void BVH4mbIntersector16Hybrid<LeafIntersector>::intersect(int16* valid_i, BVH4mb* bvh, Ray16& ray16)
    {
      /* near and node stack */
      __aligned(64) float16   stack_dist[3*BVH4i::maxDepth+1];
      __aligned(64) NodeRef stack_node[3*BVH4i::maxDepth+1];
      __aligned(64) NodeRef stack_node_single[3*BVH4i::maxDepth+1]; 

      /* load ray */
      const bool16 valid0     = *(int16*)valid_i != int16(0);
      const Vec3f16 rdir16     = rcp_safe(ray16.dir);
      const Vec3f16 org_rdir16 = ray16.org * rdir16;
      float16 ray_tnear        = select(valid0,ray16.tnear,pos_inf);
      float16 ray_tfar         = select(valid0,ray16.tfar ,neg_inf);
      const float16 inf        = float16(pos_inf);
      
      /* allocate stack and push root node */
      stack_node[0] = BVH4i::invalidNode;
      stack_dist[0] = inf;
      stack_node[1] = bvh->root;
      stack_dist[1] = ray_tnear; 
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      float16*   __restrict__ sptr_dist = stack_dist + 2;
      
      const Node      * __restrict__ nodes = (Node     *)bvh->nodePtr();
      const BVH4mb::Triangle01 * __restrict__ accel = (BVH4mb::Triangle01 *)bvh->triPtr();

      while (1) pop:
      {
        /* pop next node from stack */
        NodeRef curNode = *(sptr_node-1);
        float16 curDist   = *(sptr_dist-1);
        sptr_node--;
        sptr_dist--;
	const bool16 m_stackDist = ray_tfar > curDist;

	/* stack emppty ? */
        if (unlikely(curNode == BVH4i::invalidNode))  break;
        
        /* cull node if behind closest hit point */
        if (unlikely(none(m_stackDist))) continue;
        
	///////////////////////////////////////////////////////////////////////////////////////////////////////////////
	///////////////////////////////////////////////////////////////////////////////////////////////////////////////
	///////////////////////////////////////////////////////////////////////////////////////////////////////////////

	/* switch to single ray mode */
        if (unlikely(countbits(m_stackDist) <= BVH4i::hybridSIMDUtilSwitchThreshold)) 
	  {
	    float   *__restrict__ stack_dist_single = (float*)sptr_dist;
	    store16f(stack_dist_single,inf);

	    /* traverse single ray */	  	  
	    long rayIndex = -1;
	    while((rayIndex = bitscan64(rayIndex,m_stackDist)) != BITSCAN_NO_BIT_SET_64) 
	      {	    
		stack_node_single[0] = BVH4i::invalidNode;
		stack_node_single[1] = curNode;
		size_t sindex = 2;

		const float16 org_xyz      = loadAOS4to16f(rayIndex,ray16.org.x,ray16.org.y,ray16.org.z);
		const float16 dir_xyz      = loadAOS4to16f(rayIndex,ray16.dir.x,ray16.dir.y,ray16.dir.z);
		const float16 rdir_xyz     = loadAOS4to16f(rayIndex,rdir16.x,rdir16.y,rdir16.z);
		const float16 org_rdir_xyz = org_xyz * rdir_xyz;
		const float16 min_dist_xyz = broadcast1to16f(&ray16.tnear[rayIndex]);
		float16       max_dist_xyz = broadcast1to16f(&ray16.tfar[rayIndex]);
		const float16 time         = broadcast1to16f(&ray16.time[rayIndex]);

		const unsigned int leaf_mask = BVH4I_LEAF_MASK;

		while (1) 
		  {
		    NodeRef curNode = stack_node_single[sindex-1];
		    sindex--;
            
		    traverse_single_intersect(curNode,
					      sindex,
					      rdir_xyz,
					      org_rdir_xyz,
					      min_dist_xyz,
					      max_dist_xyz,
					      time,
					      stack_node_single,
					      stack_dist_single,
					      nodes,
					      leaf_mask);	    

		    /* return if stack is empty */
		    if (unlikely(curNode == BVH4i::invalidNode)) break;


		    /* intersect one ray against four triangles */
		    const bool hit = LeafIntersector::intersect(curNode,
								rayIndex,
								dir_xyz,
								org_xyz,
								min_dist_xyz,
								max_dist_xyz,
								ray16,
								accel,
								(Scene*)bvh->geometry);
		    
		    if (hit)
		      compactStack(stack_node_single,stack_dist_single,sindex,max_dist_xyz);

		  }	  
	      }
	    ray_tfar = select(valid0,ray16.tfar ,neg_inf);
	    continue;
	  }

	///////////////////////////////////////////////////////////////////////////////////////////////////////////////
	///////////////////////////////////////////////////////////////////////////////////////////////////////////////
	///////////////////////////////////////////////////////////////////////////////////////////////////////////////

	const unsigned int leaf_mask = BVH4I_LEAF_MASK;

	const float16 time     = ray16.time;
	const float16 one_time = (float16::one() - time);

        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(curNode.isLeaf(leaf_mask))) break;
          
          STAT3(normal.trav_nodes,1,popcnt(ray_tfar > curDist),16);
          const Node* __restrict__ const node = curNode.node(nodes);
          
          const BVH4mb::Node* __restrict__ const nodeMB = (BVH4mb::Node*)node;

