void libblis_test_dotxaxpyf_check ( test_params_t* params, obj_t* alpha, obj_t* at, obj_t* a, obj_t* w, obj_t* x, obj_t* beta, obj_t* y, obj_t* z, obj_t* y_orig, obj_t* z_orig, double* resid ) { num_t dt = bli_obj_datatype( *y ); num_t dt_real = bli_obj_datatype_proj_to_real( *y ); dim_t m = bli_obj_vector_dim( *z ); dim_t b_n = bli_obj_vector_dim( *y ); dim_t i; obj_t a1, chi1, psi1, v, q; obj_t alpha_chi1; obj_t norm; double resid1, resid2; double junk; // // Pre-conditions: // - a is randomized. // - w is randomized. // - x is randomized. // - y is randomized. // - z is randomized. // - at is an alias to a. // Note: // - alpha and beta should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := beta * y_orig + alpha * conjat(A^T) * conjw(w) // z := z_orig + alpha * conja(A) * conjx(x) // // is functioning correctly if // // normf( y - v ) // // and // // normf( z - q ) // // are negligible, where v and q contain y and z as computed by repeated // calls to dotxv and axpyv, respectively. // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_scalar_init_detached( dt, &alpha_chi1 ); bli_obj_create( dt, b_n, 1, 0, 0, &v ); bli_obj_create( dt, m, 1, 0, 0, &q ); bli_copyv( y_orig, &v ); bli_copyv( z_orig, &q ); // v := beta * v + alpha * conjat(at) * conjw(w) for ( i = 0; i < b_n; ++i ) { bli_acquire_mpart_l2r( BLIS_SUBPART1, i, 1, at, &a1 ); bli_acquire_vpart_f2b( BLIS_SUBPART1, i, 1, &v, &psi1 ); bli_dotxv( alpha, &a1, w, beta, &psi1 ); } // q := q + alpha * conja(a) * conjx(x) for ( i = 0; i < b_n; ++i ) { bli_acquire_mpart_l2r( BLIS_SUBPART1, i, 1, a, &a1 ); bli_acquire_vpart_f2b( BLIS_SUBPART1, i, 1, x, &chi1 ); bli_copysc( &chi1, &alpha_chi1 ); bli_mulsc( alpha, &alpha_chi1 ); bli_axpyv( &alpha_chi1, &a1, &q ); } bli_subv( y, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, &resid1, &junk ); bli_subv( z, &q ); bli_normfv( &q, &norm ); bli_getsc( &norm, &resid2, &junk ); *resid = bli_fmaxabs( resid1, resid2 ); bli_obj_free( &v ); bli_obj_free( &q ); }
void bli_gemv_blk_var2( obj_t* alpha, obj_t* a, obj_t* x, obj_t* beta, obj_t* y, cntx_t* cntx, gemv_t* cntl ) { obj_t a1, a1_pack; obj_t x1, x1_pack; dim_t n_trans; dim_t i; dim_t b_alg; // Initialize objects for packing. bli_obj_init_pack( &a1_pack ); bli_obj_init_pack( &x1_pack ); // Query dimension in partitioning direction. n_trans = bli_obj_width_after_trans( a ); // y = beta * y; bli_scalv_int( beta, y, cntx, bli_cntl_sub_scalv( cntl ) ); // Partition along the "k" dimension (n dimension of A). for ( i = 0; i < n_trans; i += b_alg ) { // Determine the current algorithmic blocksize. b_alg = bli_determine_blocksize_f( i, n_trans, a, bli_cntl_bszid( cntl ), cntx ); // Acquire partitions for A1 and x1. bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, a, &a1 ); bli_acquire_vpart_f2b( BLIS_SUBPART1, i, b_alg, x, &x1 ); // Initialize objects for packing A1 and x1 (if needed). bli_packm_init( &a1, &a1_pack, cntx, bli_cntl_sub_packm_a( cntl ) ); bli_packv_init( &x1, &x1_pack, cntx, bli_cntl_sub_packv_x( cntl ) ); // Copy/pack A1, x1 (if needed). bli_packm_int( &a1, &a1_pack, cntx, bli_cntl_sub_packm_a( cntl ), &BLIS_PACKM_SINGLE_THREADED ); bli_packv_int( &x1, &x1_pack, cntx, bli_cntl_sub_packv_x( cntl ) ); // y = y + alpha * A1 * x1; bli_gemv_int( BLIS_NO_TRANSPOSE, BLIS_NO_CONJUGATE, alpha, &a1_pack, &x1_pack, &BLIS_ONE, y, cntx, bli_cntl_sub_gemv( cntl ) ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. bli_packm_release( &a1_pack, bli_cntl_sub_packm_a( cntl ) ); bli_packv_release( &x1_pack, bli_cntl_sub_packv_x( cntl ) ); }
