extern "C" magma_int_t magma_dgeqp3( magma_int_t m, magma_int_t n, double *A, magma_int_t lda, magma_int_t *jpvt, double *tau, double *work, magma_int_t lwork, #if defined(PRECISION_z) || defined(PRECISION_c) double *rwork, #endif magma_int_t *info ) { /* -- MAGMA (version 1.4.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver August 2013 Purpose ======= DGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) DOUBLE_PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(M,N) elementary reflectors. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). JPVT (input/output) INTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A. TAU (output) DOUBLE_PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors. WORK (workspace/output) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. For [sd]geqp3, LWORK >= (N+1)*NB + 2*N; for [cz]geqp3, LWORK >= (N+1)*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. For [cz]geqp3 only: RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). ===================================================================== */ #define A(i, j) (A + (i) + (j)*(lda )) #define dA(i, j) (dwork + (i) + (j)*(ldda)) double *dwork, *df; magma_int_t ione = 1; magma_int_t n_j, ldda, ldwork; magma_int_t j, jb, na, nb, sm, sn, fjb, nfxd, minmn; magma_int_t topbmn, sminmn, lwkopt, lquery; *info = 0; lquery = (lwork == -1); if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,m)) { *info = -4; } nb = magma_get_dgeqp3_nb(min(m, n)); if (*info == 0) { minmn = min(m,n); if (minmn == 0) { lwkopt = 1; } else { lwkopt = (n + 1)*nb; #if defined(PRECISION_d) || defined(PRECISION_s) lwkopt += 2*n; #endif } work[0] = MAGMA_D_MAKE( lwkopt, 0. ); if (lwork < lwkopt && ! lquery) { *info = -8; } } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } if (minmn == 0) return *info; #if defined(PRECISION_d) || defined(PRECISION_s) double *rwork = work + (n + 1)*nb; #endif ldda = ((m+31)/32)*32; ldwork = n*ldda + (n+1)*nb; if (MAGMA_SUCCESS != magma_dmalloc( &dwork, ldwork )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } df = dwork + n*ldda; // dwork used for dA magma_queue_t stream; magma_queue_create( &stream ); /* Move initial columns up front. * Note jpvt uses 1-based indices for historical compatibility. */ nfxd = 0; for (j = 0; j < n; ++j) { if (jpvt[j] != 0) { if (j != nfxd) { blasf77_dswap(&m, A(0, j), &ione, A(0, nfxd), &ione); jpvt[j] = jpvt[nfxd]; jpvt[nfxd] = j + 1; } else { jpvt[j] = j + 1; } ++nfxd; } else { jpvt[j] = j + 1; } } /* Factorize fixed columns ======================= Compute the QR factorization of fixed columns and update remaining columns. */ if (nfxd > 0) { na = min(m,nfxd); lapackf77_dgeqrf(&m, &na, A, &lda, tau, work, &lwork, info); if (na < n) { n_j = n - na; lapackf77_dormqr( MagmaLeftStr, MagmaTransStr, &m, &n_j, &na, A, &lda, tau, A(0, na), &lda, work, &lwork, info ); } } /* Factorize free columns */ if (nfxd < minmn) { sm = m - nfxd; sn = n - nfxd; sminmn = minmn - nfxd; if (nb < sminmn) { j = nfxd; // Set the original matrix to the GPU magma_dsetmatrix_async( m, sn, A (0,j), lda, dA(0,j), ldda, stream ); } /* Initialize partial column norms. */ for (j = nfxd; j < n; ++j) { rwork[j] = cblas_dnrm2(sm, A(nfxd, j), ione); rwork[n + j] = rwork[j]; } j = nfxd; if (nb < sminmn) { /* Use blocked code initially. */ magma_queue_sync( stream ); /* Compute factorization: while loop. */ topbmn = minmn - nb; while(j < topbmn) { jb = min(nb, topbmn - j); /* Factorize JB columns among columns J:N. */ n_j = n - j; if (j>nfxd) { // Get panel to the CPU magma_dgetmatrix( m-j, jb, dA(j,j), ldda, A (j,j), lda ); // Get the rows magma_dgetmatrix( jb, n_j - jb, dA(j,j + jb), ldda, A (j,j + jb), lda ); } magma_dlaqps( m, n_j, j, jb, &fjb, A (0, j), lda, dA(0, j), ldda, &jpvt[j], &tau[j], &rwork[j], &rwork[n + j], work, &work[jb], n_j, &df[jb], n_j ); j += fjb; /* fjb is actual number of columns factored */ } } /* Use unblocked code to factor the last or only block. */ if (j < minmn) { n_j = n - j; if (j > nfxd) { magma_dgetmatrix( m-j, n_j, dA(j,j), ldda, A (j,j), lda ); } lapackf77_dlaqp2(&m, &n_j, &j, A(0, j), &lda, &jpvt[j], &tau[j], &rwork[j], &rwork[n+j], work ); } } work[0] = MAGMA_D_MAKE( lwkopt, 0. ); magma_free( dwork ); magma_queue_destroy( stream ); return *info; } /* dgeqp3 */
/** Purpose ------- DGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS. Arguments --------- @param[in] m INTEGER The number of rows of the matrix A. M >= 0. @param[in] n INTEGER The number of columns of the matrix A. N >= 0. @param[in,out] A DOUBLE_PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(M,N) elementary reflectors. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,M). @param[in,out] jpvt INTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A. @param[out] tau DOUBLE_PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors. @param[out] work (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. For [sd]geqp3, LWORK >= (N+1)*NB + 2*N; for [cz]geqp3, LWORK >= (N+1)*NB, where NB is the optimal blocksize. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param rwork (workspace, for [cz]geqp3 only) DOUBLE PRECISION array, dimension (2*N) @param[out] info INTEGER - = 0: successful exit. - < 0: if INFO = -i, the i-th argument had an illegal value. Further Details --------------- The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). @ingroup magma_dgeqp3_comp ********************************************************************/ extern "C" magma_int_t magma_dgeqp3( magma_int_t m, magma_int_t n, double *A, magma_int_t lda, magma_int_t *jpvt, double *tau, double *work, magma_int_t lwork, #ifdef COMPLEX double *rwork, #endif magma_int_t *info ) { #define A(i, j) (A + (i) + (j)*(lda )) #define dA(i, j) (dwork + (i) + (j)*(ldda)) double *dwork, *df; magma_int_t ione = 1; magma_int_t n_j, ldda, ldwork; magma_int_t j, jb, na, nb, sm, sn, fjb, nfxd, minmn; magma_int_t topbmn, sminmn, lwkopt=0, lquery; *info = 0; lquery = (lwork == -1); if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,m)) { *info = -4; } nb = magma_get_dgeqp3_nb(min(m, n)); minmn = min(m,n); if (*info == 0) { if (minmn == 0) { lwkopt = 1; } else { lwkopt = (n + 1)*nb; #ifdef REAL lwkopt += 2*n; #endif } work[0] = MAGMA_D_MAKE( lwkopt, 0. ); if (lwork < lwkopt && ! lquery) { *info = -8; } } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } if (minmn == 0) return *info; #ifdef REAL double *rwork = work + (n + 1)*nb; #endif ldda = ((m+31)/32)*32; ldwork = n*ldda + (n+1)*nb; if (MAGMA_SUCCESS != magma_dmalloc( &dwork, ldwork )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } df = dwork + n*ldda; // dwork used for dA magma_queue_t stream; magma_queue_create( &stream ); /* Move initial columns up front. * Note jpvt uses 1-based