Esempio n. 1
0
static void updateBatteryVoltage(void)
{
    uint16_t vbatSample;
    // store the battery voltage with some other recent battery voltage readings
    vbatSample = vbatLatestADC = adcGetChannel(ADC_BATTERY);
    vbatSample = applyBiQuadFilter(vbatSample, &vbatFilterState);
    vbat = batteryAdcToVoltage(vbatSample);
}
Esempio n. 2
0
void updateBattery(void)
{
    uint16_t vbatPreviousADC = vbatLatestADC;
    updateBatteryVoltage();
    uint16_t vbatMeasured = batteryAdcToVoltage(vbatLatestADC);

    /* battery has just been connected*/
    if (batteryState == BATTERY_NOT_PRESENT && (ARMING_FLAG(ARMED) || (vbat > batteryConfig->batterynotpresentlevel && ABS(vbatMeasured - batteryAdcToVoltage(vbatPreviousADC)) <= VBAT_STABLE_MAX_DELTA))) {
        /* Actual battery state is calculated below, this is really BATTERY_PRESENT */
        batteryState = BATTERY_OK;

        unsigned cells = (vbatMeasured / batteryConfig->vbatmaxcellvoltage) + 1;
        if (cells > 8) {
            // something is wrong, we expect 8 cells maximum (and autodetection will be problematic at 6+ cells)
            cells = 8;
        }
        batteryCellCount = cells;
        batteryWarningVoltage = batteryCellCount * batteryConfig->vbatwarningcellvoltage;
        batteryCriticalVoltage = batteryCellCount * batteryConfig->vbatmincellvoltage;
    /* battery has been disconnected - can take a while for filter cap to disharge so we use a threshold of batteryConfig->batterynotpresentlevel */
    } else if (batteryState != BATTERY_NOT_PRESENT && !ARMING_FLAG(ARMED) && vbat <= batteryConfig->batterynotpresentlevel && ABS(vbatMeasured - batteryAdcToVoltage(vbatPreviousADC)) <= VBAT_STABLE_MAX_DELTA) {
        batteryState = BATTERY_NOT_PRESENT;
        batteryCellCount = 0;
        batteryWarningVoltage = 0;
        batteryCriticalVoltage = 0;
    }

    switch(batteryState)
    {
        case BATTERY_OK:
            if (vbat <= (batteryWarningVoltage - batteryConfig->vbathysteresis)) {
                batteryState = BATTERY_WARNING;
                beeper(BEEPER_BAT_LOW);
            }
            break;
        case BATTERY_WARNING:
            if (vbat <= (batteryCriticalVoltage - batteryConfig->vbathysteresis)) {
                batteryState = BATTERY_CRITICAL;
                beeper(BEEPER_BAT_CRIT_LOW);
            } else if (vbat > batteryWarningVoltage) {
                batteryState = BATTERY_OK;
            } else {
                beeper(BEEPER_BAT_LOW);
            }
            break;
        case BATTERY_CRITICAL:
            if (vbat > batteryCriticalVoltage) {
                batteryState = BATTERY_WARNING;
                beeper(BEEPER_BAT_LOW);
            } else {
                beeper(BEEPER_BAT_CRIT_LOW);
            }
            break;
        case BATTERY_NOT_PRESENT:
            break;
    }
}
Esempio n. 3
0
static void updateBatteryVoltage(void)
{
    uint16_t vbatSample;
    uint16_t vbatFiltered;

    // store the battery voltage with some other recent battery voltage readings
    vbatSample = vbatLatestADC = adcGetChannel(ADC_BATTERY);
    vbatFiltered = (uint16_t)lowpassFixed(&lowpassFilter, vbatSample, VBATT_LPF_FREQ);
    vbat = batteryAdcToVoltage(vbatFiltered);
}
Esempio n. 4
0
static void updateBatteryVoltage(uint32_t vbatTimeDelta)
{
    uint16_t vbatSample;
    static pt1Filter_t vbatFilterState;