void bli_ger_blk_var2( obj_t* alpha, obj_t* x, obj_t* y, obj_t* a, cntx_t* cntx, ger_t* cntl ) { obj_t a1, a1_pack; obj_t y1, y1_pack; dim_t i; dim_t b_alg; dim_t n_trans; // Initialize objects for packing. bli_obj_init_pack( &a1_pack ); bli_obj_init_pack( &y1_pack ); // Query dimension in partitioning direction. n_trans = bli_obj_width_after_trans( *a ); // Partition along the n dimension. for ( i = 0; i < n_trans; i += b_alg ) { // Determine the current algorithmic blocksize. b_alg = bli_determine_blocksize_f( i, n_trans, a, bli_cntl_bszid( cntl ), cntx ); // Acquire partitions for A1 and y1. bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, a, &a1 ); bli_acquire_vpart_f2b( BLIS_SUBPART1, i, b_alg, y, &y1 ); // Initialize objects for packing A1 and y1 (if needed). bli_packm_init( &a1, &a1_pack, cntx, bli_cntl_sub_packm_a( cntl ) ); bli_packv_init( &y1, &y1_pack, cntx, bli_cntl_sub_packv_y( cntl ) ); // Copy/pack A1, y1 (if needed). bli_packm_int( &a1, &a1_pack, cntx, bli_cntl_sub_packm_a( cntl ), &BLIS_PACKM_SINGLE_THREADED ); bli_packv_int( &y1, &y1_pack, cntx, bli_cntl_sub_packv_y( cntl ) ); // A1 = A1 + alpha * x * y1; bli_ger_int( BLIS_NO_CONJUGATE, BLIS_NO_CONJUGATE, alpha, x, &y1_pack, &a1_pack, cntx, bli_cntl_sub_ger( cntl ) ); // Copy/unpack A1 (if A1 was packed). bli_unpackm_int( &a1_pack, &a1, cntx, bli_cntl_sub_unpackm_a( cntl ), &BLIS_PACKM_SINGLE_THREADED ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. bli_packm_release( &a1_pack, bli_cntl_sub_packm_a( cntl ) ); bli_packv_release( &y1_pack, bli_cntl_sub_packv_y( cntl ) ); }
void bli_trmm_blk_var2f( obj_t* a, obj_t* b, obj_t* c, trmm_t* cntl ) { obj_t a_pack; obj_t b1, b1_pack; obj_t c1, c1_pack; dim_t i; dim_t b_alg; dim_t n_trans; // Initialize all pack objects that are passed into packm_init(). bli_obj_init_pack( &a_pack ); bli_obj_init_pack( &b1_pack ); bli_obj_init_pack( &c1_pack ); // Query dimension in partitioning direction. n_trans = bli_obj_width_after_trans( *b ); // Scale C by beta (if instructed). bli_scalm_int( &BLIS_ONE, c, cntl_sub_scalm( cntl ) ); // Initialize object for packing A. bli_packm_init( a, &a_pack, cntl_sub_packm_a( cntl ) ); // Pack A (if instructed). bli_packm_int( a, &a_pack, cntl_sub_packm_a( cntl ) ); // Partition along the n dimension. for ( i = 0; i < n_trans; i += b_alg ) { // Determine the current algorithmic blocksize. b_alg = bli_determine_blocksize_f( i, n_trans, b, cntl_blocksize( cntl ) ); // Acquire partitions for B1 and C1. bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, b, &b1 ); bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, c, &c1 ); // Initialize objects for packing A1 and B1. bli_packm_init( &b1, &b1_pack, cntl_sub_packm_b( cntl ) ); bli_packm_init( &c1, &c1_pack, cntl_sub_packm_c( cntl ) ); // Pack B1 (if instructed). bli_packm_int( &b1, &b1_pack, cntl_sub_packm_b( cntl ) ); // Pack C1 (if instructed). bli_packm_int( &c1, &c1_pack, cntl_sub_packm_c( cntl ) ); // Perform trmm subproblem. bli_trmm_int( &BLIS_ONE, &a_pack, &b1_pack, &BLIS_ONE, &c1_pack, cntl_sub_trmm( cntl ) ); // Unpack C1 (if C1 was packed). bli_unpackm_int( &c1_pack, &c1, cntl_sub_unpackm_c( cntl ) ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. bli_obj_release_pack( &a_pack ); bli_obj_release_pack( &b1_pack ); bli_obj_release_pack( &c1_pack ); }