indices for historical compatibility. */ nfxd = 0; for (j = 0; j < n; ++j) { if (jpvt[j] != 0) { if (j != nfxd) { blasf77_dswap(&m, A(0, j), &ione, A(0, nfxd), &ione); jpvt[j] = jpvt[nfxd]; jpvt[nfxd] = j + 1; } else { jpvt[j] = j + 1; } ++nfxd; } else { jpvt[j] = j + 1; } } /* Factorize fixed columns ======================= Compute the QR factorization of fixed columns and update remaining columns. */ if (nfxd > 0) { na = min(m,nfxd); lapackf77_dgeqrf(&m, &na, A, &lda, tau, work, &lwork, info); if (na < n) { n_j = n - na; lapackf77_dormqr( MagmaLeftStr, MagmaConjTransStr, &m, &n_j, &na, A, &lda, tau, A(0, na), &lda, work, &lwork, info ); } } /* Factorize free columns */ if (nfxd < minmn) { sm = m - nfxd; sn = n - nfxd; sminmn = minmn - nfxd; if (nb < sminmn) { j = nfxd; // Set the original matrix to the GPU magma_dsetmatrix_async( m, sn, A (0,j), lda, dA(0,j), ldda, stream ); } /* Initialize partial column norms. */ for (j = nfxd; j < n; ++j) { rwork[j] = magma_cblas_dnrm2( sm, A(nfxd,j), ione ); rwork[n + j] = rwork[j]; } j = nfxd; if (nb < sminmn) { /* Use blocked code initially. */ magma_queue_sync( stream ); /* Compute factorization: while loop. */ topbmn = minmn - nb; while(j < topbmn) { jb = min(nb, topbmn - j); /* Factorize JB columns among columns J:N. */ n_j = n - j; if (j > nfxd) { // Get panel to the CPU magma_dgetmatrix( m-j, jb, dA(j,j), ldda, A (j,j), lda ); // Get the rows magma_dgetmatrix( jb, n_j - jb, dA(j,j + jb), ldda, A (j,j + jb), lda ); } magma_dlaqps( m, n_j, j, jb, &fjb, A (0, j), lda, dA(0, j), ldda, &jpvt[j], &tau[j], &rwork[j], &rwork[n + j], work, &work[jb], n_j, &df[jb], n_j ); j += fjb; /* fjb is actual number of columns factored */ } } /* Use unblocked code to factor the last or only block. */ if (j < minmn) { n_j = n - j; if (j > nfxd) { magma_dgetmatrix( m-j, n_j, dA(j,j), ldda, A (j,j), lda ); } lapackf77_dlaqp2(&m, &n_j, &j, A(0, j), &lda, &jpvt[j], &tau[j], &rwork[j], &rwork[n+j], work ); } } work[0] = MAGMA_D_MAKE( lwkopt, 0. ); magma_free( dwork ); magma_queue_destroy( stream ); return *info; } /* magma_dgeqp3 */
/* //////////////////////////////////////////////////////////////////////////// -- Testing dswap, dswapblk, dpermute, dlaswp, dlaswpx */ int main( int argc, char** argv) { TESTING_INIT(); double *h_A1, *h_A2; double *d_A1, *d_A2; double *h_R1, *h_R2; // row-major and column-major performance real_Double_t row_perf0, col_perf0; real_Double_t row_perf1, col_perf1; real_Double_t row_perf2, col_perf2; real_Double_t row_perf3; real_Double_t row_perf4; real_Double_t row_perf5, col_perf5; real_Double_t row_perf6, col_perf6; real_Double_t row_perf7; real_Double_t cpu_perf; real_Double_t time, gbytes; magma_int_t N, lda, ldda, nb, j; magma_int_t ione = 1; magma_int_t *ipiv, *ipiv2; magma_int_t *d_ipiv; magma_int_t status = 0; magma_opts opts; parse_opts( argc, argv, &opts ); magma_queue_t queue = 0; printf(" cublasDswap dswap dswapblk dlaswp dpermute dlaswp2 dlaswpx dcopymatrix CPU (all in )\n"); printf(" N nb row-maj/col-maj row-maj/col-maj row-maj/col-maj row-maj row-maj row-maj row-maj/col-maj row-blk/col-blk dlaswp (GByte/s)\n"); printf("==================================================================================================================================================\n"); for( int itest = 0; itest < opts.ntest; ++itest ) { for( int iter = 0; iter < opts.niter; ++iter ) { // For an N x N matrix, swap nb rows or nb columns using various methods. // Each test is assigned one bit in the 'check' bitmask; bit=1 indicates failure. // The variable 'shift' keeps track of which bit is for current test int shift = 1; int check = 0; N = opts.nsize[itest]; lda = N; ldda = ((N+31)/32)*32; nb = (opts.nb > 0 ? opts.nb : magma_get_dgetrf_nb( N )); nb = min( N, nb ); // each swap does 2N loads and 2N stores, for nb swaps gbytes = sizeof(double) * 4.