/** * @brief Pre-calculate some of the expensive steps in reduction. * * This function should only be called once (normally when a session starts). * When the session is over, bi_free_mod() should be called. bi_mod_power() * relies on this function being called. * @param ctx [in] The bigint session context. * @param bim [in] The bigint modulus that will be used. * @param mod_offset [in] There are three moduluii that can be stored - the * standard modulus, and its two primes p and q. This offset refers to which * modulus we are referring to. * @see bi_free_mod(), bi_mod_power(). */ void ICACHE_FLASH_ATTR bi_set_mod(BI_CTX *ctx, bigint *bim, int mod_offset) { int k = bim->size; comp d = (comp)((long_comp)COMP_RADIX/(bim->comps[k-1]+1)); #ifdef CONFIG_BIGINT_MONTGOMERY bigint *R, *R2; #endif ctx->bi_mod[mod_offset] = bim; bi_permanent(ctx->bi_mod[mod_offset]); ctx->bi_normalised_mod[mod_offset] = bi_int_multiply(ctx, bim, d); bi_permanent(ctx->bi_normalised_mod[mod_offset]); #if defined(CONFIG_BIGINT_MONTGOMERY) /* set montgomery variables */ R = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k-1); /* R */ R2 = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k*2-1); /* R^2 */ ctx->bi_RR_mod_m[mod_offset] = bi_mod(ctx, R2); /* R^2 mod m */ ctx->bi_R_mod_m[mod_offset] = bi_mod(ctx, R); /* R mod m */ bi_permanent(ctx->bi_RR_mod_m[mod_offset]); bi_permanent(ctx->bi_R_mod_m[mod_offset]); ctx->N0_dash[mod_offset] = modular_inverse(ctx->bi_mod[mod_offset]); #elif defined (CONFIG_BIGINT_BARRETT) ctx->bi_mu[mod_offset] = bi_divide(ctx, comp_left_shift( bi_clone(ctx, ctx->bi_radix), k*2-1), ctx->bi_mod[mod_offset], 0); bi_permanent(ctx->bi_mu[mod_offset]); #endif }
/** * @brief Perform a single montgomery reduction. * @param ctx [in] The bigint session context. * @param bixy [in] A bigint. * @return The result of the montgomery reduction. */ bigint * ICACHE_FLASH_ATTR bi_mont(BI_CTX *ctx, bigint *bixy) { int i = 0, n; uint8_t mod_offset = ctx->mod_offset; bigint *bim = ctx->bi_mod[mod_offset]; comp mod_inv = ctx->N0_dash[mod_offset]; check(bixy); if (ctx->use_classical) /* just use classical instead */ { return bi_mod(ctx, bixy); } n = bim->size; do { bixy = bi_add(ctx, bixy, comp_left_shift( bi_int_multiply(ctx, bim, bixy->comps[i]*mod_inv), i)); } while (++i < n); comp_right_shift(bixy, n); if (bi_compare(bixy, bim) >= 0) { bixy = bi_subtract(ctx, bixy, bim, NULL); } return bixy; }
int main() { bi_initialize(); bigint sum = int_to_bi(1); bigint last = int_to_bi(1); int i, j; for (i = 1; i <= (SIZE-1)/2; ++i) { for (j = 0; j < 4; ++j) { last = bi_add(last, bi_int_multiply(int_to_bi(i), 2)); sum = bi_add(sum, bi_copy(last)); } } bi_print(stdout, sum); printf("\n"); bi_free(last); bi_terminate(); return 0; }
int main() { bi_initialize(); bigint last = int_to_bi(1); int i, j; int number_of_primes = 0; for (i = 1;; ++i) { for (j = 0; j < 4; ++j) { last = bi_add(last, bi_int_multiply(int_to_bi(i), 2)); if (j != 3 && bi_is_probable_prime(bi_copy(last), 4)) { ++number_of_primes; } } if ((double)number_of_primes / (4*i+1) < 0.1) { printf("%d\n", i*2+1); break; } #ifdef DEBUG printf("%d/%d on iteration %d ~%f\n", number_of_primes, (4*i+1), i, (float)number_of_primes/(4*i+1)); #endif } bi_free(last); bi_terminate(); return 0; }