void bli_gemm_blk_var3f( obj_t* a, obj_t* b, obj_t* c, gemm_t* cntl ) { obj_t a1, a1_pack; obj_t b1, b1_pack; obj_t c_pack; dim_t i; dim_t b_alg; dim_t k_trans; // Initialize all pack objects that are passed into packm_init(). bli_obj_init_pack( &a1_pack ); bli_obj_init_pack( &b1_pack ); bli_obj_init_pack( &c_pack ); // Query dimension in partitioning direction. k_trans = bli_obj_width_after_trans( *a ); // Scale C by beta (if instructed). bli_scalm_int( &BLIS_ONE, c, cntl_sub_scalm( cntl ) ); // Initialize object for packing C. bli_packm_init( c, &c_pack, cntl_sub_packm_c( cntl ) ); // Pack C (if instructed). bli_packm_int( c, &c_pack, cntl_sub_packm_c( cntl ) ); // Partition along the k dimension. for ( i = 0; i < k_trans; i += b_alg ) { // Determine the current algorithmic blocksize. // NOTE: Use of b (for execution datatype) is intentional! // This causes the right blocksize to be used if c and a are // complex and b is real. b_alg = bli_determine_blocksize_f( i, k_trans, b, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and B1. bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, a, &a1 ); bli_acquire_mpart_t2b( BLIS_SUBPART1, i, b_alg, b, &b1 ); // Initialize objects for packing A1 and B1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_init( &b1, &b1_pack, cntl_sub_packm_b( cntl ) ); // Pack A1 (if instructed). bli_packm_int( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack B1 (if instructed). bli_packm_int( &b1, &b1_pack, cntl_sub_packm_b( cntl ) ); // Perform gemm subproblem. bli_gemm_int( &BLIS_ONE, &a1_pack, &b1_pack, &BLIS_ONE, &c_pack, cntl_sub_gemm( cntl ) ); // This variant executes multiple rank-k updates. Therefore, if the // internal beta scalar on matrix C is non-zero, we must use it // only for the first iteration (and then BLIS_ONE for all others). // And since c_pack is a local obj_t, we can simply overwrite the // internal beta scalar with BLIS_ONE once it has been used in the // first iteration. if ( i == 0 ) bli_obj_scalar_reset( &c_pack ); } // Unpack C (if C was packed). bli_unpackm_int( &c_pack, c, cntl_sub_unpackm_c( cntl ) ); // If any packing buffers were acquired within packm, release them back // to the memory manager. bli_obj_release_pack( &a1_pack ); bli_obj_release_pack( &b1_pack ); bli_obj_release_pack( &c_pack ); }