    // store the battery voltage with some other recent battery voltage readings
    vbatSample = vbatLatestADC = adcGetChannel(ADC_BATTERY);
    vbatSample = pt1FilterApply4(&vbatFilterState, vbatSample, VBATT_LPF_FREQ, vbatTimeDelta * 1e-6f);
    vbat = batteryAdcToVoltage(vbatSample);
}
Esempio n. 5
0
void updateBatteryVoltage(void)
{
    static uint16_t vbatSamples[BATTERY_SAMPLE_COUNT];
    static uint8_t currentSampleIndex = 0;
    uint8_t index;
    uint16_t vbatSampleTotal = 0;

    // store the battery voltage with some other recent battery voltage readings
    vbatSamples[(currentSampleIndex++) % BATTERY_SAMPLE_COUNT] = vbatLatestADC = adcGetChannel(ADC_BATTERY);

    // calculate vbat based on the average of recent readings
    for (index = 0; index < BATTERY_SAMPLE_COUNT; index++) {
        vbatSampleTotal += vbatSamples[index];
    }
    vbat = batteryAdcToVoltage(vbatSampleTotal / BATTERY_SAMPLE_COUNT);
}
Esempio n. 6
0
void batteryInit(void)
{
    uint32_t i;
    uint32_t voltage = 0;
    for (i = 0; i < 32; i++)                                      // average up some voltage readings
    {
        voltage += adcGetChannel(ADC_BATTERY);
        delay(10);
    }
    voltage = batteryAdcToVoltage((uint16_t)(voltage / 32));
    for (i = 2; i < 6; i++)                                       // autodetect cell count, going from 2S..6S
    {
        if (voltage < i * cfg.vbatmaxcellvoltage) break;
    }
    batteryCellCount = i;
    batteryWarningVoltage = i * cfg.vbatmincellvoltage;           // 3.3V per cell minimum, configurable in CLI
}
Esempio n. 7
0
static void updateBatteryVoltage(void)
{
    static biquadFilter_t vbatFilter;
    static bool vbatFilterIsInitialised;

    // store the battery voltage with some other recent battery voltage readings
    uint16_t vbatSample = vbatLatestADC = adcGetChannel(ADC_BATTERY);

    if (debugMode == DEBUG_BATTERY) debug[0] = vbatSample;

    if (!vbatFilterIsInitialised) {
        biquadFilterInitLPF(&vbatFilter, VBATT_LPF_FREQ, 50000); //50HZ Update
        vbatFilterIsInitialised = true;
    }
    vbatSample = biquadFilterApply(&vbatFilter, vbatSample);
    vbat = batteryAdcToVoltage(vbatSample);

    if (debugMode == DEBUG_BATTERY) debug[1] = vbat;
}
Esempio n. 8
0
void batterySample(void)
{
    static uint8_t ind;
    static uint16_t batSamples[8];
    uint16_t batAccum = 0;
    uint8_t i;

    batSamples[(ind++) % 8] = adcGet();
    for(i = 0; i < 8; ++i)
        batAccum += batSamples[i];
    sensorData.batteryVoltage = batteryAdcToVoltage(batAccum / 8.0f);

    // TODO - add buzzer stuff
    /*
    if ((vbat > batteryWarningVoltage) || (vbat < cfg.vbatmincellvoltage)) { // VBAT ok, buzzer off
        buzzerFreq = 0;
    } else
        buzzerFreq = 4;     // low battery
    */
}
Esempio n. 9
0
void annexCode(void)
{
    static uint32_t calibratedAccTime;
    int32_t tmp, tmp2;
    int32_t axis, prop1, prop2;
    static uint8_t buzzerFreq;  // delay between buzzer ring

    // vbat shit
    static uint8_t vbatTimer = 0;
    static int32_t vbatRaw = 0;
    static int32_t amperageRaw = 0;
    static int64_t mAhdrawnRaw = 0;
    static int32_t vbatCycleTime = 0;

