static void commit_abort(Job *job) { CommitBlockJob *s = container_of(job, CommitBlockJob, common.job); BlockDriverState *top_bs = blk_bs(s->top); if (s->chain_frozen) { bdrv_unfreeze_backing_chain(s->commit_top_bs, s->base_bs); } /* Make sure commit_top_bs and top stay around until bdrv_replace_node() */ bdrv_ref(top_bs); bdrv_ref(s->commit_top_bs); if (s->base) { blk_unref(s->base); } /* free the blockers on the intermediate nodes so that bdrv_replace_nodes * can succeed */ block_job_remove_all_bdrv(&s->common); /* If bdrv_drop_intermediate() failed (or was not invoked), remove the * commit filter driver from the backing chain now. Do this as the final * step so that the 'consistent read' permission can be granted. * * XXX Can (or should) we somehow keep 'consistent read' blocked even * after the failed/cancelled commit job is gone? If we already wrote * something to base, the intermediate images aren't valid any more. */ bdrv_child_try_set_perm(s->commit_top_bs->backing, 0, BLK_PERM_ALL, &error_abort); bdrv_replace_node(s->commit_top_bs, backing_bs(s->commit_top_bs), &error_abort); bdrv_unref(s->commit_top_bs); bdrv_unref(top_bs); }
static void mirror_exit(BlockJob *job, void *opaque) { MirrorBlockJob *s = container_of(job, MirrorBlockJob, common); MirrorExitData *data = opaque; AioContext *replace_aio_context = NULL; BlockDriverState *src = s->source; BlockDriverState *target_bs = blk_bs(s->target); BlockDriverState *mirror_top_bs = s->mirror_top_bs; Error *local_err = NULL; bdrv_release_dirty_bitmap(src, s->dirty_bitmap); /* Make sure that the source BDS doesn't go away before we called * block_job_completed(). */ bdrv_ref(src); bdrv_ref(mirror_top_bs); bdrv_ref(target_bs); /* Remove target parent that still uses BLK_PERM_WRITE/RESIZE before * inserting target_bs at s->to_replace, where we might not be able to get * these permissions. * * Note that blk_unref() alone doesn't necessarily drop permissions because * we might be running nested inside mirror_drain(), which takes an extra * reference, so use an explicit blk_set_perm() first. */ blk_set_perm(s->target, 0, BLK_PERM_ALL, &error_abort); blk_unref(s->target); s->target = NULL; /* We don't access the source any more. Dropping any WRITE/RESIZE is * required before it could become a backing file of target_bs. */ bdrv_child_try_set_perm(mirror_top_bs->backing, 0, BLK_PERM_ALL, &error_abort); if (s->backing_mode == MIRROR_SOURCE_BACKING_CHAIN) { BlockDriverState *backing = s->is_none_mode ? src : s->base; if (backing_bs(target_bs) != backing) { bdrv_set_backing_hd(target_bs, backing, &local_err); if (local_err) { error_report_err(local_err); data->ret = -EPERM; } } } if (s->to_replace) { replace_aio_context = bdrv_get_aio_context(s->to_replace); aio_context_acquire(replace_aio_context); } if (s->should_complete && data->ret == 0) { BlockDriverState *to_replace = src; if (s->to_replace) { to_replace = s->to_replace; } if (bdrv_get_flags(target_bs) != bdrv_get_flags(to_replace)) { bdrv_reopen(target_bs, bdrv_get_flags(to_replace), NULL); } /* The mirror job has no requests in flight any more, but we need to * drain potential other users of the BDS before changing the graph. */ bdrv_drained_begin(target_bs); bdrv_replace_node(to_replace, target_bs, &local_err); bdrv_drained_end(target_bs); if (local_err) { error_report_err(local_err); data->ret = -EPERM; } } if (s->to_replace) { bdrv_op_unblock_all(s->to_replace, s->replace_blocker); error_free(s->replace_blocker); bdrv_unref(s->to_replace); } if (replace_aio_context) { aio_context_release(replace_aio_context); } g_free(s->replaces); bdrv_unref(target_bs); /* Remove the mirror filter driver from the graph. Before this, get rid of * the blockers on the intermediate nodes so that the resulting state is * valid. Also give up permissions on mirror_top_bs->backing, which might * block the removal. */ block_job_remove_all_bdrv(job); bdrv_child_try_set_perm(mirror_top_bs->backing, 0, BLK_PERM_ALL, &error_abort); bdrv_replace_node(mirror_top_bs, backing_bs(mirror_top_bs), &error_abort); /* We just changed the BDS the job BB refers to (with either or both of the * bdrv_replace_node() calls), so switch the BB back so the cleanup does * the right thing. We don't need any permissions any more now. */ blk_remove_bs(job->blk); blk_set_perm(job->blk, 0, BLK_PERM_ALL, &error_abort); blk_insert_bs(job->blk, mirror_top_bs, &error_abort); block_job_completed(&s->common, data->ret); g_free(data); bdrv_drained_end(src); bdrv_unref(mirror_top_bs); bdrv_unref(src); }