          /* pop of next node */
          sptr_node--;
          sptr_dist--;
          curNode = *sptr_node; 
          curDist = *sptr_dist;
          
	  prefetch<PFHINT_L1>((char*)node + 0*64); 
	  prefetch<PFHINT_L1>((char*)node + 1*64); 
	  prefetch<PFHINT_L1>((char*)node + 2*64); 
	  prefetch<PFHINT_L1>((char*)node + 3*64); 

#pragma unroll(4)
          for (unsigned int i=0; i<4; i++)
          {
	    const NodeRef child = node->lower[i].child;

	    const float16 lower_x =  one_time * nodeMB->lower[i].x + time * nodeMB->lower_t1[i].x;
	    const float16 lower_y =  one_time * nodeMB->lower[i].y + time * nodeMB->lower_t1[i].y;
	    const float16 lower_z =  one_time * nodeMB->lower[i].z + time * nodeMB->lower_t1[i].z;
	    const float16 upper_x =  one_time * nodeMB->upper[i].x + time * nodeMB->upper_t1[i].x;
	    const float16 upper_y =  one_time * nodeMB->upper[i].y + time * nodeMB->upper_t1[i].y;
	    const float16 upper_z =  one_time * nodeMB->upper[i].z + time * nodeMB->upper_t1[i].z;

	    if (unlikely(i >=2 && child == BVH4i::invalidNode)) break;

            const float16 lclipMinX = msub(lower_x,rdir16.x,org_rdir16.x);
            const float16 lclipMinY = msub(lower_y,rdir16.y,org_rdir16.y);
            const float16 lclipMinZ = msub(lower_z,rdir16.z,org_rdir16.z);
            const float16 lclipMaxX = msub(upper_x,rdir16.x,org_rdir16.x);
            const float16 lclipMaxY = msub(upper_y,rdir16.y,org_rdir16.y);
            const float16 lclipMaxZ = msub(upper_z,rdir16.z,org_rdir16.z);
	    
            const float16 lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const float16 lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const bool16 lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);   
	    const float16 childDist = select(lhit,lnearP,inf);
            const bool16 m_child_dist = childDist < curDist;
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              sptr_node++;
              sptr_dist++;
              
              /* push cur node onto stack and continue with hit child */
              if (any(m_child_dist))
              {
                *(sptr_node-1) = curNode;
                *(sptr_dist-1) = curDist; 
                curDist = childDist;
                curNode = child;
              }              
              /* push hit child onto stack*/
              else 
		{
		  *(sptr_node-1) = child;
		  *(sptr_dist-1) = childDist; 
		}
              assert(sptr_node - stack_node < BVH4i::maxDepth);
            }	      
          }
#if SWITCH_ON_DOWN_TRAVERSAL == 1
	  const bool16 curUtil = ray_tfar > curDist;
	  if (unlikely(countbits(curUtil) <= BVH4i::hybridSIMDUtilSwitchThreshold))
	    {
	      *sptr_node++ = curNode;
	      *sptr_dist++ = curDist; 
	      goto pop;
	    }
#endif

        }
        
        /* return if stack is empty */
        if (unlikely(curNode == BVH4i::invalidNode)) break;
        

        /* intersect leaf */
        const bool16 m_valid_leaf = ray_tfar > curDist;
        STAT3(normal.trav_leaves,1,popcnt(m_valid_leaf),16);

	LeafIntersector::intersect16(curNode,
				     m_valid_leaf,
				     ray16.dir,
				     ray16.org,
				     ray16,
				     accel,
				     (Scene*)bvh->geometry);


        ray_tfar = select(m_valid_leaf,ray16.tfar,ray_tfar);
      }
Esempio n. 2
0
void BVH4iIntersector1::occluded(BVH4i* bvh, Ray& ray)
{
    /* near and node stack */
    __aligned(64) NodeRef stack_node[3*BVH4i::maxDepth+1];

    /* setup */
    const mic3f rdir16      = rcp_safe(mic3f(ray.dir.x,ray.dir.y,ray.dir.z));
    const mic_f inf         = mic_f(pos_inf);
    const mic_f zero        = mic_f::zero();

    const Node      * __restrict__ nodes = (Node     *)bvh->nodePtr();
    const Triangle1 * __restrict__ accel = (Triangle1*)bvh->triPtr();

    stack_node[0] = BVH4i::invalidNode;
    stack_node[1] = bvh->root;
    size_t sindex = 2;

    const mic_f org_xyz      = loadAOS4to16f(ray.org.x,ray.org.y,ray.org.z);
    const mic_f dir_xyz      = loadAOS4to16f(ray.dir.x,ray.dir.y,ray.dir.z);
    const mic_f rdir_xyz     = loadAOS4to16f(rdir16.x[0],rdir16.y[0],rdir16.z[0]);
    const mic_f org_rdir_xyz = org_xyz * rdir_xyz;
    const mic_f min_dist_xyz = broadcast1to16f(&ray.tnear);
    const mic_f max_dist_xyz = broadcast1to16f(&ray.tfar);

    const unsigned int leaf_mask = BVH4I_LEAF_MASK;

    while (1)
    {
        NodeRef curNode = stack_node[sindex-1];
        sindex--;

        while (1)
        {
            /* test if this is a leaf node */
            if (unlikely(curNode.isLeaf(leaf_mask))) break;

            const Node* __restrict__ const node = curNode.node(nodes);
            const float* __restrict const plower = (float*)node->lower;
            const float* __restrict const pupper = (float*)node->upper;

            prefetch<PFHINT_L1>((char*)node + 0);
            prefetch<PFHINT_L1>((char*)node + 64);