    // PITCH & ROLL only dynamic PID adjustemnt,  depending on throttle value
    if (rcData[THROTTLE] < cfg.tpa_breakpoint) {
        prop2 = 100;
    } else {
        if (rcData[THROTTLE] < 2000) {
            prop2 = 100 - (uint16_t)cfg.dynThrPID * (rcData[THROTTLE] - cfg.tpa_breakpoint) / (2000 - cfg.tpa_breakpoint);
        } else {
            prop2 = 100 - cfg.dynThrPID;
        }
    }

    for (axis = 0; axis < 3; axis++) {
        tmp = min(abs(rcData[axis] - mcfg.midrc), 500);
        if (axis != 2) {        // ROLL & PITCH
            if (cfg.deadband) {
                if (tmp > cfg.deadband) {
                    tmp -= cfg.deadband;
                } else {
                    tmp = 0;
                }
            }

            tmp2 = tmp / 100;
            rcCommand[axis] = lookupPitchRollRC[tmp2] + (tmp - tmp2 * 100) * (lookupPitchRollRC[tmp2 + 1] - lookupPitchRollRC[tmp2]) / 100;
            prop1 = 100 - (uint16_t)cfg.rollPitchRate * tmp / 500;
            prop1 = (uint16_t)prop1 * prop2 / 100;
        } else {                // YAW
            if (cfg.yawdeadband) {
                if (tmp > cfg.yawdeadband) {
                    tmp -= cfg.yawdeadband;
                } else {
                    tmp = 0;
                }
            }
            rcCommand[axis] = tmp * -mcfg.yaw_control_direction;
            prop1 = 100 - (uint16_t)cfg.yawRate * abs(tmp) / 500;
        }
        dynP8[axis] = (uint16_t)cfg.P8[axis] * prop1 / 100;
        dynI8[axis] = (uint16_t)cfg.I8[axis] * prop1 / 100;
        dynD8[axis] = (uint16_t)cfg.D8[axis] * prop1 / 100;
        if (rcData[axis] < mcfg.midrc)
            rcCommand[axis] = -rcCommand[axis];
    }

    tmp = constrain(rcData[THROTTLE], mcfg.mincheck, 2000);
    tmp = (uint32_t)(tmp - mcfg.mincheck) * 1000 / (2000 - mcfg.mincheck);       // [MINCHECK;2000] -> [0;1000]
    tmp2 = tmp / 100;
    rcCommand[THROTTLE] = lookupThrottleRC[tmp2] + (tmp - tmp2 * 100) * (lookupThrottleRC[tmp2 + 1] - lookupThrottleRC[tmp2]) / 100;    // [0;1000] -> expo -> [MINTHROTTLE;MAXTHROTTLE]

    if (f.HEADFREE_MODE) {
        float radDiff = (heading - headFreeModeHold) * M_PI / 180.0f;
        float cosDiff = cosf(radDiff);
        float sinDiff = sinf(radDiff);
        int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
        rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
        rcCommand[PITCH] = rcCommand_PITCH;
    }

    if (feature(FEATURE_VBAT)) {
        vbatCycleTime += cycleTime;
        if (!(++vbatTimer % VBATFREQ)) {
            vbatRaw -= vbatRaw / 8;
            vbatRaw += adcGetChannel(ADC_BATTERY);
            vbat = batteryAdcToVoltage(vbatRaw / 8);
            
            if (mcfg.power_adc_channel > 0) {
                amperageRaw -= amperageRaw / 8;
                amperageRaw += adcGetChannel(ADC_EXTERNAL_CURRENT);
                amperage = currentSensorToCentiamps(amperageRaw / 8);
                mAhdrawnRaw += (amperage * vbatCycleTime) / 1000;
                mAhdrawn = mAhdrawnRaw / (3600 * 100);
                vbatCycleTime = 0;
            }
            
        }
        if ((vbat > batteryWarningVoltage) || (vbat < mcfg.vbatmincellvoltage)) { // VBAT ok, buzzer off
            buzzerFreq = 0;
        } else
            buzzerFreq = 4;     // low battery
    }

    buzzer(buzzerFreq);         // external buzzer routine that handles buzzer events globally now

    if ((calibratingA > 0 && sensors(SENSOR_ACC)) || (calibratingG > 0)) {      // Calibration phasis
        LED0_TOGGLE;
    } else {
        if (f.ACC_CALIBRATED)
            LED0_OFF;
        if (f.ARMED)
            LED0_ON;