*N*nb / 1e9; TESTING_MALLOC_PIN( h_A1, double, lda*N ); TESTING_MALLOC_PIN( h_A2, double, lda*N ); TESTING_MALLOC_PIN( h_R1, double, lda*N ); TESTING_MALLOC_PIN( h_R2, double, lda*N ); TESTING_MALLOC_CPU( ipiv, magma_int_t, nb ); TESTING_MALLOC_CPU( ipiv2, magma_int_t, nb ); TESTING_MALLOC_DEV( d_ipiv, magma_int_t, nb ); TESTING_MALLOC_DEV( d_A1, double, ldda*N ); TESTING_MALLOC_DEV( d_A2, double, ldda*N ); for( j=0; j < nb; j++ ) { ipiv[j] = (magma_int_t) ((rand()*1.*N) / (RAND_MAX * 1.)) + 1; } /* ===================================================================== * cublasDswap, row-by-row (2 matrices) */ /* Row Major */ init_matrix( N, N, h_A1, lda, 0 ); init_matrix( N, N, h_A2, lda, 100 ); magma_dsetmatrix( N, N, h_A1, lda, d_A1, ldda ); magma_dsetmatrix( N, N, h_A2, lda, d_A2, ldda ); time = magma_sync_wtime( queue ); for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { cublasDswap( N, d_A1+ldda*j, 1, d_A2+ldda*(ipiv[j]-1), 1); } } time = magma_sync_wtime( queue ) - time; row_perf0 = gbytes / time; for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { blasf77_dswap( &N, h_A1+lda*j, &ione, h_A2+lda*(ipiv[j]-1), &ione); } } magma_dgetmatrix( N, N, d_A1, ldda, h_R1, lda ); magma_dgetmatrix( N, N, d_A2, ldda, h_R2, lda ); check += (diff_matrix( N, N, h_A1, lda, h_R1, lda ) || diff_matrix( N, N, h_A2, lda, h_R2, lda ))*shift; shift *= 2; /* Column Major */ init_matrix( N, N, h_A1, lda, 0 ); init_matrix( N, N, h_A2, lda, 100 ); magma_dsetmatrix( N, N, h_A1, lda, d_A1, ldda ); magma_dsetmatrix( N, N, h_A2, lda, d_A2, ldda ); time = magma_sync_wtime( queue ); for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { cublasDswap( N, d_A1+j, ldda, d_A2+ipiv[j]-1, ldda); } } time = magma_sync_wtime( queue ) - time; col_perf0 = gbytes / time; for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { blasf77_dswap( &N, h_A1+j, &lda, h_A2+(ipiv[j]-1), &lda); } } magma_dgetmatrix( N, N, d_A1, ldda, h_R1, lda ); magma_dgetmatrix( N, N, d_A2, ldda, h_R2, lda ); check += (diff_matrix( N, N, h_A1, lda, h_R1, lda ) || diff_matrix( N, N, h_A2, lda, h_R2, lda ))*shift; shift *= 2; /* ===================================================================== * dswap, row-by-row (2 matrices) */ /* Row Major */ init_matrix( N, N, h_A1, lda, 0 ); init_matrix( N, N, h_A2, lda, 100 ); magma_dsetmatrix( N, N, h_A1, lda, d_A1, ldda ); magma_dsetmatrix( N, N, h_A2, lda, d_A2, ldda ); time = magma_sync_wtime( queue ); for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { magmablas_dswap( N, d_A1+ldda*j, 1, d_A2+ldda*(ipiv[j]-1), 1); } } time = magma_sync_wtime( queue ) - time; row_perf1 = gbytes / time; for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { blasf77_dswap( &N, h_A1+lda*j, &ione, h_A2+lda*(ipiv[j]-1), &ione); } } magma_dgetmatrix( N, N, d_A1, ldda, h_R1, lda ); magma_dgetmatrix( N, N, d_A2, ldda, h_R2, lda ); check += (diff_matrix( N, N, h_A1, lda, h_R1, lda ) || diff_matrix( N, N, h_A2, lda, h_R2, lda ))*shift; shift *= 2; /* Column Major */ init_matrix( N, N, h_A1, lda, 0 ); init_matrix( N, N, h_A2, lda, 100 ); magma_dsetmatrix( N, N, h_A1, lda, d_A1, ldda ); magma_dsetmatrix( N, N, h_A2, lda, d_A2, ldda ); time = magma_sync_wtime( queue ); for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { magmablas_dswap( N, d_A1+j, ldda, d_A2+ipiv[j]-1, ldda ); } } time = magma_sync_wtime( queue ) - time; col_perf1 = gbytes / time; for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { blasf77_dswap( &N, h_A1+j, &lda, h_A2+(ipiv[j]-1), &lda); } } magma_dgetmatrix( N, N, d_A1, ldda, h_R1, lda ); magma_dgetmatrix( N, N, d_A2, ldda, h_R2, lda ); check += (diff_matrix( N, N, h_A1, lda, h_R1, lda ) || diff_matrix( N, N, h_A2, lda, h_R2, lda ))*shift; shift *= 2; /* ===================================================================== * dswapblk, blocked version (2 matrices) */ /* Row Major */ init_matrix( N, N, h_A1, lda, 0 ); init_matrix( N, N, h_A2, lda, 100 ); magma_dsetmatrix( N, N, h_A1, lda, d_A1, ldda ); magma_dsetmatrix( N, N, h_A2, lda, d_A2, ldda ); time = magma_sync_wtime( queue ); magmablas_dswapblk( MagmaRowMajor, N, d_A1, ldda, d_A2, ldda, 1, nb, ipiv, 1, 0); time = magma_sync_wtime( queue ) - time; row_perf2 = gbytes / time; for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { blasf77_dswap( &N, h_A1+lda*j, &ione, h_A2+lda*(ipiv[j]-1), &ione); } } magma_dgetmatrix( N, N, d_A1, ldda, h_R1, lda ); magma_dgetmatrix( N, N, d_A2, ldda, h_R2, lda ); check += (diff_matrix( N, N, h_A1, lda, h_R1, lda ) || diff_matrix( N, N, h_A2, lda, h_R2, lda ))*shift; shift *= 2; /* Column Major */ init_matrix( N, N, h_A1, lda, 0 ); init_matrix( N, N, h_A2, lda, 100 ); magma_dsetmatrix( N, N, h_A1, lda, d_A1, ldda ); magma_dsetmatrix( N, N, h_A2, lda, d_A2, ldda ); time = magma_sync_wtime( queue ); magmablas_dswapblk( MagmaColMajor, N, d_A1, ldda, d_A2, ldda, 1, nb, ipiv, 1, 0); time = magma_sync_wtime( queue ) - time; col_perf2 = gbytes / time; for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { blasf77_dswap( &N, h_A1+j, &lda, h_A2+(ipiv[j]-1), &lda); } } magma_dgetmatrix( N, N, d_A1, ldda, h_R1, lda ); magma_dgetmatrix( N, N, d_A2, ldda, h_R2, lda ); check += (diff_matrix( N, N, h_A1, lda, h_R1, lda ) || diff_matrix( N, N, h_A2, lda, h_R2, lda ))*shift; shift *= 2; /* ===================================================================== * dpermute_long (1 matrix) */ /* Row Major */ memcpy( ipiv2, ipiv, nb*sizeof(magma_int_t) ); // dpermute updates ipiv2 init_matrix( N, N, h_A1, lda, 0 ); magma_dsetmatrix( N, N, h_A1, lda, d_A1, ldda ); time = magma_sync_wtime( queue ); magmablas_dpermute_long2( N, d_A1, ldda, ipiv2, nb, 0 ); time = magma_sync_wtime( queue ) - time; row_perf3 = gbytes / time; for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { blasf77_dswap( &N, h_A1+lda*j, &ione, h_A1+lda*(ipiv[j]-1), &ione); } } magma_dgetmatrix( N, N, d_A1, ldda, h_R1, lda ); check += diff_matrix( N, N, h_A1, lda, h_R1, lda )*shift; shift *= 2; /* ===================================================================== * LAPACK-style dlaswp (1 matrix) */ /* Row Major */ init_matrix( N, N, h_A1, lda, 0 ); magma_dsetmatrix( N, N, h_A1, lda, d_A1, ldda ); time = magma_sync_wtime( queue ); magmablas_dlaswp( N, d_A1, ldda, 1, nb, ipiv, 1); time = magma_sync_wtime( queue ) - time; row_perf4 = gbytes / time; for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { blasf77_dswap( &N, h_A1+lda*j, &ione, h_A1+lda*(ipiv[j]-1), &ione); } } magma_dgetmatrix( N, N, d_A1, ldda, h_R1, lda ); check += diff_matrix( N, N, h_A1, lda, h_R1, lda )*shift; shift *= 2; /* ===================================================================== * LAPACK-style dlaswp (1 matrix) - d_ipiv on GPU */ /* Row Major */ init_matrix( N, N, h_A1, lda, 0 ); magma_dsetmatrix( N, N, h_A1, lda, d_A1, ldda ); time = magma_sync_wtime( queue ); magma_setvector( nb, sizeof(magma_int_t), ipiv, 1, d_ipiv, 1 ); magmablas_dlaswp2( N, d_A1, ldda, 1, nb, d_ipiv, 1 ); time = magma_sync_wtime( queue ) - time; row_perf7 = gbytes / time; for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { blasf77_dswap( &N, h_A1+lda*j, &ione, h_A1+lda*(ipiv[j]-1), &ione); } } magma_dgetmatrix( N, N, d_A1, ldda, h_R1, lda ); check += diff_matrix( N, N, h_A1, lda, h_R1, lda )*shift; shift *= 2; /* ===================================================================== * LAPACK-style dlaswpx (extended for row- and col-major) (1 matrix) */ /* Row Major */ init_matrix( N, N, h_A1, lda, 0 ); magma_dsetmatrix( N, N, h_A1, lda, d_A1, ldda ); time = magma_sync_wtime( queue ); magmablas_dlaswpx( N, d_A1, ldda, 1, 1, nb, ipiv, 1); time = magma_sync_wtime( queue ) - time; row_perf5 = gbytes / time; for( j=0; j < nb; j++) { if ( j != (ipiv[j]-1)) { blasf77_dswap( &N, h_A1+lda*j, &ione, h_A1+lda*(ipiv[j]-1), &ione); } } magma_dgetmatrix( N, N, d_A1, ldda, h_R1, lda ); check += diff_matrix( N, N, h_A1, lda, h_R1, lda )*shift; shift *= 2; /* Col Major */ init_matrix( N, N, h_A1, lda, 0 ); magma_dsetmatrix( N, N, h_A1, lda, d_A1, ldda ); time = magma_sync_wtime( queue ); magmablas_dlaswpx( N, d_A1, 1, ldda, 1, nb, ipiv, 1); time = magma_sync_wtime( queue ) - time; col_perf5 = gbytes / time; time = magma_wtime(); lapackf77_dlaswp( &N, h_A1, &lda, &ione, &nb, ipiv, &ione); time = magma_wtime() - time; cpu_perf = gbytes / time; magma_dgetmatrix( N, N, d_A1, ldda, h_R1, lda ); check += diff_matrix( N, N, h_A1, lda, h_R1, lda )*shift; shift *= 2; /* ===================================================================== * Copy matrix. */ time = magma_sync_wtime( queue ); magma_dcopymatrix( N, nb, d_A1, ldda, d_A2, ldda ); time = magma_sync_wtime( queue ) - time; // copy reads 1 matrix and writes 1 matrix, so has half gbytes of swap col_perf6 = 0.5 * gbytes / time; time = magma_sync_wtime( queue ); magma_dcopymatrix( nb, N, d_A1, ldda, d_A2, ldda ); time = magma_sync_wtime( queue ) - time; // copy reads 1 matrix and writes 1 matrix, so has half gbytes of swap row_perf6 = 0.5 * gbytes / time; printf("%5d %3d %6.2f%c/ %6.2f%c %6.2f%c/ %6.2f%c %6.2f%c/ %6.2f%c %6.2f%c %6.2f%c %6.2f%c %6.2f%c/ %6.2f%c %6.2f / %6.2f %6.2f %10s\n", (int) N, (int) nb, row_perf0, ((check & 0x001) != 0 ? '*' : ' '), col_perf0, ((check & 0x002) != 0 ? '*' : ' '), row_perf1, ((check & 0x004) != 0 ? '*' : ' '), col_perf1, ((check & 0x008) != 0 ? '*' : ' '), row_perf2, ((check & 0x010) != 0 ? '*' : ' '), col_perf2, ((check & 0x020) != 0 ? '*' : ' '), row_perf3, ((check & 0x040) != 0 ? '*' : ' '), row_perf4, ((check & 0x080) != 0 ? '*' : ' '), row_perf7, ((check & 0x100) != 0 ? '*' : ' '), row_perf5, ((check & 0x200) != 0 ? '*' : ' '), col_perf5, ((check & 0x400) != 0 ? '*' : ' '), row_perf6, col_perf6, cpu_perf, (check == 0 ? "ok" : "* failed") ); status += ! (check == 0); TESTING_FREE_PIN( h_A1 ); TESTING_FREE_PIN( h_A2 ); TESTING_FREE_PIN( h_R1 ); TESTING_FREE_PIN( h_R2 ); TESTING_FREE_CPU( ipiv ); TESTING_FREE_CPU( ipiv2 ); TESTING_FREE_DEV( d_ipiv ); TESTING_FREE_DEV( d_A1 ); TESTING_FREE_DEV( d_A2 ); fflush( stdout ); } if ( opts.niter > 1 ) { printf( "\n" ); } } TESTING_FINALIZE(); return status; }