            /* intersect single ray with 4 bounding boxes */
            const mic_f tLowerXYZ = load16f(plower) * rdir_xyz - org_rdir_xyz;
            const mic_f tUpperXYZ = load16f(pupper) * rdir_xyz - org_rdir_xyz;
            const mic_f tLower = mask_min(0x7777,min_dist_xyz,tLowerXYZ,tUpperXYZ);
            const mic_f tUpper = mask_max(0x7777,max_dist_xyz,tLowerXYZ,tUpperXYZ);

            sindex--;
            curNode = stack_node[sindex];

            const Node* __restrict__ const next = curNode.node(nodes);
            prefetch<PFHINT_L2>((char*)next + 0);
            prefetch<PFHINT_L2>((char*)next + 64);

            const mic_f tNear = vreduce_max4(tLower);
            const mic_f tFar  = vreduce_min4(tUpper);
            const mic_m hitm = le(0x8888,tNear,tFar);
            const mic_f tNear_pos = select(hitm,tNear,inf);


            /* if no child is hit, continue with early popped child */
            if (unlikely(none(hitm))) continue;
            sindex++;

            const unsigned long hiti = toInt(hitm);
            const unsigned long pos_first = bitscan64(hiti);
            const unsigned long num_hitm = countbits(hiti);

            /* if a single child is hit, continue with that child */
            curNode = ((unsigned int *)plower)[pos_first];
            if (likely(num_hitm == 1)) continue;

            /* if two children are hit, push in correct order */
            const unsigned long pos_second = bitscan64(pos_first,hiti);
            if (likely(num_hitm == 2))
            {
                const unsigned int dist_first  = ((unsigned int*)&tNear)[pos_first];
                const unsigned int dist_second = ((unsigned int*)&tNear)[pos_second];
                const unsigned int node_first  = curNode;
                const unsigned int node_second = ((unsigned int*)plower)[pos_second];

                if (dist_first <= dist_second)
                {
                    stack_node[sindex] = node_second;
                    sindex++;
                    assert(sindex < 3*BVH4i::maxDepth+1);
                    continue;
                }
                else
                {
                    stack_node[sindex] = curNode;
                    curNode = node_second;
                    sindex++;
                    assert(sindex < 3*BVH4i::maxDepth+1);
                    continue;
                }
            }

            /* continue with closest child and push all others */
            const mic_f min_dist = set_min_lanes(tNear_pos);
            const unsigned old_sindex = sindex;
            sindex += countbits(hiti) - 1;
            assert(sindex < 3*BVH4i::maxDepth+1);

            const mic_m closest_child = eq(hitm,min_dist,tNear);
            const unsigned long closest_child_pos = bitscan64(closest_child);
            const mic_m m_pos = andn(hitm,andn(closest_child,(mic_m)((unsigned int)closest_child - 1)));
            const mic_i plower_node = load16i((int*)plower);
            curNode = ((unsigned int*)plower)[closest_child_pos];
            compactustore16i(m_pos,&stack_node[old_sindex],plower_node);
        }



        /* return if stack is empty */
        if (unlikely(curNode == BVH4i::invalidNode)) break;


        /* intersect one ray against four triangles */

        //////////////////////////////////////////////////////////////////////////////////////////////////

        const Triangle1* tptr  = (Triangle1*) curNode.leaf(accel);
        prefetch<PFHINT_L1>(tptr + 3);
        prefetch<PFHINT_L1>(tptr + 2);
        prefetch<PFHINT_L1>(tptr + 1);
        prefetch<PFHINT_L1>(tptr + 0);

        const mic_i and_mask = broadcast4to16i(zlc4);

        const mic_f v0 = gather_4f_zlc(and_mask,
                                       (float*)&tptr[0].v0,
                                       (float*)&tptr[1].v0,
                                       (float*)&tptr[2].v0,
                                       (float*)&tptr[3].v0);

        const mic_f v1 = gather_4f_zlc(and_mask,
                                       (float*)&tptr[0].v1,
                                       (float*)&tptr[1].v1,
                                       (float*)&tptr[2].v1,
                                       (float*)&tptr[3].v1);

        const mic_f v2 = gather_4f_zlc(and_mask,
                                       (float*)&tptr[0].v2,
                                       (float*)&tptr[1].v2,
                                       (float*)&tptr[2].v2,
                                       (float*)&tptr[3].v2);

        const mic_f e1 = v1 - v0;
        const mic_f e2 = v0 - v2;
        const mic_f normal = lcross_zxy(e1,e2);
        const mic_f org = v0 - org_xyz;
        const mic_f odzxy = msubr231(org * swizzle(dir_xyz,_MM_SWIZ_REG_DACB), dir_xyz, swizzle(org,_MM_SWIZ_REG_DACB));
        const mic_f den = ldot3_zxy(dir_xyz,normal);
        const mic_f rcp_den = rcp(den);
        const mic_f uu = ldot3_zxy(e2,odzxy);
        const mic_f vv = ldot3_zxy(e1,odzxy);
        const mic_f u = uu * rcp_den;
        const mic_f v = vv * rcp_den;