#ifndef CJMCU
        checkTelemetryState();
#endif
    }

#ifdef LEDRING
    if (feature(FEATURE_LED_RING)) {
        static uint32_t LEDTime;
        if ((int32_t)(currentTime - LEDTime) >= 0) {
            LEDTime = currentTime + 50000;
            ledringState();
        }
    }
#endif

    if ((int32_t)(currentTime - calibratedAccTime) >= 0) {
        if (!f.SMALL_ANGLE) {
            f.ACC_CALIBRATED = 0; // the multi uses ACC and is not calibrated or is too much inclinated
            LED0_TOGGLE;
            calibratedAccTime = currentTime + 500000;
        } else {
            f.ACC_CALIBRATED = 1;
        }
    }

    serialCom();

#ifndef CJMCU
    if (!cliMode && feature(FEATURE_TELEMETRY)) {
        handleTelemetry();
    }
#endif

    if (sensors(SENSOR_GPS)) {
        static uint32_t GPSLEDTime;
        if ((int32_t)(currentTime - GPSLEDTime) >= 0 && (GPS_numSat >= 5)) {
            GPSLEDTime = currentTime + 150000;
            LED1_TOGGLE;
        }
    }

    // Read out gyro temperature. can use it for something somewhere. maybe get MCU temperature instead? lots of fun possibilities.
    if (gyro.temperature)
        gyro.temperature(&telemTemperature1);
    else {
        // TODO MCU temp
    }
}
Esempio n. 10
0
File: mw.c Progetto: trigrass2/tmr
// this code is executed at each loop and won't interfere with control loop if it lasts less than 650 microseconds
void annexCode(void)
{
    static uint32_t calibratedAccTime;
    uint16_t tmp, tmp2;
    static uint8_t buzzerFreq;  //delay between buzzer ring
    static uint8_t vbatTimer = 0;
    uint8_t axis, prop1, prop2;
    static uint8_t ind = 0;
    uint16_t vbatRaw = 0;
    static uint16_t vbatRawArray[8];
    uint8_t i;

    // PITCH & ROLL only dynamic PID adjustemnt,  depending on throttle value
    if (rcData[THROTTLE] < BREAKPOINT) {
        prop2 = 100;
    } else {
        if (rcData[THROTTLE] < 2000) {
            prop2 = 100 - (uint16_t) cfg.dynThrPID * (rcData[THROTTLE] - BREAKPOINT) / (2000 - BREAKPOINT);
        } else {
            prop2 = 100 - cfg.dynThrPID;
        }
    }

    for (axis = 0; axis < 3; axis++) {
        tmp = min(abs(rcData[axis] - cfg.midrc), 500);
        if (axis != 2) {        // ROLL & PITCH
            if (cfg.deadband) {
                if (tmp > cfg.deadband) {
                    tmp -= cfg.deadband;
                } else {
                    tmp = 0;
                }
            }

            tmp2 = tmp / 100;
            rcCommand[axis] = lookupPitchRollRC[tmp2] + (tmp - tmp2 * 100) * (lookupPitchRollRC[tmp2 + 1] - lookupPitchRollRC[tmp2]) / 100;
            prop1 = 100 - (uint16_t) cfg.rollPitchRate * tmp / 500;
            prop1 = (uint16_t) prop1 *prop2 / 100;
        } else {                // YAW
            if (cfg.yawdeadband) {
                if (tmp > cfg.yawdeadband) {
                    tmp -= cfg.yawdeadband;
                } else {
                    tmp = 0;
                }
            }
            rcCommand[axis] = tmp;
            prop1 = 100 - (uint16_t) cfg.yawRate * tmp / 500;
        }
        dynP8[axis] = (uint16_t) cfg.P8[axis] * prop1 / 100;
        dynD8[axis] = (uint16_t) cfg.D8[axis] * prop1 / 100;
        if (rcData[axis] < cfg.midrc)
            rcCommand[axis] = -rcCommand[axis];
    }