void bli_trsm_l_blk_var4( obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, trsm_t* cntl ) { obj_t a1, a1_pack; obj_t b_pack; obj_t c1; dim_t i; dim_t bm_alg; dim_t m_trans; dim_t offB; // Initialize all pack objects that are passed into packm_init(). bli_obj_init_pack( &a1_pack ); bli_obj_init_pack( &b_pack ); // Query dimension in partitioning direction. m_trans = bli_obj_length_after_trans( *a ); // Use the diagonal offset of A to skip over the zero region. offB = bli_abs( bli_obj_diag_offset_after_trans( *a ) ); // Initialize object for packing B. bli_packm_init( b, &b_pack, cntl_sub_packm_b( cntl ) ); // Fuse the first iteration with incremental packing and computation. { obj_t b_inc, b_pack_inc; obj_t c1_inc; dim_t j; dim_t bn_inc; dim_t n_trans; // Query dimension in partitioning direction. n_trans = bli_obj_width( b_pack ); // Determine the current algorithmic blocksize. bm_alg = bli_determine_blocksize_f( offB, m_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_t2b( BLIS_SUBPART1, offB, bm_alg, a, &a1 ); bli_acquire_mpart_t2b( BLIS_SUBPART1, offB, bm_alg, c, &c1 ); // Initialize objects for packing A1 and C1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack A1 and scale by alpha (if instructed). bli_packm_int( alpha, &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Partition along the n dimension. for ( j = 0; j < n_trans; j += bn_inc ) { // Determine the current incremental packing blocksize. bn_inc = bli_determine_blocksize_f( j, n_trans, b, cntl_blocksize_aux( cntl ) ); // Acquire partitions. bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, b, &b_inc ); bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, &b_pack, &b_pack_inc ); bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, &c1, &c1_inc ); // Pack B1 and scale by alpha (if instructed). bli_packm_int( alpha, &b_inc, &b_pack_inc, cntl_sub_packm_b( cntl ) ); // Perform trsm subproblem. bli_trsm_int( BLIS_LEFT, alpha, &a1_pack, &b_pack_inc, beta, &c1_inc, cntl_sub_trsm( cntl ) ); } // Unpack B to the corresponding region of C. (Note that B and C1 are // conformal since A1 is square.) //bli_unpackm_int( &b_pack, &c1, // cntl_sub_unpackm_c( cntl ) ); } // Partition along the remaining portion of the m dimension. for ( i = offB + bm_alg; i < m_trans; i += bm_alg ) { // Determine the current algorithmic blocksize. bm_alg = bli_determine_blocksize_f( i, m_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_t2b( BLIS_SUBPART1, i, bm_alg, a, &a1 ); bli_acquire_mpart_t2b( BLIS_SUBPART1, i, bm_alg, c, &c1 ); // Initialize object for packing A1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack A1 and scale by alpha (if instructed). bli_packm_int( alpha, &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Perform trsm subproblem. if ( bli_obj_intersects_diag( a1_pack ) ) bli_trsm_int( BLIS_LEFT, alpha, &a1_pack, &b_pack, beta, &c1, cntl_sub_trsm( cntl ) ); else bli_gemm_int( &BLIS_MINUS_ONE, &a1_pack, &b_pack, &BLIS_ONE, &c1, cntl_sub_gemm( cntl ) ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. bli_obj_release_pack( &a1_pack ); bli_obj_release_pack( &b_pack ); }
void libblis_test_axpyf_check( obj_t* alpha, obj_t* a, obj_t* x, obj_t* y, obj_t* y_orig, double* resid ) { num_t dt = bli_obj_datatype( *y ); num_t dt_real = bli_obj_datatype_proj_to_real( *y ); dim_t m = bli_obj_vector_dim( *y ); dim_t b_n = bli_obj_width( *a ); dim_t i; obj_t a1, chi1, v; obj_t alpha_chi1; obj_t norm; double junk; // // Pre-conditions: // - a is randomized. // - x is randomized. // - y is randomized. // Note: // - alpha should have a non-zero imaginary component in the complex // cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := y_orig + alpha * conja(A) * conjx(x) // // is functioning correctly if // // normf( y - v ) // // is negligible, where v contains y as computed by repeated calls to // axpyv. // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_scalar_init_detached( dt, &alpha_chi1 ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_copyv( y_orig, &v ); for ( i = 0; i < b_n; ++i ) { bli_acquire_mpart_l2r( BLIS_SUBPART1, i, 1, a, &a1 ); bli_acquire_vpart_f2b( BLIS_SUBPART1, i, 1, x, &chi1 ); bli_copysc( &chi1, &alpha_chi1 ); bli_mulsc( alpha, &alpha_chi1 ); bli_axpyv( &alpha_chi1, &a1, &v ); } bli_subv( y, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &v ); }
void bli_herk_blk_var3f( obj_t* a, obj_t* ah, obj_t* c, herk_t* cntl, herk_thrinfo_t* thread ) { obj_t c_pack_s; obj_t a1_pack_s, ah1_pack_s; obj_t a1, ah1; obj_t* a1_pack = NULL; obj_t* ah1_pack = NULL; obj_t* c_pack = NULL; dim_t i; dim_t b_alg; dim_t k_trans; if( thread_am_ochief( thread ) ) { // Initialize object for packing C. bli_obj_init_pack( &c_pack_s ); bli_packm_init( c, &c_pack_s, cntl_sub_packm_c( cntl ) ); // Scale C by beta (if instructed). bli_scalm_int( &BLIS_ONE, c, cntl_sub_scalm( cntl ) ); } c_pack = thread_obroadcast( thread, &c_pack_s ); // Initialize all pack objects that are passed into packm_init(). if( thread_am_ichief( thread ) ) { bli_obj_init_pack( &a1_pack_s ); bli_obj_init_pack( &ah1_pack_s ); } a1_pack = thread_ibroadcast( thread, &a1_pack_s ); ah1_pack = thread_ibroadcast( thread, &ah1_pack_s ); // Pack C (if instructed). bli_packm_int( c, c_pack, cntl_sub_packm_c( cntl ), herk_thread_sub_opackm( thread ) ); // Query dimension in partitioning direction. k_trans = bli_obj_width_after_trans( *a ); // Partition along the k dimension. for ( i = 0; i < k_trans; i += b_alg ) { // Determine the current algorithmic blocksize. b_alg = bli_determine_blocksize_f( i, k_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and A1'. bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, a, &a1 ); bli_acquire_mpart_t2b( BLIS_SUBPART1, i, b_alg, ah, &ah1 ); // Initialize objects for packing A1 and A1'. if( thread_am_ichief( thread ) ) { bli_packm_init( &a1, a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_init( &ah1, ah1_pack, cntl_sub_packm_b( cntl ) ); } thread_ibarrier( thread ); // Pack A1 (if instructed). bli_packm_int( &a1, a1_pack, cntl_sub_packm_a( cntl ), herk_thread_sub_ipackm( thread ) ); // Pack B1 (if instructed). bli_packm_int( &ah1, ah1_pack, cntl_sub_packm_b( cntl ), herk_thread_sub_ipackm( thread ) ); // Perform herk subproblem. bli_herk_int( &BLIS_ONE, a1_pack, ah1_pack, &BLIS_ONE, c_pack, cntl_sub_herk( cntl ), herk_thread_sub_herk( thread ) ); // This variant executes multiple rank-k updates. Therefore, if the // internal beta scalar on matrix C is non-zero, we must use it // only for the first iteration (and then BLIS_ONE for all others). // And since c_pack is a local obj_t, we can simply overwrite the // internal beta scalar with BLIS_ONE once it has been used in the // first iteration. if ( i == 0 ) thread_ibarrier( thread ); if ( i == 0 && thread_am_ichief( thread ) ) bli_obj_scalar_reset( c_pack ); } thread_obarrier( thread ); // Unpack C (if C was packed). bli_unpackm_int( c_pack, c, cntl_sub_unpackm_c( cntl ), herk_thread_sub_opackm( thread ) ); // If any packing buffers were acquired within packm, release them back // to the memory manager. if( thread_am_ochief( thread ) ) { bli_obj_release_pack( c_pack ); } if( thread_am_ichief( thread ) ) { bli_obj_release_pack( a1_pack ); bli_obj_release_pack( ah1_pack ); } }