#if defined(__BACKFACE_CULLING__)
        const mic_m m_init = (mic_m)0x1111 & (den > zero);
#else
        const mic_m m_init = 0x1111;
#endif
        const mic_m valid_u = ge(m_init,u,zero);
        const mic_m valid_v = ge(valid_u,v,zero);
        const mic_m m_aperture = le(valid_v,u+v,mic_f::one());

        const mic_f nom = ldot3_zxy(org,normal);
        const mic_f t = rcp_den*nom;

        if (unlikely(none(m_aperture))) continue;

        mic_m m_final  = lt(lt(m_aperture,min_dist_xyz,t),t,max_dist_xyz);

#if defined(__USE_RAY_MASK__)
        const mic_i rayMask(ray.mask);
        const mic_i triMask = swDDDD(gather16i_4i_align(&tptr[0].v2,&tptr[1].v2,&tptr[2].v2,&tptr[3].v2));
        const mic_m m_ray_mask = (rayMask & triMask) != mic_i::zero();
        m_final &= m_ray_mask;
#endif

#if defined(__INTERSECTION_FILTER__)

        /* did the ray hit one of the four triangles? */
        while (any(m_final))
        {
            const mic_f temp_t  = select(m_final,t,max_dist_xyz);
            const mic_f min_dist = vreduce_min(temp_t);
            const mic_m m_dist = eq(min_dist,temp_t);
            const size_t vecIndex = bitscan(toInt(m_dist));
            const size_t triIndex = vecIndex >> 2;
            const Triangle1  *__restrict__ tri_ptr = tptr + triIndex;
            const mic_m m_tri = m_dist^(m_dist & (mic_m)((unsigned int)m_dist - 1));
            const mic_f gnormalx = mic_f(tri_ptr->Ng.x);
            const mic_f gnormaly = mic_f(tri_ptr->Ng.y);
            const mic_f gnormalz = mic_f(tri_ptr->Ng.z);
            const int geomID = tri_ptr->geomID();
            const int primID = tri_ptr->primID();
            Geometry* geom = ((Scene*)bvh->geometry)->get(geomID);

            if (likely(!geom->hasOcclusionFilter1())) break;

            if (runOcclusionFilter1(geom,ray,u,v,min_dist,gnormalx,gnormaly,gnormalz,m_tri,geomID,primID))
                break;

            m_final ^= m_tri; /* clear bit */
        }
#endif

        if (unlikely(any(m_final)))
        {
            ray.geomID = 0;
            return;
        }
        //////////////////////////////////////////////////////////////////////////////////////////////////

    }
}
    void BVH4iIntersector16Hybrid<LeafIntersector,ENABLE_COMPRESSED_BVH4I_NODES>::intersect(mic_i* valid_i, BVH4i* bvh, Ray16& ray16)
    {
      /* near and node stack */
      __aligned(64) mic_f   stack_dist[3*BVH4i::maxDepth+1];
      __aligned(64) NodeRef stack_node[3*BVH4i::maxDepth+1];
      __aligned(64) NodeRef stack_node_single[3*BVH4i::maxDepth+1]; 

      /* load ray */
      const mic_m valid0     = *(mic_i*)valid_i != mic_i(0);
      const mic3f rdir16     = rcp_safe(ray16.dir);
      const mic3f org_rdir16 = ray16.org * rdir16;
      mic_f ray_tnear        = select(valid0,ray16.tnear,pos_inf);
      mic_f ray_tfar         = select(valid0,ray16.tfar ,neg_inf);
      const mic_f inf        = mic_f(pos_inf);
      
      /* allocate stack and push root node */
      stack_node[0] = BVH4i::invalidNode;
      stack_dist[0] = inf;
      stack_node[1] = bvh->root;
      stack_dist[1] = ray_tnear; 
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      mic_f*   __restrict__ sptr_dist = stack_dist + 2;
      
      const Node      * __restrict__ nodes = (Node     *)bvh->nodePtr();
      const Triangle1 * __restrict__ accel = (Triangle1*)bvh->triPtr();

      while (1) pop:
      {
        /* pop next node from stack */
        NodeRef curNode = *(sptr_node-1);
        mic_f curDist   = *(sptr_dist-1);
        sptr_node--;
        sptr_dist--;
	const mic_m m_stackDist = ray_tfar > curDist;

	/* stack emppty ? */
        if (unlikely(curNode == BVH4i::invalidNode))  break;
        
        /* cull node if behind closest hit point */
        if (unlikely(none(m_stackDist))) continue;
        
	///////////////////////////////////////////////////////////////////////////////////////////////////////////////
	///////////////////////////////////////////////////////////////////////////////////////////////////////////////
	///////////////////////////////////////////////////////////////////////////////////////////////////////////////

	/* switch to single ray mode */
        if (unlikely(countbits(m_stackDist) <= BVH4i::hybridSIMDUtilSwitchThreshold)) 
	  {
	    float   *__restrict__ stack_dist_single = (float*)sptr_dist;
	    store16f(stack_dist_single,inf);