    tmp = constrain(rcData[THROTTLE], cfg.mincheck, 2000);
    tmp = (uint32_t) (tmp - cfg.mincheck) * 1000 / (2000 - cfg.mincheck);       // [MINCHECK;2000] -> [0;1000]
    tmp2 = tmp / 100;
    rcCommand[THROTTLE] = lookupThrottleRC[tmp2] + (tmp - tmp2 * 100) * (lookupThrottleRC[tmp2 + 1] - lookupThrottleRC[tmp2]) / 100;    // [0;1000] -> expo -> [MINTHROTTLE;MAXTHROTTLE]

    if(f.HEADFREE_MODE) {
        float radDiff = (heading - headFreeModeHold) * M_PI / 180.0f;
        float cosDiff = cosf(radDiff);
        float sinDiff = sinf(radDiff);
        int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
        rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
        rcCommand[PITCH] = rcCommand_PITCH;
    }

    if (feature(FEATURE_VBAT)) {
        if (!(++vbatTimer % VBATFREQ)) {
            vbatRawArray[(ind++) % 8] = adcGetBattery();
            for (i = 0; i < 8; i++)
                vbatRaw += vbatRawArray[i];
            vbat = batteryAdcToVoltage(vbatRaw / 8);
        }
        if ((vbat > batteryWarningVoltage) || (vbat < cfg.vbatmincellvoltage)) { // VBAT ok, buzzer off
            buzzerFreq = 0;
        } else
            buzzerFreq = 4;     // low battery
    }

    buzzer(buzzerFreq);         // external buzzer routine that handles buzzer events globally now

    if ((calibratingA > 0 && sensors(SENSOR_ACC)) || (calibratingG > 0)) {      // Calibration phasis
        LED0_TOGGLE;
    } else {
        if (f.ACC_CALIBRATED)
            LED0_OFF;
        if (f.ARMED)
            LED0_ON;
        // This will switch to/from 9600 or 115200 baud depending on state. Of course, it should only do it on changes.
        if (feature(FEATURE_TELEMETRY))
            initTelemetry(f.ARMED);
    }

#ifdef LEDRING
    if (feature(FEATURE_LED_RING)) {
        static uint32_t LEDTime;
        if ((int32_t)(currentTime - LEDTime) >= 0) {
            LEDTime = currentTime + 50000;
            ledringState();
        }
    }
#endif

    if ((int32_t)(currentTime - calibratedAccTime) >= 0) {
        if (!f.SMALL_ANGLES_25) {
            f.ACC_CALIBRATED = 0; // the multi uses ACC and is not calibrated or is too much inclinated
            LED0_TOGGLE;
            calibratedAccTime = currentTime + 500000;
        } else {
            f.ACC_CALIBRATED = 1;
        }
    }

    serialCom();

    if (sensors(SENSOR_GPS)) {
        static uint32_t GPSLEDTime;
        if ((int32_t)(currentTime - GPSLEDTime) >= 0 && (GPS_numSat >= 5)) {
            GPSLEDTime = currentTime + 150000;
            LED1_TOGGLE;
        }
    }

    // Read out gyro temperature. can use it for something somewhere. maybe get MCU temperature instead? lots of fun possibilities.
    if (gyro.temperature)
        gyro.temperature(&telemTemperature1);
    else {
        // TODO MCU temp
    }
}
Esempio n. 11
0
void updateBattery(void)
{
    updateBatteryVoltage();
    
    /* battery has just been connected*/
    if (batteryState == BATTERY_NOT_PRESENT && vbat > VBATT_PRESENT_THRESHOLD_MV)
    {
        /* Actual battery state is calculated below, this is really BATTERY_PRESENT */
        batteryState = BATTERY_OK;
        /* wait for VBatt to stabilise then we can calc number of cells
        (using the filtered value takes a long time to ramp up) 
        We only do this on the ground so don't care if we do block, not
        worse than original code anyway*/
        delay(VBATTERY_STABLE_DELAY);
        updateBatteryVoltage();

