    arg = ast_sibling(arg);
    param = ast_sibling(param);
  }

  // Add create and apply to the anonymous type.
  ast_append(class_members, create);
  ast_append(class_members, apply);

  // Typecheck the anonymous type.
  ast_add(t->frame->module, def);

  if(!type_passes(def, opt))
    return false;

  // Typecheck the create call.
  if(!expr_reference(opt, &call_receiver))
    return false;

  if(!expr_dot(opt, &call_dot))
    return false;

  if(!expr_call(opt, &call))
    return false;

  // Replace the partial application with the create call.
  ast_replace(astp, call);
  return true;
}