	    /* traverse single ray */	  	  
	    long rayIndex = -1;
	    while((rayIndex = bitscan64(rayIndex,m_stackDist)) != BITSCAN_NO_BIT_SET_64) 
	      {	    
		stack_node_single[0] = BVH4i::invalidNode;
		stack_node_single[1] = curNode;
		size_t sindex = 2;

		const mic_f org_xyz      = loadAOS4to16f(rayIndex,ray16.org.x,ray16.org.y,ray16.org.z);
		const mic_f dir_xyz      = loadAOS4to16f(rayIndex,ray16.dir.x,ray16.dir.y,ray16.dir.z);
		const mic_f rdir_xyz     = loadAOS4to16f(rayIndex,rdir16.x,rdir16.y,rdir16.z);
		const mic_f org_rdir_xyz = org_xyz * rdir_xyz;
		const mic_f min_dist_xyz = broadcast1to16f(&ray16.tnear[rayIndex]);
		mic_f       max_dist_xyz = broadcast1to16f(&ray16.tfar[rayIndex]);

		const unsigned int leaf_mask = BVH4I_LEAF_MASK;

		while (1) 
		  {
		    NodeRef curNode = stack_node_single[sindex-1];
		    sindex--;
            
		    traverse_single_intersect<ENABLE_COMPRESSED_BVH4I_NODES>(curNode,
									     sindex,
									     rdir_xyz,
									     org_rdir_xyz,
									     min_dist_xyz,
									     max_dist_xyz,
									     stack_node_single,
									     stack_dist_single,
									     nodes,
									     leaf_mask);
	    

		    /* return if stack is empty */
		    if (unlikely(curNode == BVH4i::invalidNode)) break;


		    /* intersect one ray against four triangles */

		    const bool hit = LeafIntersector::intersect(curNode,
								rayIndex,
								dir_xyz,
								org_xyz,
								min_dist_xyz,
								max_dist_xyz,
								ray16,
								accel,
								(Scene*)bvh->geometry);

		    if (hit)
		      compactStack(stack_node_single,stack_dist_single,sindex,max_dist_xyz);
		  }
	      }
	    ray_tfar = select(valid0,ray16.tfar ,neg_inf);
	    continue;
	  }

	///////////////////////////////////////////////////////////////////////////////////////////////////////////////
	///////////////////////////////////////////////////////////////////////////////////////////////////////////////
	///////////////////////////////////////////////////////////////////////////////////////////////////////////////

	const unsigned int leaf_mask = BVH4I_LEAF_MASK;

	const mic3f org = ray16.org;
	const mic3f dir = ray16.dir;

        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(curNode.isLeaf(leaf_mask))) break;
          
          STAT3(normal.trav_nodes,1,popcnt(ray_tfar > curDist),16);
          const Node* __restrict__ const node = curNode.node(nodes);

	  prefetch<PFHINT_L1>((mic_f*)node + 0); 
	  prefetch<PFHINT_L1>((mic_f*)node + 1); 
          
          /* pop of next node */
          sptr_node--;
          sptr_dist--;
          curNode = *sptr_node; 
          curDist = *sptr_dist;
          

#pragma unroll(4)
          for (unsigned int i=0; i<4; i++)
          {
	    BVH4i::NodeRef child;
	    mic_f lclipMinX,lclipMinY,lclipMinZ;
	    mic_f lclipMaxX,lclipMaxY,lclipMaxZ;

	    if (!ENABLE_COMPRESSED_BVH4I_NODES)
	      {
		child = node->lower[i].child;

		lclipMinX = msub(node->lower[i].x,rdir16.x,org_rdir16.x);
		lclipMinY = msub(node->lower[i].y,rdir16.y,org_rdir16.y);
		lclipMinZ = msub(node->lower[i].z,rdir16.z,org_rdir16.z);
		lclipMaxX = msub(node->upper[i].x,rdir16.x,org_rdir16.x);
		lclipMaxY = msub(node->upper[i].y,rdir16.y,org_rdir16.y);
		lclipMaxZ = msub(node->upper[i].z,rdir16.z,org_rdir16.z);
	      }
	    else
	      {
		BVH4i::QuantizedNode* __restrict__ const compressed_node = (BVH4i::QuantizedNode*)node;
		child = compressed_node->child(i);

		const mic_f startXYZ = compressed_node->decompress_startXYZ();
		const mic_f diffXYZ  = compressed_node->decompress_diffXYZ();
		const mic_f clower   = compressed_node->decompress_lowerXYZ(startXYZ,diffXYZ);
		const mic_f cupper   = compressed_node->decompress_upperXYZ(startXYZ,diffXYZ);

		lclipMinX = msub(mic_f(clower[4*i+0]),rdir16.x,org_rdir16.x);
		lclipMinY = msub(mic_f(clower[4*i+1]),rdir16.y,org_rdir16.y);
		lclipMinZ = msub(mic_f(clower[4*i+2]),rdir16.z,org_rdir16.z);
		lclipMaxX = msub(mic_f(cupper[4*i+0]),rdir16.x,org_rdir16.x);
		lclipMaxY = msub(mic_f(cupper[4*i+1]),rdir16.y,org_rdir16.y);
		lclipMaxZ = msub(mic_f(cupper[4*i+2]),rdir16.z,org_rdir16.z);		
	      }
	    
	    if (unlikely(i >=2 && child == BVH4i::invalidNode)) break;

            const mic_f lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const mic_f lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const mic_m lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);   
	    const mic_f childDist = select(lhit,lnearP,inf);
            const mic_m m_child_dist = childDist < curDist;


            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              sptr_node++;
              sptr_dist++;