        unsigned cells = (batteryAdcToVoltage(vbatLatestADC) / batteryConfig->vbatmaxcellvoltage) + 1;
        if (cells > 8) {
            // something is wrong, we expect 8 cells maximum (and autodetection will be problematic at 6+ cells)
            cells = 8;
        }
        batteryCellCount = cells;
        batteryWarningVoltage = batteryCellCount * batteryConfig->vbatwarningcellvoltage;
        batteryCriticalVoltage = batteryCellCount * batteryConfig->vbatmincellvoltage;
    }
    /* battery has been disconnected - can take a while for filter cap to disharge so we use a threshold of VBATT_PRESENT_THRESHOLD_MV */
    else if (batteryState != BATTERY_NOT_PRESENT && vbat <= VBATT_PRESENT_THRESHOLD_MV)
    {
        batteryState = BATTERY_NOT_PRESENT;
        batteryCellCount = 0;
        batteryWarningVoltage = 0;
        batteryCriticalVoltage = 0;
    }    

    switch(batteryState)
    {
        case BATTERY_OK:
            if (vbat <= (batteryWarningVoltage - VBATT_HYSTERESIS)) {
                batteryState = BATTERY_WARNING;
                beeper(BEEPER_BAT_LOW);
            }
            break;
        case BATTERY_WARNING:
            if (vbat <= (batteryCriticalVoltage - VBATT_HYSTERESIS)) {
                batteryState = BATTERY_CRITICAL;
                beeper(BEEPER_BAT_CRIT_LOW);
            } else if (vbat > (batteryWarningVoltage + VBATT_HYSTERESIS)){
                batteryState = BATTERY_OK;
            } else {
                beeper(BEEPER_BAT_LOW);
            }
            break;
        case BATTERY_CRITICAL:
            if (vbat > (batteryCriticalVoltage + VBATT_HYSTERESIS)){
                batteryState = BATTERY_WARNING;
                beeper(BEEPER_BAT_LOW);
            } else {
                beeper(BEEPER_BAT_CRIT_LOW);
            }
            break;
        case BATTERY_NOT_PRESENT:
            break;
    }
}
Esempio n. 12
0
int mspServerCommandHandler(mspPacket_t *cmd, mspPacket_t *reply)
{
    sbuf_t *src = &cmd->buf;
    sbuf_t *dst = &reply->buf;
    int len = sbufBytesRemaining(src);

    switch (cmd->cmd) {
        case MSP_API_VERSION:
            sbufWriteU8(dst, MSP_PROTOCOL_VERSION);

            sbufWriteU8(dst, API_VERSION_MAJOR);
            sbufWriteU8(dst, API_VERSION_MINOR);
            break;

        case MSP_FC_VARIANT:
            sbufWriteData(dst, flightControllerIdentifier, FLIGHT_CONTROLLER_IDENTIFIER_LENGTH);
            break;

        case MSP_FC_VERSION:
            sbufWriteU8(dst, FC_VERSION_MAJOR);
            sbufWriteU8(dst, FC_VERSION_MINOR);
            sbufWriteU8(dst, FC_VERSION_PATCH_LEVEL);
            break;

        case MSP_BOARD_INFO:
            sbufWriteData(dst, boardIdentifier, BOARD_IDENTIFIER_LENGTH);
            sbufWriteU16(dst, 0);  // hardware revision
            sbufWriteU8(dst, 1);  // 0 == FC, 1 == OSD
            break;

        case MSP_BUILD_INFO:
            sbufWriteData(dst, buildDate, BUILD_DATE_LENGTH);
            sbufWriteData(dst, buildTime, BUILD_TIME_LENGTH);
            sbufWriteData(dst, shortGitRevision, GIT_SHORT_REVISION_LENGTH);
            break;

