int RSAKey::Generate( int bits ) { Bignum pm1, qm1, phi_n; /* * We don't generate e; we just use a standard one always. */ this->exponent = bignum_from_long(RSA_EXPONENT); /* * Generate p and q: primes with combined length `bits', not * congruent to 1 modulo e. (Strictly speaking, we wanted (p-1) * and e to be coprime, and (q-1) and e to be coprime, but in * general that's slightly more fiddly to arrange. By choosing * a prime e, we can simplify the criterion.) */ this->p = primegen(bits / 2, RSA_EXPONENT, 1, NULL, 1); this->q = primegen(bits - bits / 2, RSA_EXPONENT, 1, NULL, 2); /* * Ensure p > q, by swapping them if not. */ if (bignum_cmp(this->p, this->q) < 0) swap( p, q ); /* * Now we have p, q and e. All we need to do now is work out * the other helpful quantities: n=pq, d=e^-1 mod (p-1)(q-1), * and (q^-1 mod p). */ this->modulus = bigmul(this->p, this->q); pm1 = copybn(this->p); decbn(pm1); qm1 = copybn(this->q); decbn(qm1); phi_n = bigmul(pm1, qm1); freebn(pm1); freebn(qm1); this->private_exponent = modinv(this->exponent, phi_n); this->iqmp = modinv(this->q, this->p); /* * Clean up temporary numbers. */ freebn(phi_n); return 1; }
int main(int argc, char* argv[]) { int x[] = {0,0,0,0}; bigmul(87654321, 12345678, x); printf("%d %d %d %d\n", x[0],x[1],x[2],x[3]); return 0; }
void fac(bignum num, int factor) { int i; bignum temp; for(i = 2; i <= factor; i++) { bigset(temp, i, 10); bigmul(num, num, temp); } }
// Returns in r the solution of x == r[k] (mod m[k]), k = 0, ..., n-1 void crt (rawtype *r, rawtype *m, size_t n) { size_t t, k; rawtype *mm = new rawtype[n], *x = new rawtype[n], *s = new rawtype[n]; modint y; rawtype o; o = modint::modulus; mm[0] = m[0]; for (t = 1; t < n; t++) mm[t] = bigmul (mm, mm, m[t], t); for (t = 0; t < n; t++) s[t] = 0; for (k = 0; k < n; k++) { setmodulus (m[k]); y = 1; for (t = 0; t < n; t++) if (t != k) y *= m[t]; y = r[k] / y; bigdiv (x, mm, m[k], n); x[n - 1] = bigmul (x, x, y, n - 1); if (bigadd (s, x, n) || bigcmp (s, mm, n) > 0) bigsub (s, mm, n); } moveraw (r, s, n); setmodulus (o); delete[] mm; delete[] x; delete[] s; }
int main() { while (fgets(cbit0, MAXN, stdin) != NULL) { fgets(cbit1, MAXN, stdin); memset (bit0, 0, sizeof(int)*MAXN); memset (bit1, 0, sizeof(int)*MAXN); assign (bit0, cbit0); assign (bit1, cbit1); bigmul(bit0, bit1); bigprint (sum); } return 0; }
// Divides n words in s by f, stores result in d, returns remainder rawtype basediv (rawtype *dest, rawtype *src1, rawtype src2, size_t len, rawtype carry) { size_t t; rawtype tmp[2]; for (t = 0; t < len; t++) { tmp[1] = bigmul (tmp, &carry, Base, 1); if (src1) bigadd (tmp, src1 + t, 1, 1); carry = bigdiv (tmp, tmp, src2, 2); dest[t] = tmp[0]; } return carry; }
/* * Verify that the public data in an RSA key matches the private * data. We also check the private data itself: we ensure that p > * q and that iqmp really is the inverse of q mod p. */ int rsa_verify(struct RSAKey *key) { Bignum n, ed, pm1, qm1; int cmp; /* n must equal pq. */ n = bigmul(key->p, key->q); cmp = bignum_cmp(n, key->modulus); freebn(n); if (cmp != 0) return 0; /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */ pm1 = copybn(key->p); decbn(pm1); ed = modmul(key->exponent, key->private_exponent, pm1); cmp = bignum_cmp(ed, One); sfree(ed); if (cmp != 0) return 0; qm1 = copybn(key->q); decbn(qm1); ed = modmul(key->exponent, key->private_exponent, qm1); cmp = bignum_cmp(ed, One); sfree(ed); if (cmp != 0) return 0; /* * Ensure p > q. */ if (bignum_cmp(key->p, key->q) <= 0) return 0; /* * Ensure iqmp * q is congruent to 1, modulo p. */ n = modmul(key->iqmp, key->q, key->p); cmp = bignum_cmp(n, One); sfree(n); if (cmp != 0) return 0; return 1; }
/* * Verify that the public data in an RSA key matches the private * data. We also check the private data itself: we ensure that p > * q and that iqmp really is the inverse of q mod p. */ bool RSAKey::Check() const { Bignum n, ed, pm1, qm1; int cmp; /* n must equal pq. */ n = bigmul(this->p, this->q); cmp = bignum_cmp(n, this->modulus); freebn(n); if (cmp != 0) return 0; /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */ pm1 = copybn(this->p); decbn(pm1); ed = modmul(this->exponent, this->private_exponent, pm1); cmp = bignum_cmp(ed, One); delete [] ed; if (cmp != 0) return 0; qm1 = copybn(this->q); decbn(qm1); ed = modmul(this->exponent, this->private_exponent, qm1); cmp = bignum_cmp(ed, One); delete [] ed; if (cmp != 0) return 0; /* * Ensure p > q. */ if (bignum_cmp(this->p, this->q) <= 0) return 0; /* * Ensure iqmp * q is congruent to 1, modulo p. */ n = modmul(this->iqmp, this->q, this->p); cmp = bignum_cmp(n, One); delete [] n; if (cmp != 0) return 0; return 1; }
// Multiplicates n words in s by f, adds s2, stores result to d, returns overflow word rawtype basemuladd (rawtype *dest, rawtype *src1, rawtype *src2, rawtype src3, size_t len, rawtype carry) { size_t t; rawtype tmp[2], tmpcarry[2]; tmpcarry[0] = carry; tmpcarry[1] = 0; for (t = len; t--;) { tmp[1] = bigmul (tmp, src1 + t, src3, 1); bigadd (tmp, tmpcarry, 1, 1); if (src2) bigadd (tmp, src2 + t, 1, 1); dest[t] = bigdiv (tmpcarry, tmp, Base, 2); } return tmpcarry[0]; }
int main() { printf("PE 53\n"); memset(factorials, 0, sizeof(bignum)*101); bigset(factorials[0], 1); bigset(factorials[1], 1); bigset(factorials[2], 2); char numstring[200]; int count = 0; int percentCount = 0; int n; int r; bignum numerator; bignum denominator; bignum temp; for(n = 1; n <= 100; n++) { for(r = 2; r <= n; r++) { bigfactorial(n, numerator); bigfactorial(r, denominator); bigfactorial(n-r, temp); bigmul(denominator, denominator, temp); bigdiv(temp, numerator, denominator); if(biglength(temp) > 6) count++; } UpdateProgress(++percentCount); } printf("\nAnswer: %d\n", count); return 0; }
int rsa_generate(struct RSAKey *key, struct RSAAux *aux, int bits, progfn_t pfn, void *pfnparam) { Bignum pm1, qm1, phi_n; /* * Set up the phase limits for the progress report. We do this * by passing minus the phase number. * * For prime generation: our initial filter finds things * coprime to everything below 2^16. Computing the product of * (p-1)/p for all prime p below 2^16 gives about 20.33; so * among B-bit integers, one in every 20.33 will get through * the initial filter to be a candidate prime. * * Meanwhile, we are searching for primes in the region of 2^B; * since pi(x) ~ x/log(x), when x is in the region of 2^B, the * prime density will be d/dx pi(x) ~ 1/log(B), i.e. about * 1/0.6931B. So the chance of any given candidate being prime * is 20.33/0.6931B, which is roughly 29.34 divided by B. * * So now we have this probability P, we're looking at an * exponential distribution with parameter P: we will manage in * one attempt with probability P, in two with probability * P(1-P), in three with probability P(1-P)^2, etc. The * probability that we have still not managed to find a prime * after N attempts is (1-P)^N. * * We therefore inform the progress indicator of the number B * (29.34/B), so that it knows how much to increment by each * time. We do this in 16-bit fixed point, so 29.34 becomes * 0x1D.57C4. */ pfn(pfnparam, -1, -0x1D57C4/(bits/2)); pfn(pfnparam, -2, -0x1D57C4/(bits-bits/2)); pfn(pfnparam, -3, 5); /* * We don't generate e; we just use a standard one always. */ key->exponent = bignum_from_short(RSA_EXPONENT); /* * Generate p and q: primes with combined length `bits', not * congruent to 1 modulo e. (Strictly speaking, we wanted (p-1) * and e to be coprime, and (q-1) and e to be coprime, but in * general that's slightly more fiddly to arrange. By choosing * a prime e, we can simplify the criterion.) */ aux->p = primegen(bits/2, RSA_EXPONENT, 1, 1, pfn, pfnparam); aux->q = primegen(bits - bits/2, RSA_EXPONENT, 1, 2, pfn, pfnparam); /* * Ensure p > q, by swapping them if not. */ if (bignum_cmp(aux->p, aux->q) < 0) { Bignum t = aux->p; aux->p = aux->q; aux->q = t; } /* * Now we have p, q and e. All we need to do now is work out * the other helpful quantities: n=pq, d=e^-1 mod (p-1)(q-1), * and (q^-1 mod p). */ pfn(pfnparam, 3, 1); key->modulus = bigmul(aux->p, aux->q); pfn(pfnparam, 3, 2); pm1 = copybn(aux->p); decbn(pm1); qm1 = copybn(aux->q); decbn(qm1); phi_n = bigmul(pm1, qm1); pfn(pfnparam, 3, 3); freebn(pm1); freebn(qm1); key->private_exponent = modinv(key->exponent, phi_n); pfn(pfnparam, 3, 4); aux->iqmp = modinv(aux->q, aux->p); pfn(pfnparam, 3, 5); /* * Clean up temporary numbers. */ freebn(phi_n); return 1; }
int main() { SieveOfEratosthenes(Primes, 1000); srand(time(NULL)); char croaks[] = "PPPPNNPPPNPPNPN"; RunSimulations(); bignum numerator; bigset(numerator, 119); bignum denominator; bigset(denominator, 300); bignum temp1; bigset(temp1, 190); bignum temp2; bigset(temp2, 405); bignum temp3; biginit(temp3); bignum temp4; biginit(temp4); bignum temp5; biginit(temp5); int i; for(i = 1; i < 15; i++) { bigmulint(temp3,bigadd(temp3, temp1, temp2), 7695); bigsetbig(temp4, temp1); bigsetbig(temp5, temp2); bigadd(temp1, bigmulint(temp1, temp1, 81), bigmulint(temp5, temp5, 1805)); bigadd(temp2, bigmulint(temp2, temp2, 5890), bigmulint(temp4, temp4, 7614)); if(croaks[i] == 'P') bigmulint(temp1, temp1, 2); else bigmulint(temp2, temp2, 2); bigmul(numerator, numerator, bigadd(temp4, temp1, temp2)); bigmul(denominator, denominator, bigmulint(temp3,temp3,3)); char string1[1000]; char string2[1000]; biggetstr(string1, numerator); biggetstr(string2, denominator); printf("%s/%s\n", string1, string2); } char string1[1000]; char string2[1000]; biggetstr(string1, numerator); biggetstr(string2, denominator); printf("%s/%s\n", string1, string2); return 0; }