/** * @brief Does both division and modulo calculations. * * Used extensively when doing classical reduction. * @param ctx [in] The bigint session context. * @param u [in] A bigint which is the numerator. * @param v [in] Either the denominator or the modulus depending on the mode. * @param is_mod [n] Determines if this is a normal division (0) or a reduction * (1). * @return The result of the division/reduction. */ bigint * ICACHE_FLASH_ATTR bi_divide(BI_CTX *ctx, bigint *u, bigint *v, int is_mod) { int n = v->size, m = u->size-n; int j = 0, orig_u_size = u->size; uint8_t mod_offset = ctx->mod_offset; comp d; bigint *quotient, *tmp_u; comp q_dash; check(u); check(v); /* if doing reduction and we are < mod, then return mod */ if (is_mod && bi_compare(v, u) > 0) { bi_free(ctx, v); return u; } quotient = alloc(ctx, m+1); tmp_u = alloc(ctx, n+1); v = trim(v); /* make sure we have no leading 0's */ d = (comp)((long_comp)COMP_RADIX/(V1+1)); /* clear things to start with */ memset(quotient->comps, 0, ((quotient->size)*COMP_BYTE_SIZE)); /* normalise */ if (d > 1) { u = bi_int_multiply(ctx, u, d); if (is_mod) { v = ctx->bi_normalised_mod[mod_offset]; } else { v = bi_int_multiply(ctx, v, d); } } if (orig_u_size == u->size) /* new digit position u0 */ { more_comps(u, orig_u_size + 1); } do { /* get a temporary short version of u */ memcpy(tmp_u->comps, &u->comps[u->size-n-1-j], (n+1)*COMP_BYTE_SIZE); /* calculate q' */ if (U(0) == V1) { q_dash = COMP_RADIX-1; } else { q_dash = (comp)(((long_comp)U(0)*COMP_RADIX + U(1))/V1); if (v->size > 1 && V2) { /* we are implementing the following: if (V2*q_dash > (((U(0)*COMP_RADIX + U(1) - q_dash*V1)*COMP_RADIX) + U(2))) ... */ comp inner = (comp)((long_comp)COMP_RADIX*U(0) + U(1) - (long_comp)q_dash*V1); if ((long_comp)V2*q_dash > (long_comp)inner*COMP_RADIX + U(2)) { q_dash--; } } } /* multiply and subtract */ if (q_dash) { int is_negative; tmp_u = bi_subtract(ctx, tmp_u, bi_int_multiply(ctx, bi_copy(v), q_dash), &is_negative); more_comps(tmp_u, n+1); Q(j) = q_dash; /* add back */ if (is_negative) { Q(j)--; tmp_u = bi_add(ctx, tmp_u, bi_copy(v)); /* lop off the carry */ tmp_u->size--; v->size--; } } else { Q(j) = 0; } /* copy back to u */ memcpy(&u->comps[u->size-n-1-j], tmp_u->comps, (n+1)*COMP_BYTE_SIZE); } while (++j <= m); bi_free(ctx, tmp_u); bi_free(ctx, v); if (is_mod) /* get the remainder */ { bi_free(ctx, quotient); return bi_int_divide(ctx, trim(u), d); } else /* get the quotient */ { bi_free(ctx, u); return trim(quotient); } }
int main() { bi_initialize(); bigint sum = int_to_bi(0); int a,b,c,d,e,f,g,h,i,j; int n; for (a=9;a>0;--a) { for (b=9;b>=0;--b) { if (b==a) continue; for (c=9;c>=0;--c) { if (c==a||c==b) continue; for (d=9;d>=0;--d) { if (d==a||d==b||d==c) continue; for (e=9;e>=0;--e) { if (e==a||e==b||e==c||e==d) continue; for (f=9;f>=0;--f) { if (f==a||f==b||f==c||f==d||f==e) continue; for (g=9;g>=0;--g) { if (g==a||g==b||g==c||g==d||g==e||g==f) continue; for (h=9;h>=0;--h) { if (h==a||h==b||h==c||h==d||h==e||h==f||h==g) continue; for (i=9;i>=0;--i) { if (i==a||i==b||i==c||i==d||i==e||i==f||i==g||i==h) continue; for (j=9;j>=0;--j) { if (j==a||j==b||j==c||j==d||j==e||j==f||j==g||j==h||j==i) continue; if ((b * 100 + c * 10 + d) % 2 == 0) if ((c * 100 + d * 10 + e) % 3 == 0) if ((d * 100 + e * 10 + f) % 5 == 0) if ((e * 100 + f * 10 + g) % 7 == 0) if ((f * 100 + g * 10 + h) % 11 == 0) if ((g * 100 + h * 10 + i) % 13 == 0) if ((h * 100 + i * 10 + j) % 17 == 0) { n = b * 100000000 + c * 10000000 + d * 1000000 + e * 100000 + f * 10000 + g * 1000 + h * 100 + i * 10 + j * 1; sum = bi_add(sum, int_to_bi(n)); sum = bi_add(sum, bi_int_multiply(int_to_bi(1000000000), a)); #ifdef DEBUG printf("%d%d%d%d%d%d%d%d%d%d\n", a,b,c,d,e,f,g,h,i,j); bi_print(stdout,bi_copy(sum)); printf("\n"); #endif } } } } } } } } } } } bi_print(stdout,sum); printf("\n"); bi_terminate(); return 0; }