            // DEPRECATED - Use MSP_API_VERSION
        case MSP_IDENT:
            sbufWriteU8(dst, MW_VERSION);
            sbufWriteU8(dst, 0); // mixer mode
            sbufWriteU8(dst, MSP_PROTOCOL_VERSION);
            sbufWriteU32(dst, CAP_DYNBALANCE); // "capability"
            break;

        case MSP_STATUS_EX:
        case MSP_STATUS:
            sbufWriteU16(dst, cycleTime);
#ifdef USE_I2C
            sbufWriteU16(dst, i2cGetErrorCounter());
#else
            sbufWriteU16(dst, 0);
#endif
            sbufWriteU16(dst, 0); // sensors
            sbufWriteU32(dst, 0); // flight mode flags
            sbufWriteU8(dst, 0);  // profile index
            if(cmd->cmd == MSP_STATUS_EX) {
                sbufWriteU16(dst, averageSystemLoadPercent);
            }
            break;

        case MSP_DEBUG:
            // output some useful QA statistics
            // debug[x] = ((hse_value / 1000000) * 1000) + (SystemCoreClock / 1000000);         // XX0YY [crystal clock : core clock]

            for (int i = 0; i < DEBUG16_VALUE_COUNT; i++)
                sbufWriteU16(dst, debug[i]);      // 4 variables are here for general monitoring purpose
            break;

        case MSP_UID:
            sbufWriteU32(dst, U_ID_0);
            sbufWriteU32(dst, U_ID_1);
            sbufWriteU32(dst, U_ID_2);
            break;

        case MSP_VOLTAGE_METER_CONFIG:
            for (int i = 0; i < MAX_VOLTAGE_METERS; i++) {
                // FIXME update for multiple voltage sources  i.e.  use `i` and support at least OSD VBAT, OSD 12V, OSD 5V
                sbufWriteU8(dst, batteryConfig()->vbatscale);
                sbufWriteU8(dst, batteryConfig()->vbatmincellvoltage);
                sbufWriteU8(dst, batteryConfig()->vbatmaxcellvoltage);
                sbufWriteU8(dst, batteryConfig()->vbatwarningcellvoltage);
            }
            break;

        case MSP_CURRENT_METER_CONFIG:
            sbufWriteU16(dst, batteryConfig()->currentMeterScale);
            sbufWriteU16(dst, batteryConfig()->currentMeterOffset);
            sbufWriteU8(dst, batteryConfig()->currentMeterType);
            sbufWriteU16(dst, batteryConfig()->batteryCapacity);
            break;

        case MSP_CF_SERIAL_CONFIG:
            for (int i = 0; i < serialGetAvailablePortCount(); i++) {
                if (!serialIsPortAvailable(serialConfig()->portConfigs[i].identifier)) {
                    continue;
                };
                sbufWriteU8(dst, serialConfig()->portConfigs[i].identifier);
                sbufWriteU16(dst, serialConfig()->portConfigs[i].functionMask);
                sbufWriteU8(dst, serialConfig()->portConfigs[i].baudRates[BAUDRATE_MSP_SERVER]);
                sbufWriteU8(dst, serialConfig()->portConfigs[i].baudRates[BAUDRATE_MSP_CLIENT]);
                sbufWriteU8(dst, serialConfig()->portConfigs[i].baudRates[BAUDRATE_RESERVED1]);
                sbufWriteU8(dst, serialConfig()->portConfigs[i].baudRates[BAUDRATE_RESERVED2]);
            }
            break;

        case MSP_BF_BUILD_INFO:
            sbufWriteData(dst, buildDate, 11); // MMM DD YYYY as ascii, MMM = Jan/Feb... etc
            sbufWriteU32(dst, 0); // future exp
            sbufWriteU32(dst, 0); // future exp
            break;

        case MSP_DATAFLASH_SUMMARY: // FIXME update GUI and remove this.
            sbufWriteU8(dst, 0); // FlashFS is neither ready nor supported
            sbufWriteU32(dst, 0);
            sbufWriteU32(dst, 0);
            sbufWriteU32(dst, 0);
            break;

        case MSP_BATTERY_STATES:
            // write out battery states, once for each battery
            sbufWriteU8(dst, (uint8_t)getBatteryState() == BATTERY_NOT_PRESENT ? 0 : 1); // battery connected - 0 not connected, 1 connected
            sbufWriteU8(dst, (uint8_t)constrain(vbat, 0, 255));
            sbufWriteU16(dst, (uint16_t)constrain(mAhDrawn, 0, 0xFFFF)); // milliamp hours drawn from battery
            break;

