Esempio n. 1
0
// This is called from b2DynamicTree::Query when we are gathering pairs.
bool b2BroadPhase::QueryCallback(int32 proxyId) {
	// A proxy cannot form a pair with itself.
	if (proxyId == m_queryProxyId) {
		return true;
	}

	// Grow the pair buffer as needed.
	if (m_pairCount == m_pairCapacity) {
		b2Pair* oldBuffer = m_pairBuffer;
		m_pairCapacity *= 2;
		m_pairBuffer = (b2Pair*) b2Alloc(m_pairCapacity * sizeof(b2Pair));
		memcpy(m_pairBuffer, oldBuffer, m_pairCount * sizeof(b2Pair));
		b2Free(oldBuffer);
	}

	m_pairBuffer[m_pairCount].proxyIdA = b2Min(proxyId, m_queryProxyId);
	m_pairBuffer[m_pairCount].proxyIdB = b2Max(proxyId, m_queryProxyId);
	++m_pairCount;

	return true;
}
Esempio n. 2
0
void b2ChainShape::CreateLoop(const b2Vec2* vertices, int32 count)
{
	b2Assert(m_vertices == NULL && m_count == 0);
	b2Assert(count >= 3);
	for (int32 i = 1; i < count; ++i)
	{
		b2Vec2 v1 = vertices[i-1];
		b2Vec2 v2 = vertices[i];
		// If the code crashes here, it means your vertices are too close together.
		b2Assert(b2DistanceSquared(v1, v2) > b2_linearSlop * b2_linearSlop);
	}

	m_count = count + 1;
	m_vertices = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2));
	memcpy(m_vertices, vertices, count * sizeof(b2Vec2));
	m_vertices[count] = m_vertices[0];
	m_prevVertex = m_vertices[m_count - 2];
	m_nextVertex = m_vertices[1];
	m_hasPrevVertex = true;
	m_hasNextVertex = true;
}
Esempio n. 3
0
b2DynamicTree::b2DynamicTree()
{
	m_root = b2_nullNode;

	m_nodeCapacity = 16;
	m_nodeCount = 0;
	m_nodes = (b2DynamicTreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2DynamicTreeNode));
	memset(m_nodes, 0, m_nodeCapacity * sizeof(b2DynamicTreeNode));

	// Build a linked list for the free list.
	for (int32 i = 0; i < m_nodeCapacity - 1; ++i)
	{
		m_nodes[i].next = i + 1;
	}
	m_nodes[m_nodeCapacity-1].next = b2_nullNode;
	m_freeList = 0;

	m_path = 0;

	m_insertionCount = 0;
}
Esempio n. 4
0
// Allocate a node from the pool. Grow the pool if necessary.
uint16 b2DynamicTree::AllocateNode()
{
	// Peel a node off the free list.
	if (m_freeList != b2_nullNode)
	{
		uint16 node = m_freeList;
		m_freeList = m_nodes[node].parent;
		m_nodes[node].parent = b2_nullNode;
		m_nodes[node].child1 = b2_nullNode;
		m_nodes[node].child2 = b2_nullNode;
		return node;
	}

	// The free list is empty. Rebuild a bigger pool.
	int32 newPoolCount = b2Min(2 * m_nodeCount, USHRT_MAX - 1);
	b2Assert(newPoolCount > m_nodeCount);
	b2DynamicTreeNode* newPool = (b2DynamicTreeNode*)b2Alloc(newPoolCount * sizeof(b2DynamicTreeNode));
	memcpy(newPool, m_nodes, m_nodeCount * sizeof(b2DynamicTreeNode));
	memset(newPool + m_nodeCount, 0, (newPoolCount - m_nodeCount) * sizeof(b2DynamicTreeNode));

	// Build a linked list for the free list. The parent
	// pointer becomes the "next" pointer.
	for (int32 i = m_nodeCount; i < newPoolCount - 1; ++i)
	{
		newPool[i].parent = uint16(i + 1);
	}
	newPool[newPoolCount-1].parent = b2_nullNode;
	m_freeList = uint16(m_nodeCount);

	b2Free(m_nodes);
	m_nodes = newPool;
	m_nodeCount = newPoolCount;

	// Finally peel a node off the new free list.
	uint16 node = m_freeList;
	m_freeList = m_nodes[node].parent;
	return node;
}
Esempio n. 5
0
// Allocate a node from the pool. Grow the pool if necessary.
int32 b2DynamicTree::AllocateNode()
{
	// Expand the node pool as needed.
	if (m_freeList == b2_nullNode)
	{
		b2Assert(m_nodeCount == m_nodeCapacity);

		// The free list is empty. Rebuild a bigger pool.
		b2TreeNode* oldNodes = m_nodes;
		m_nodeCapacity *= 2;
		m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode));
		memcpy(m_nodes, oldNodes, m_nodeCount * sizeof(b2TreeNode));
		b2Free(oldNodes);