/** Purpose ------- DSTEDX computes some eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. See DLAEX3 for details. Arguments --------- @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. @param[in] n INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. @param[in] vl DOUBLE PRECISION @param[in] vu DOUBLE PRECISION If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[in,out] d DOUBLE PRECISION array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix. On exit, if INFO = 0, the eigenvalues in ascending order. @param[in,out] e DOUBLE PRECISION array, dimension (N-1) On entry, the subdiagonal elements of the tridiagonal matrix. On exit, E has been destroyed. @param[in,out] Z DOUBLE PRECISION array, dimension (LDZ,N) On exit, if INFO = 0, Z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. @param[in] ldz INTEGER The leading dimension of the array Z. LDZ >= max(1,N). @param[out] work (workspace) DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. If N > 1 then LWORK >= ( 1 + 4*N + N**2 ). Note that if N is less than or equal to the minimum divide size, usually 25, then LWORK need only be max(1,2*(N-1)). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. LIWORK >= ( 3 + 5*N ). Note that if N is less than or equal to the minimum divide size, usually 25, then LIWORK need only be 1. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the IWORK array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by XERBLA. @param dwork (workspace) DOUBLE PRECISION array, dimension (3*N*N/2+3*N) @param[out] info INTEGER - = 0: successful exit. - < 0: if INFO = -i, the i-th argument had an illegal value. - > 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified by Francoise Tisseur, University of Tennessee. @ingroup magma_dsyev_comp ********************************************************************/ extern "C" magma_int_t magma_dstedx( magma_range_t range, magma_int_t n, double vl, double vu, magma_int_t il, magma_int_t iu, double *d, double *e, double *Z, magma_int_t ldz, double *work, magma_int_t lwork, magma_int_t *iwork, magma_int_t liwork, magmaDouble_ptr dwork, magma_int_t *info) { #define Z(i_,j_) (Z + (i_) + (j_)*ldz) double d_zero = 0.; double d_one = 1.; magma_int_t izero = 0; magma_int_t ione = 1; magma_int_t alleig, indeig, valeig, lquery; magma_int_t i, j, k, m; magma_int_t liwmin, lwmin; magma_int_t start, end, smlsiz; double eps, orgnrm, p, tiny; // Test the input parameters. alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); lquery = (lwork == -1 || liwork == -1); *info = 0; if (! (alleig || valeig || indeig)) { *info = -1; } else if (n < 0) { *info = -2; } else if (ldz < max(1,n)) { *info = -10; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -4; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -5; } else if (iu < min(n,il) || iu > n) { *info = -6; } } } if (*info == 0) { // Compute the workspace requirements smlsiz = magma_get_smlsize_divideconquer(); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else { lwmin = 1 + 4*n + n*n; liwmin = 3 + 5*n; } work[0] = magma_dmake_lwork( lwmin ); iwork[0] = liwmin; if (lwork < lwmin && ! lquery) { *info = -12; } else if (liwork < liwmin && ! lquery) { *info = -14; } } if (*info != 0) { magma_xerbla( __func__, -(*info)); return *info; } else if (lquery) { return *info; } // Quick return if possible if (n == 0) return *info; if (n == 1) { *Z = 1.; return *info; } /* determine the number of threads *///not needed here to be checked Azzam //magma_int_t threads = magma_get_parallel_numthreads(); //magma_int_t mklth = magma_get_lapack_numthreads(); //magma_set_lapack_numthreads(mklth); #ifdef ENABLE_DEBUG //printf(" D&C is using %d threads\n", threads); #endif // If N is smaller than the minimum divide size (SMLSIZ+1), then // solve the problem with another solver. if (n < smlsiz) { lapackf77_dsteqr("I", &n, d, e, Z, &ldz, work, info); } else { lapackf77_dlaset("F", &n, &n, &d_zero, &d_one, Z, &ldz); //Scale. orgnrm = lapackf77_dlanst("M", &n, d, e); if (orgnrm == 0) { work[0] = magma_dmake_lwork( lwmin ); iwork[0] = liwmin; return *info; } eps = lapackf77_dlamch( "Epsilon" ); if (alleig) { start = 0; while ( start < n ) { // Let FINISH be the position of the next subdiagonal entry // such that E( END ) <= TINY or FINISH = N if no such // subdiagonal exists. The matrix identified by the elements // between START and END constitutes an independent // sub-problem. for (end = start+1; end < n; ++end) { tiny = eps * sqrt( MAGMA_D_ABS(d[end-1]*d[end])); if (MAGMA_D_ABS(e[end-1]) <= tiny) break; } // (Sub) Problem determined. Compute its size and solve it. m = end - start; if (m == 1) { start = end; continue; } if (m > smlsiz) { // Scale orgnrm = lapackf77_dlanst("M", &m, &d[start], &e[start]); lapackf77_dlascl("G", &izero, &izero, &orgnrm, &d_one, &m, &ione, &d[start], &m, info); magma_int_t mm = m-1; lapackf77_dlascl("G", &izero, &izero, &orgnrm, &d_one, &mm, &ione, &e[start], &mm, info); magma_dlaex0( m, &d[start], &e[start], Z(start, start), ldz, work, iwork, dwork, MagmaRangeAll, vl, vu, il, iu, info); if ( *info != 0) { return *info; } // Scale Back lapackf77_dlascl("G", &izero, &izero, &d_one, &orgnrm, &m, &ione, &d[start], &m, info); } else { lapackf77_dsteqr( "I", &m, &d[start], &e[start], Z(start, start), &ldz, work, info); if (*info != 0) { *info = (start+1) *(n+1) + end; } } start = end; } // If the problem split any number of times, then the eigenvalues // will not be properly ordered. Here we permute the eigenvalues // (and the associated eigenvectors) into ascending order. if (m < n) { // Use Selection Sort to minimize swaps of eigenvectors for (i = 1; i < n; ++i) { k = i-1; p = d[i-1]; for (j = i; j < n; ++j) { if (d[j] < p) { k = j; p = d[j]; } } if (k != i-1) { d[k] = d[i-1]; d[i-1] = p; blasf77_dswap(&n, Z(0,i-1), &ione, Z(0,k), &ione); } } } } else { // Scale lapackf77_dlascl("G", &izero, &izero, &orgnrm, &d_one, &n, &ione, d, &n, info); magma_int_t nm = n-1; lapackf77_dlascl("G", &izero, &izero, &orgnrm, &d_one, &nm, &ione, e, &nm, info); magma_dlaex0( n, d, e, Z, ldz, work, iwork, dwork, range, vl, vu, il, iu, info); if ( *info != 0) { return *info; } // Scale Back lapackf77_dlascl("G", &izero, &izero, &d_one, &orgnrm, &n, &ione, d, &n, info); } } work[0] = magma_dmake_lwork( lwmin ); iwork[0] = liwmin; return *info; } /* magma_dstedx */