        case MSP_CURRENT_METERS:
            // write out amperage, once for each current meter.
            sbufWriteU16(dst, (uint16_t)constrain(amperage * 10, 0, 0xFFFF)); // send amperage in 0.001 A steps. Negative range is truncated to zero
            break;

        case MSP_VOLTAGE_METERS:
            // write out voltage, once for each meter.
            for (int i = 0; i < 3; i++) {
                // FIXME hack that needs cleanup, see issue #2221
                // This works for now, but the vbat scale also changes the 12V and 5V readings.
                switch(i) {
                    case 0:
                        sbufWriteU8(dst, (uint8_t)constrain(vbat, 0, 255));
                        break;
                    case 1:
                        sbufWriteU8(dst, (uint8_t)constrain(batteryAdcToVoltage(adcGetChannel(ADC_12V)), 0, 255));
                        break;
                    case 2:
                        sbufWriteU8(dst, (uint8_t)constrain(batteryAdcToVoltage(adcGetChannel(ADC_5V)), 0, 255));
                        break;
                }
            }
            break;
        case MSP_OSD_VIDEO_CONFIG:
            sbufWriteU8(dst, osdVideoConfig()->videoMode); // 0 = NTSC, 1 = PAL
            break;

        case MSP_RESET_CONF:
            resetEEPROM();
            readEEPROM();
            break;

        case MSP_EEPROM_WRITE:
            writeEEPROM();
            readEEPROM();
            break;

        case MSP_SET_VOLTAGE_METER_CONFIG: {
            uint8_t i = sbufReadU8(src);
            if (i >= MAX_VOLTAGE_METERS) {
                return -1;
            }
            // FIXME use `i`, see MSP_VOLTAGE_METER_CONFIG
            batteryConfig()->vbatscale = sbufReadU8(src);               // actual vbatscale as intended
            batteryConfig()->vbatmincellvoltage = sbufReadU8(src);      // vbatlevel_warn1 in MWC2.3 GUI
            batteryConfig()->vbatmaxcellvoltage = sbufReadU8(src);      // vbatlevel_warn2 in MWC2.3 GUI
            batteryConfig()->vbatwarningcellvoltage = sbufReadU8(src);  // vbatlevel when buzzer starts to alert
            break;
        }

        case MSP_SET_CURRENT_METER_CONFIG:
            batteryConfig()->currentMeterScale = sbufReadU16(src);
            batteryConfig()->currentMeterOffset = sbufReadU16(src);
            batteryConfig()->currentMeterType = sbufReadU8(src);
            batteryConfig()->batteryCapacity = sbufReadU16(src);
            break;

        case MSP_SET_CF_SERIAL_CONFIG: {
            int portConfigSize = sizeof(uint8_t) + sizeof(uint16_t) + (sizeof(uint8_t) * 4);

            if (len % portConfigSize != 0)
                return -1;

            while (sbufBytesRemaining(src) >= portConfigSize) {
                uint8_t identifier = sbufReadU8(src);

                serialPortConfig_t *portConfig = serialFindPortConfiguration(identifier);
                if (!portConfig)
                    return -1;

                portConfig->identifier = identifier;
                portConfig->functionMask = sbufReadU16(src);
                portConfig->baudRates[BAUDRATE_MSP_SERVER] = sbufReadU8(src);
                portConfig->baudRates[BAUDRATE_MSP_CLIENT] = sbufReadU8(src);
                portConfig->baudRates[BAUDRATE_RESERVED1] = sbufReadU8(src);
                portConfig->baudRates[BAUDRATE_RESERVED2] = sbufReadU8(src);
            }
            break;
        }

        case MSP_REBOOT:
            mspPostProcessFn = mspRebootFn;
            break;

        case MSP_SET_OSD_VIDEO_CONFIG:
            osdVideoConfig()->videoMode = sbufReadU8(src);
            mspPostProcessFn = mspApplyVideoConfigurationFn;
            break;

        default:
            // we do not know how to handle the message
            return 0;
    }
    return 1;     // message was handled successfully
}