		// Build a linked list for the free list. The parent
		// pointer becomes the "next" pointer.
		for (int32 i = m_nodeCount; i < m_nodeCapacity - 1; ++i)
		{
			m_nodes[i].next = i + 1;
			m_nodes[i].height = -1;
		}
		m_nodes[m_nodeCapacity-1].next = b2_nullNode;
		m_nodes[m_nodeCapacity-1].height = -1;
		m_freeList = m_nodeCount;
	}

	// Peel a node off the free list.
	int32 nodeId = m_freeList;
	m_freeList = m_nodes[nodeId].next;
	m_nodes[nodeId].parent = b2_nullNode;
	m_nodes[nodeId].child1 = b2_nullNode;
	m_nodes[nodeId].child2 = b2_nullNode;
	m_nodes[nodeId].height = 0;
	m_nodes[nodeId].userData = NULL;
	++m_nodeCount;
	return nodeId;
}
Esempio n. 6
0
void* b2StackAllocator::Allocate(int32 size)
{
	b2Assert(m_entryCount < b2_maxStackEntries);

	b2StackEntry* entry = m_entries + m_entryCount;
	entry->size = size;
	if (m_index + size > b2_stackSize)
	{
		entry->data = (char*)b2Alloc(size);
		entry->usedMalloc = true;
	}
	else
	{
		entry->data = m_data + m_index;
		entry->usedMalloc = false;
		m_index += size;
	}

	m_allocation += size;
	m_maxAllocation = b2Max(m_maxAllocation, m_allocation);
	++m_entryCount;

	return entry->data;
}
Esempio n. 7
0
void b2ChainShape::CreateChain(const b2Vec2* vertices, int32 count)
{
	b2Assert(m_vertices == NULL && m_count == 0);
	b2Assert(count >= 2);
	for (int32 i = 1; i < count; ++i)
	{
#if B2_ASSERT_ENABLED
		b2Vec2 v1 = vertices[i-1];
		b2Vec2 v2 = vertices[i];
		// If the code crashes here, it means your vertices are too close together.
		b2Assert(b2DistanceSquared(v1, v2) > b2_linearSlop * b2_linearSlop);
#endif // B2_ASSERT_ENABLED
	}

	m_count = count;
	m_vertices = (b2Vec2*)b2Alloc(count * sizeof(b2Vec2));
	memcpy(m_vertices, vertices, m_count * sizeof(b2Vec2));

	m_hasPrevVertex = false;
	m_hasNextVertex = false;

	m_prevVertex.SetZero();
	m_nextVertex.SetZero();
}
Esempio n. 8
0
void b2DynamicTree::RebuildBottomUp()
{
	int32* nodes = (int32*)b2Alloc(m_nodeCount * sizeof(int32));
	int32 count = 0;

	// Build array of leaves. Free the rest.
	for (int32 i = 0; i < m_nodeCapacity; ++i)
	{
		if (m_nodes[i].height < 0)
		{
			// free node in pool
			continue;
		}

		if (m_nodes[i].IsLeaf())
		{
			m_nodes[i].parent = b2_nullNode;
			nodes[count] = i;
			++count;
		}
		else
		{
			FreeNode(i);
		}
	}

	while (count > 1)
	{
		float32 minCost = b2_maxFloat;
		int32 iMin = -1, jMin = -1;
		for (int32 i = 0; i < count; ++i)
		{
			b2AABB aabbi = m_nodes[nodes[i]].aabb;

			for (int32 j = i + 1; j < count; ++j)
			{
				b2AABB aabbj = m_nodes[nodes[j]].aabb;
				b2AABB b;
				b.Combine(aabbi, aabbj);
				float32 cost = b.GetPerimeter();
				if (cost < minCost)
				{
					iMin = i;
					jMin = j;
					minCost = cost;
				}
			}
		}

		int32 index1 = nodes[iMin];
		int32 index2 = nodes[jMin];
		b2TreeNode* child1 = m_nodes + index1;
		b2TreeNode* child2 = m_nodes + index2;

		int32 parentIndex = AllocateNode();
		b2TreeNode* parent = m_nodes + parentIndex;
		parent->child1 = index1;
		parent->child2 = index2;
		parent->height = 1 + b2Max(child1->height, child2->height);
		parent->aabb.Combine(child1->aabb, child2->aabb);
		parent->parent = b2_nullNode;

		child1->parent = parentIndex;
		child2->parent = parentIndex;

		nodes[jMin] = nodes[count-1];
		nodes[iMin] = parentIndex;
		--count;
	}

	m_root = nodes[0];
	b2Free(nodes);

	Validate();
}