              /* push cur node onto stack and continue with hit child */
              if (any(m_child_dist))
              {
                *(sptr_node-1) = curNode;
                *(sptr_dist-1) = curDist; 
                curDist = childDist;
                curNode = child;
              }              
              /* push hit child onto stack*/
              else 
		{
		  *(sptr_node-1) = child;
		  *(sptr_dist-1) = childDist; 

		  const char* __restrict__ const pnode = (char*)child.node(nodes);             
		  prefetch<PFHINT_L2>(pnode + 0);
		  prefetch<PFHINT_L2>(pnode + 64);
		}
              assert(sptr_node - stack_node < BVH4i::maxDepth);
            }	      
          }
#if SWITCH_ON_DOWN_TRAVERSAL == 1
	  const mic_m curUtil = ray_tfar > curDist;
	  if (unlikely(countbits(curUtil) <= BVH4i::hybridSIMDUtilSwitchThreshold))
	    {
	      *sptr_node++ = curNode;
	      *sptr_dist++ = curDist; 
	      goto pop;
	    }
#endif
        }
        
        /* return if stack is empty */
        if (unlikely(curNode == BVH4i::invalidNode)) break;
        

        /* intersect leaf */
        const mic_m m_valid_leaf = ray_tfar > curDist;
        STAT3(normal.trav_leaves,1,popcnt(m_valid_leaf),16);

	LeafIntersector::intersect16(curNode,m_valid_leaf,dir,org,ray16,accel,(Scene*)bvh->geometry);

        ray_tfar = select(m_valid_leaf,ray16.tfar,ray_tfar);
      }
Esempio n. 4
0
  void BVH4HairBuilder::parallelBinningGlobal(const size_t threadID, const size_t numThreads)
  {
    BuildRecord &current = global_sharedData.rec;

    const unsigned int items = current.items();
    const unsigned int startID = current.begin + ((threadID+0)*items/numThreads);
    const unsigned int endID   = current.begin + ((threadID+1)*items/numThreads);

    const mic_f centroidMin = broadcast4to16f(&current.bounds.centroid2.lower);
    const mic_f centroidMax = broadcast4to16f(&current.bounds.centroid2.upper);

    const mic_f centroidBoundsMin_2 = centroidMin;
    const mic_f centroidDiagonal_2  = centroidMax-centroidMin;
    const mic_f scale = select(centroidDiagonal_2 != 0.0f,rcp(centroidDiagonal_2) * mic_f(16.0f * 0.99f),mic_f::zero());

    Bezier1i  *__restrict__ const tmp_prims = (Bezier1i*)accel;

    fastbin_copy<Bezier1i,false>(prims,tmp_prims,startID,endID,centroidBoundsMin_2,scale,global_bin16[threadID]);    

    LockStepTaskScheduler::syncThreadsWithReduction( threadID, numThreads, reduceBinsParallel, global_bin16 );
    
    if (threadID == 0)
      {
	const float voxelArea = area(current.bounds.geometry);

	global_sharedData.split.cost = items * voxelArea * INTERSECTION_COST;;
	
	const Bin16 &bin16 = global_bin16[0];

	for (size_t dim=0;dim<3;dim++)
	  {
	    if (unlikely(centroidDiagonal_2[dim] == 0.0f)) continue;

	    const mic_f rArea = prefix_area_rl(bin16.min_x[dim],bin16.min_y[dim],bin16.min_z[dim],
					       bin16.max_x[dim],bin16.max_y[dim],bin16.max_z[dim]);
	    const mic_f lArea = prefix_area_lr(bin16.min_x[dim],bin16.min_y[dim],bin16.min_z[dim],
					       bin16.max_x[dim],bin16.max_y[dim],bin16.max_z[dim]);
	    const mic_i lnum  = prefix_count(bin16.count[dim]);

	    const mic_i rnum    = mic_i(items) - lnum;
	    const mic_i lblocks = (lnum + mic_i(3)) >> 2;
	    const mic_i rblocks = (rnum + mic_i(3)) >> 2;
	    const mic_m m_lnum  = lnum == 0;
	    const mic_m m_rnum  = rnum == 0;
	    const mic_f cost    = select(m_lnum|m_rnum,mic_f::inf(),lArea * mic_f(lblocks) + rArea * mic_f(rblocks) + voxelArea );

	    if (lt(cost,mic_f(global_sharedData.split.cost)))
	      {

		const mic_f min_cost    = vreduce_min(cost); 
		const mic_m m_pos       = min_cost == cost;
		const unsigned long pos = bitscan64(m_pos);	    
		
		assert(pos < 15);
		if (pos < 15)
		  {
		    global_sharedData.split.cost    = cost[pos];
		    global_sharedData.split.pos     = pos+1;
		    global_sharedData.split.dim     = dim;	    
		    global_sharedData.split.numLeft = lnum[pos];
		  }
	      }
	  }
      }
  }
    void BVH4mbIntersector16Single::occluded(mic_i* valid_i, BVH4mb* bvh, Ray16& ray16)
    {
      /* near and node stack */
      __align(64) NodeRef stack_node[3*BVH4i::maxDepth+1];

