int __new_sem_post (sem_t *sem) { struct new_sem *isem = (struct new_sem *) sem; __typeof (isem->value) cur; do { cur = isem->value; if (isem->value == SEM_VALUE_MAX) { __set_errno (EOVERFLOW); return -1; } } while (atomic_compare_and_exchange_bool_rel (&isem->value, cur + 1, cur)); atomic_full_barrier (); if (isem->nwaiters > 0) { int err = lll_futex_wake (&isem->value, 1, isem->private ^ FUTEX_PRIVATE_FLAG); if (__builtin_expect (err, 0) < 0) { __set_errno (-err); return -1; } }
int __new_sem_post (sem_t *sem) { struct sparc_new_sem *isem = (struct sparc_new_sem *) sem; int nr; if (__atomic_is_v9) nr = atomic_increment_val (&isem->value); else { __sparc32_atomic_do_lock24 (&isem->lock); nr = ++(isem->value); __sparc32_atomic_do_unlock24 (&isem->lock); } atomic_full_barrier (); if (isem->nwaiters > 0) { int err = lll_futex_wake (&isem->value, 1, isem->private ^ FUTEX_PRIVATE_FLAG); if (__builtin_expect (err, 0) < 0) { __set_errno (-err); return -1; } }
int pthread_spin_unlock (pthread_spinlock_t *lock) { atomic_full_barrier (); *lock = 0; return 0; }
int pthread_spin_unlock (pthread_spinlock_t *lock) { atomic_full_barrier (); *lock = 0; #ifdef __OCTEON__ asm (MIPS_SYNC_STR ::: "memory"); #endif return 0; }
int pthread_spin_unlock (pthread_spinlock_t *lock) { #ifdef __tilegx__ /* Use exchange() to bypass the write buffer. */ atomic_exchange_rel (lock, 0); #else atomic_full_barrier (); *lock = 0; #endif return 0; }
int __new_sem_post (sem_t *sem) { struct sparc_new_sem *isem = (struct sparc_new_sem *) sem; atomic_increment (&isem->value); atomic_full_barrier (); if (isem->nwaiters > 0) { int err = lll_futex_wake (&isem->value, 1, isem->private ^ FUTEX_PRIVATE_FLAG); if (__builtin_expect (err, 0) < 0) { __set_errno (-err); return -1; } }
pid_t __libc_fork (void) { pid_t pid; struct used_handler { struct fork_handler *handler; struct used_handler *next; } *allp = NULL; /* Run all the registered preparation handlers. In reverse order. While doing this we build up a list of all the entries. */ struct fork_handler *runp; while ((runp = __fork_handlers) != NULL) { /* Make sure we read from the current RUNP pointer. */ atomic_full_barrier (); unsigned int oldval = runp->refcntr; if (oldval == 0) /* This means some other thread removed the list just after the pointer has been loaded. Try again. Either the list is empty or we can retry it. */ continue; /* Bump the reference counter. */ if (atomic_compare_and_exchange_bool_acq (&__fork_handlers->refcntr, oldval + 1, oldval)) /* The value changed, try again. */ continue; /* We bumped the reference counter for the first entry in the list. That means that none of the following entries will just go away. The unloading code works in the order of the list. While executing the registered handlers we are building a list of all the entries so that we can go backward later on. */ while (1) { /* Execute the handler if there is one. */ if (runp->prepare_handler != NULL) runp->prepare_handler (); /* Create a new element for the list. */ struct used_handler *newp = (struct used_handler *) alloca (sizeof (*newp)); newp->handler = runp; newp->next = allp; allp = newp; /* Advance to the next handler. */ runp = runp->next; if (runp == NULL) break; /* Bump the reference counter for the next entry. */ atomic_increment (&runp->refcntr); } /* We are done. */ break; } _IO_list_lock (); #ifndef NDEBUG pid_t ppid = THREAD_GETMEM (THREAD_SELF, tid); #endif /* We need to prevent the getpid() code to update the PID field so that, if a signal arrives in the child very early and the signal handler uses getpid(), the value returned is correct. */ pid_t parentpid = THREAD_GETMEM (THREAD_SELF, pid); THREAD_SETMEM (THREAD_SELF, pid, -parentpid); #ifdef ARCH_FORK pid = ARCH_FORK (); #else # error "ARCH_FORK must be defined so that the CLONE_SETTID flag is used" pid = INLINE_SYSCALL (fork, 0); #endif if (pid == 0) { struct pthread *self = THREAD_SELF; assert (THREAD_GETMEM (self, tid) != ppid); /* See __pthread_once. */ if (__fork_generation_pointer != NULL) *__fork_generation_pointer += __PTHREAD_ONCE_FORK_GEN_INCR; /* Adjust the PID field for the new process. */ THREAD_SETMEM (self, pid, THREAD_GETMEM (self, tid)); #if HP_TIMING_AVAIL /* The CPU clock of the thread and process have to be set to zero. */ hp_timing_t now; HP_TIMING_NOW (now); THREAD_SETMEM (self, cpuclock_offset, now); GL(dl_cpuclock_offset) = now; #endif #ifdef __NR_set_robust_list /* Initialize the robust mutex list which has been reset during the fork. We do not check for errors since if it fails here it failed at process start as well and noone could have used robust mutexes. We also do not have to set self->robust_head.futex_offset since we inherit the correct value from the parent. */ # ifdef SHARED if (__builtin_expect (__libc_pthread_functions_init, 0)) PTHFCT_CALL (ptr_set_robust, (self)); # else extern __typeof (__nptl_set_robust) __nptl_set_robust __attribute__((weak)); if (__builtin_expect (__nptl_set_robust != NULL, 0)) __nptl_set_robust (self); # endif #endif /* Reset the file list. These are recursive mutexes. */ fresetlockfiles (); /* Reset locks in the I/O code. */ _IO_list_resetlock (); /* Reset the lock the dynamic loader uses to protect its data. */ __rtld_lock_initialize (GL(dl_load_lock)); /* Run the handlers registered for the child. */ while (allp != NULL) { if (allp->handler->child_handler != NULL) allp->handler->child_handler (); /* Note that we do not have to wake any possible waiter. This is the only thread in the new process. The count may have been bumped up by other threads doing a fork. We reset it to 1, to avoid waiting for non-existing thread(s) to release the count. */ allp->handler->refcntr = 1; /* XXX We could at this point look through the object pool and mark all objects not on the __fork_handlers list as unused. This is necessary in case the fork() happened while another thread called dlclose() and that call had to create a new list. */ allp = allp->next; } /* Initialize the fork lock. */ __fork_lock = LLL_LOCK_INITIALIZER; } else {
pid_t __libc_fork (void) { pid_t pid; struct used_handler { struct fork_handler *handler; struct used_handler *next; } *allp = NULL; /* Run all the registered preparation handlers. In reverse order. While doing this we build up a list of all the entries. */ struct fork_handler *runp; while ((runp = __fork_handlers) != NULL) { /* Make sure we read from the current RUNP pointer. */ atomic_full_barrier (); unsigned int oldval = runp->refcntr; if (oldval == 0) /* This means some other thread removed the list just after the pointer has been loaded. Try again. Either the list is empty or we can retry it. */ continue; /* Bump the reference counter. */ if (atomic_compare_and_exchange_bool_acq (&__fork_handlers->refcntr, oldval + 1, oldval)) /* The value changed, try again. */ continue; /* We bumped the reference counter for the first entry in the list. That means that none of the following entries will just go away. The unloading code works in the order of the list. While executing the registered handlers we are building a list of all the entries so that we can go backward later on. */ while (1) { /* Execute the handler if there is one. */ if (runp->prepare_handler != NULL) runp->prepare_handler (); /* Create a new element for the list. */ struct used_handler *newp = (struct used_handler *) alloca (sizeof (*newp)); newp->handler = runp; newp->next = allp; allp = newp; /* Advance to the next handler. */ runp = runp->next; if (runp == NULL) break; /* Bump the reference counter for the next entry. */ atomic_increment (&runp->refcntr); } /* We are done. */ break; } __UCLIBC_IO_MUTEX_LOCK_CANCEL_UNSAFE(_stdio_openlist_add_lock); #ifndef NDEBUG pid_t ppid = THREAD_GETMEM (THREAD_SELF, tid); #endif /* We need to prevent the getpid() code to update the PID field so that, if a signal arrives in the child very early and the signal handler uses getpid(), the value returned is correct. */ pid_t parentpid = THREAD_GETMEM (THREAD_SELF, pid); THREAD_SETMEM (THREAD_SELF, pid, -parentpid); #ifdef ARCH_FORK pid = ARCH_FORK (); #else # error "ARCH_FORK must be defined so that the CLONE_SETTID flag is used" pid = INLINE_SYSCALL (fork, 0); #endif if (pid == 0) { struct pthread *self = THREAD_SELF; assert (THREAD_GETMEM (self, tid) != ppid); if (__fork_generation_pointer != NULL) *__fork_generation_pointer += 4; /* Adjust the PID field for the new process. */ THREAD_SETMEM (self, pid, THREAD_GETMEM (self, tid)); #if HP_TIMING_AVAIL /* The CPU clock of the thread and process have to be set to zero. */ hp_timing_t now; HP_TIMING_NOW (now); THREAD_SETMEM (self, cpuclock_offset, now); GL(dl_cpuclock_offset) = now; #endif /* Reset the file list. These are recursive mutexes. */ fresetlockfiles (); /* Reset locks in the I/O code. */ STDIO_INIT_MUTEX(_stdio_openlist_add_lock); /* XXX reset any locks in dynamic loader */ /* Run the handlers registered for the child. */ while (allp != NULL) { if (allp->handler->child_handler != NULL) allp->handler->child_handler (); /* Note that we do not have to wake any possible waiter. This is the only thread in the new process. The count may have been bumped up by other threads doing a fork. We reset it to 1, to avoid waiting for non-existing thread(s) to release the count. */ allp->handler->refcntr = 1; /* XXX We could at this point look through the object pool and mark all objects not on the __fork_handlers list as unused. This is necessary in case the fork() happened while another thread called dlclose() and that call had to create a new list. */ allp = allp->next; } /* Initialize the fork lock. */ __fork_lock = LLL_LOCK_INITIALIZER; } else { assert (THREAD_GETMEM (THREAD_SELF, tid) == ppid); /* Restore the PID value. */ THREAD_SETMEM (THREAD_SELF, pid, parentpid); /* We execute this even if the 'fork' call failed. */ __UCLIBC_IO_MUTEX_UNLOCK_CANCEL_UNSAFE(_stdio_openlist_add_lock); /* Run the handlers registered for the parent. */ while (allp != NULL) { if (allp->handler->parent_handler != NULL) allp->handler->parent_handler (); if (atomic_decrement_and_test (&allp->handler->refcntr) && allp->handler->need_signal) lll_futex_wake (allp->handler->refcntr, 1, LLL_PRIVATE); allp = allp->next; } } return pid; }
void membar_exit (void) { atomic_full_barrier (); }
void membar_enter (void) { atomic_full_barrier (); }