static void mirror_start_job(const char *job_id, BlockDriverState *bs, int creation_flags, BlockDriverState *target, const char *replaces, int64_t speed, uint32_t granularity, int64_t buf_size, BlockMirrorBackingMode backing_mode, BlockdevOnError on_source_error, BlockdevOnError on_target_error, bool unmap, BlockCompletionFunc *cb, void *opaque, const BlockJobDriver *driver, bool is_none_mode, BlockDriverState *base, bool auto_complete, const char *filter_node_name, bool is_mirror, Error **errp) { MirrorBlockJob *s; BlockDriverState *mirror_top_bs; bool target_graph_mod; bool target_is_backing; Error *local_err = NULL; int ret; if (granularity == 0) { granularity = bdrv_get_default_bitmap_granularity(target); } assert(is_power_of_2(granularity)); if (buf_size < 0) { error_setg(errp, "Invalid parameter 'buf-size'"); return; } if (buf_size == 0) { buf_size = DEFAULT_MIRROR_BUF_SIZE; } /* In the case of active commit, add dummy driver to provide consistent * reads on the top, while disabling it in the intermediate nodes, and make * the backing chain writable. */ mirror_top_bs = bdrv_new_open_driver(&bdrv_mirror_top, filter_node_name, BDRV_O_RDWR, errp); if (mirror_top_bs == NULL) { return; } if (!filter_node_name) { mirror_top_bs->implicit = true; } mirror_top_bs->total_sectors = bs->total_sectors; mirror_top_bs->supported_write_flags = BDRV_REQ_WRITE_UNCHANGED; mirror_top_bs->supported_zero_flags = BDRV_REQ_WRITE_UNCHANGED; bdrv_set_aio_context(mirror_top_bs, bdrv_get_aio_context(bs)); /* bdrv_append takes ownership of the mirror_top_bs reference, need to keep * it alive until block_job_create() succeeds even if bs has no parent. */ bdrv_ref(mirror_top_bs); bdrv_drained_begin(bs); bdrv_append(mirror_top_bs, bs, &local_err); bdrv_drained_end(bs); if (local_err) { bdrv_unref(mirror_top_bs); error_propagate(errp, local_err); return; } /* Make sure that the source is not resized while the job is running */ s = block_job_create(job_id, driver, NULL, mirror_top_bs, BLK_PERM_CONSISTENT_READ, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE | BLK_PERM_GRAPH_MOD, speed, creation_flags, cb, opaque, errp); if (!s) { goto fail; } /* The block job now has a reference to this node */ bdrv_unref(mirror_top_bs); s->source = bs; s->mirror_top_bs = mirror_top_bs; /* No resize for the target either; while the mirror is still running, a * consistent read isn't necessarily possible. We could possibly allow * writes and graph modifications, though it would likely defeat the * purpose of a mirror, so leave them blocked for now. * * In the case of active commit, things look a bit different, though, * because the target is an already populated backing file in active use. * We can allow anything except resize there.*/ target_is_backing = bdrv_chain_contains(bs, target); target_graph_mod = (backing_mode != MIRROR_LEAVE_BACKING_CHAIN); s->target = blk_new(BLK_PERM_WRITE | BLK_PERM_RESIZE | (target_graph_mod ? BLK_PERM_GRAPH_MOD : 0), BLK_PERM_WRITE_UNCHANGED | (target_is_backing ? BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE | BLK_PERM_GRAPH_MOD : 0)); ret = blk_insert_bs(s->target, target, errp); if (ret < 0) { goto fail; } if (is_mirror) { /* XXX: Mirror target could be a NBD server of target QEMU in the case * of non-shared block migration. To allow migration completion, we * have to allow "inactivate" of the target BB. When that happens, we * know the job is drained, and the vcpus are stopped, so no write * operation will be performed. Block layer already has assertions to * ensure that. */ blk_set_force_allow_inactivate(s->target); } s->replaces = g_strdup(replaces); s->on_source_error = on_source_error; s->on_target_error = on_target_error; s->is_none_mode = is_none_mode; s->backing_mode = backing_mode; s->base = base; s->granularity = granularity; s->buf_size = ROUND_UP(buf_size, granularity); s->unmap = unmap; if (auto_complete) { s->should_complete = true; } s->dirty_bitmap = bdrv_create_dirty_bitmap(bs, granularity, NULL, errp); if (!s->dirty_bitmap) { goto fail; } /* Required permissions are already taken with blk_new() */ block_job_add_bdrv(&s->common, "target", target, 0, BLK_PERM_ALL, &error_abort); /* In commit_active_start() all intermediate nodes disappear, so * any jobs in them must be blocked */ if (target_is_backing) { BlockDriverState *iter; for (iter = backing_bs(bs); iter != target; iter = backing_bs(iter)) { /* XXX BLK_PERM_WRITE needs to be allowed so we don't block * ourselves at s->base (if writes are blocked for a node, they are * also blocked for its backing file). The other options would be a * second filter driver above s->base (== target). */ ret = block_job_add_bdrv(&s->common, "intermediate node", iter, 0, BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE, errp); if (ret < 0) { goto fail; } } } trace_mirror_start(bs, s, opaque); block_job_start(&s->common); return; fail: if (s) { /* Make sure this BDS does not go away until we have completed the graph * changes below */ bdrv_ref(mirror_top_bs); g_free(s->replaces); blk_unref(s->target); block_job_early_fail(&s->common); } bdrv_child_try_set_perm(mirror_top_bs->backing, 0, BLK_PERM_ALL, &error_abort); bdrv_replace_node(mirror_top_bs, backing_bs(mirror_top_bs), &error_abort); bdrv_unref(mirror_top_bs); }