      /* setup */
      const mic_m m_valid     = *(mic_i*)valid_i != mic_i(0);
      const mic3f rdir16      = rcp_safe(ray16.dir);
      unsigned int terminated = toInt(!m_valid);
      const mic_f inf         = mic_f(pos_inf);
      const mic_f zero        = mic_f::zero();

      const Node               * __restrict__ nodes = (Node     *)bvh->nodePtr();
      const BVH4mb::Triangle01 * __restrict__ accel = (BVH4mb::Triangle01 *)bvh->triPtr();

      stack_node[0] = BVH4i::invalidNode;

      long rayIndex = -1;
      while((rayIndex = bitscan64(rayIndex,toInt(m_valid))) != BITSCAN_NO_BIT_SET_64)	    
        {
	  stack_node[1] = bvh->root;
	  size_t sindex = 2;

	  const mic_f org_xyz      = loadAOS4to16f(rayIndex,ray16.org.x,ray16.org.y,ray16.org.z);
	  const mic_f dir_xyz      = loadAOS4to16f(rayIndex,ray16.dir.x,ray16.dir.y,ray16.dir.z);
	  const mic_f rdir_xyz     = loadAOS4to16f(rayIndex,rdir16.x,rdir16.y,rdir16.z);
	  const mic_f org_rdir_xyz = org_xyz * rdir_xyz;
	  const mic_f min_dist_xyz = broadcast1to16f(&ray16.tnear[rayIndex]);
	  const mic_f max_dist_xyz = broadcast1to16f(&ray16.tfar[rayIndex]);
	  const mic_f time         = broadcast1to16f(&ray16.time[rayIndex]);

	  const unsigned int leaf_mask = BVH4I_LEAF_MASK;

	  while (1)
	    {
	      NodeRef curNode = stack_node[sindex-1];
	      sindex--;

	      const mic_f one_time = (mic_f::one() - time);
            
	      while (1) 
		{
		  /* test if this is a leaf node */
		  if (unlikely(curNode.isLeaf(leaf_mask))) break;
        
		  const Node* __restrict__ const node = curNode.node(nodes);
		  const float* __restrict const plower = (float*)node->lower;
		  const float* __restrict const pupper = (float*)node->upper;

		  prefetch<PFHINT_L1>((char*)node + 0*64);
		  prefetch<PFHINT_L1>((char*)node + 1*64);
		  prefetch<PFHINT_L1>((char*)node + 2*64);
		  prefetch<PFHINT_L1>((char*)node + 3*64);

		  const BVH4mb::Node* __restrict__ const nodeMB = (BVH4mb::Node*)node;
		  const mic_f lower = one_time  * load16f((float*)nodeMB->lower) + time * load16f((float*)nodeMB->lower_t1);
		  const mic_f upper = one_time  * load16f((float*)nodeMB->upper) + time * load16f((float*)nodeMB->upper_t1);
        
		  /* intersect single ray with 4 bounding boxes */
		  const mic_f tLowerXYZ = lower * rdir_xyz - org_rdir_xyz;
		  const mic_f tUpperXYZ = upper * rdir_xyz - org_rdir_xyz;

		  const mic_f tLower = mask_min(0x7777,min_dist_xyz,tLowerXYZ,tUpperXYZ);
		  const mic_f tUpper = mask_max(0x7777,max_dist_xyz,tLowerXYZ,tUpperXYZ);

		  const Node* __restrict__ const next = curNode.node(nodes);
		  prefetch<PFHINT_L2>((char*)next + 0);
		  prefetch<PFHINT_L2>((char*)next + 64);

		  sindex--;
		  const mic_f tNear = vreduce_max4(tLower);
		  const mic_f tFar  = vreduce_min4(tUpper);  
		  const mic_m hitm = le(0x8888,tNear,tFar);
		  const mic_f tNear_pos = select(hitm,tNear,inf);

		  curNode = stack_node[sindex]; // early pop of next node

		  /* if no child is hit, continue with early popped child */
		  if (unlikely(none(hitm))) continue;
		  sindex++;
        
		  const unsigned long hiti = toInt(hitm);
		  const unsigned long pos_first = bitscan64(hiti);
		  const unsigned long num_hitm = countbits(hiti); 
        
		  /* if a single child is hit, continue with that child */
		  curNode = ((unsigned int *)plower)[pos_first];
		  if (likely(num_hitm == 1)) continue;
        
		  /* if two children are hit, push in correct order */
		  const unsigned long pos_second = bitscan64(pos_first,hiti);
		  if (likely(num_hitm == 2))
		    {
		      const unsigned int dist_first  = ((unsigned int*)&tNear)[pos_first];
		      const unsigned int dist_second = ((unsigned int*)&tNear)[pos_second];
		      const unsigned int node_first  = curNode;
		      const unsigned int node_second = ((unsigned int*)plower)[pos_second];
          
		      if (dist_first <= dist_second)
			{
			  stack_node[sindex] = node_second;
			  sindex++;
			  assert(sindex < 3*BVH4i::maxDepth+1);
			  continue;
			}
		      else
			{
			  stack_node[sindex] = curNode;
			  curNode = node_second;
			  sindex++;
			  assert(sindex < 3*BVH4i::maxDepth+1);
			  continue;
			}
		    }
        
		  /* continue with closest child and push all others */
		  const mic_f min_dist = set_min_lanes(tNear_pos);
		  const unsigned int old_sindex = sindex;
		  sindex += countbits(hiti) - 1;
		  assert(sindex < 3*BVH4i::maxDepth+1);
        
		  const mic_m closest_child = eq(hitm,min_dist,tNear);
		  const unsigned long closest_child_pos = bitscan64(closest_child);
		  const mic_m m_pos = andn(hitm,andn(closest_child,(mic_m)((unsigned int)closest_child - 1)));
		  const mic_i plower_node = load16i((int*)plower);
		  curNode = ((unsigned int*)plower)[closest_child_pos];
		  compactustore16i(m_pos,&stack_node[old_sindex],plower_node);
		}
	  
	    

	      /* return if stack is empty */
	      if (unlikely(curNode == BVH4i::invalidNode)) break;


	      /* intersect one ray against four triangles */

	      //////////////////////////////////////////////////////////////////////////////////////////////////

	      const BVH4mb::Triangle01* tptr  = (BVH4mb::Triangle01*) curNode.leaf(accel);

	      prefetch<PFHINT_L1>((mic_f*)tptr +  0); 
	      prefetch<PFHINT_L1>((mic_f*)tptr +  1); 
	      prefetch<PFHINT_L1>((mic_f*)tptr +  2); 
	      prefetch<PFHINT_L1>((mic_f*)tptr +  3); 

	      const mic_i and_mask = broadcast4to16i(zlc4);
	      
	      const mic_f v0_t0 = gather_4f_zlc(and_mask,
						(float*)&tptr[0].t0.v0,
						(float*)&tptr[1].t0.v0,
						(float*)&tptr[2].t0.v0,
						(float*)&tptr[3].t0.v0);
	      
	      const mic_f v1_t0 = gather_4f_zlc(and_mask,
						(float*)&tptr[0].t0.v1,
						(float*)&tptr[1].t0.v1,
						(float*)&tptr[2].t0.v1,
						(float*)&tptr[3].t0.v1);
	      
	      const mic_f v2_t0 = gather_4f_zlc(and_mask,
						(float*)&tptr[0].t0.v2,
						(float*)&tptr[1].t0.v2,
						(float*)&tptr[2].t0.v2,
						(float*)&tptr[3].t0.v2);


	      prefetch<PFHINT_L2>((mic_f*)tptr +  4); 
	      prefetch<PFHINT_L2>((mic_f*)tptr +  5); 
	      prefetch<PFHINT_L2>((mic_f*)tptr +  6); 
	      prefetch<PFHINT_L2>((mic_f*)tptr +  7); 

	      const mic_f v0_t1 = gather_4f_zlc(and_mask,
						(float*)&tptr[0].t1.v0,
						(float*)&tptr[1].t1.v0,
						(float*)&tptr[2].t1.v0,
						(float*)&tptr[3].t1.v0);
	      
	      const mic_f v1_t1 = gather_4f_zlc(and_mask,
						(float*)&tptr[0].t1.v1,
						(float*)&tptr[1].t1.v1,
						(float*)&tptr[2].t1.v1,
						(float*)&tptr[3].t1.v1);
	      
	      const mic_f v2_t1 = gather_4f_zlc(and_mask,
						(float*)&tptr[0].t1.v2,
						(float*)&tptr[1].t1.v2,
						(float*)&tptr[2].t1.v2,
						(float*)&tptr[3].t1.v2);

	      const mic_f v0 = v0_t0 * one_time + time * v0_t1;
	      const mic_f v1 = v1_t0 * one_time + time * v1_t1;
	      const mic_f v2 = v2_t0 * one_time + time * v2_t1;

	      const mic_f e1 = v1 - v0;
	      const mic_f e2 = v0 - v2;	     
	      const mic_f normal = lcross_zxy(e1,e2);
	      const mic_f org = v0 - org_xyz;
	      const mic_f odzxy = msubr231(org * swizzle(dir_xyz,_MM_SWIZ_REG_DACB), dir_xyz, swizzle(org,_MM_SWIZ_REG_DACB));
	      const mic_f den = ldot3_zxy(dir_xyz,normal);	      
	      const mic_f rcp_den = rcp(den);
	      const mic_f uu = ldot3_zxy(e2,odzxy); 
	      const mic_f vv = ldot3_zxy(e1,odzxy); 
	      const mic_f u = uu * rcp_den;
	      const mic_f v = vv * rcp_den;

#if defined(__BACKFACE_CULLING__)
	      const mic_m m_init = (mic_m)0x1111 & (den > zero);
#else
	      const mic_m m_init = 0x1111;
#endif

	      const mic_m valid_u = ge((mic_m)m_init,u,zero);
	      const mic_m valid_v = ge(valid_u,v,zero);
	      const mic_m m_aperture = le(valid_v,u+v,mic_f::one()); 

	      const mic_f nom = ldot3_zxy(org,normal);
	      const mic_f t = rcp_den*nom;
	      if (unlikely(none(m_aperture))) continue;

	      mic_m m_final  = lt(lt(m_aperture,min_dist_xyz,t),t,max_dist_xyz);

#if defined(__USE_RAY_MASK__)
	      const mic_i rayMask(ray16.mask[rayIndex]);
	      const mic_i triMask = swDDDD(gather16i_4i_align(&tptr[0].t0.v2,&tptr[1].t0.v2,&tptr[2].t0.v2,&tptr[3].t0.v2));
	      const mic_m m_ray_mask = (rayMask & triMask) != mic_i::zero();
	      m_final &= m_ray_mask;	      
#endif

	      if (unlikely(any(m_final)))
		{
		  terminated |= mic_m::shift1[rayIndex];
		  break;
		}
	      //////////////////////////////////////////////////////////////////////////////////////////////////

	    }


	  if (unlikely(all(toMask(terminated)))) break;
	}


      store16i(m_valid & toMask(terminated),&ray16.geomID,0);
    }