void bli_trmm_lu_blk_var4( obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, trmm_t* cntl ) { obj_t a1, a1_pack; obj_t b_pack; obj_t c1, c1_pack; dim_t i; dim_t bm_alg; dim_t mT_trans; // Initialize all pack objects that are passed into packm_init(). bli_obj_init_pack( &a1_pack ); bli_obj_init_pack( &b_pack ); bli_obj_init_pack( &c1_pack ); // Query dimension in partitioning direction. Use the diagonal offset // to stop short of the zero region. mT_trans = bli_abs( bli_obj_diag_offset_after_trans( *a ) ) + bli_obj_width_after_trans( *a ); // Scale C by beta (if instructed). bli_scalm_int( beta, c, cntl_sub_scalm( cntl ) ); // Initialize object for packing B. bli_packm_init( b, &b_pack, cntl_sub_packm_b( cntl ) ); // Fuse the first iteration with incremental packing and computation. { obj_t b_inc, b_pack_inc; obj_t c1_pack_inc; dim_t j; dim_t bn_inc; dim_t n_trans; // Query dimension in partitioning direction. n_trans = bli_obj_width( b_pack ); // Determine the current algorithmic blocksize. bm_alg = bli_determine_blocksize_f( 0, mT_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_t2b( BLIS_SUBPART1, 0, bm_alg, a, &a1 ); bli_acquire_mpart_t2b( BLIS_SUBPART1, 0, bm_alg, c, &c1 ); // Initialize objects for packing A1 and C1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_init( &c1, &c1_pack, cntl_sub_packm_c( cntl ) ); // Pack A1 and scale by alpha (if instructed). bli_packm_int( alpha, &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack C1 and scale by beta (if instructed). bli_packm_int( beta, &c1, &c1_pack, cntl_sub_packm_c( cntl ) ); // Partition along the n dimension. for ( j = 0; j < n_trans; j += bn_inc ) { // Determine the current incremental packing blocksize. bn_inc = bli_determine_blocksize_f( j, n_trans, b, cntl_blocksize_aux( cntl ) ); // Acquire partitions. bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, b, &b_inc ); bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, &b_pack, &b_pack_inc ); bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, &c1_pack, &c1_pack_inc ); // Pack B1 and scale by alpha (if instructed). bli_packm_int( alpha, &b_inc, &b_pack_inc, cntl_sub_packm_b( cntl ) ); // Perform trmm subproblem. bli_trmm_int( BLIS_LEFT, alpha, &a1_pack, &b_pack_inc, beta, &c1_pack_inc, cntl_sub_trmm( cntl ) ); } // Unpack C1 (if C1 was packed). bli_unpackm_int( &c1_pack, &c1, cntl_sub_unpackm_c( cntl ) ); } // Partition along the remaining portion of the m dimension. for ( i = bm_alg; i < mT_trans; i += bm_alg ) { // Determine the current algorithmic blocksize. bm_alg = bli_determine_blocksize_f( i, mT_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_t2b( BLIS_SUBPART1, i, bm_alg, a, &a1 ); bli_acquire_mpart_t2b( BLIS_SUBPART1, i, bm_alg, c, &c1 ); // Initialize objects for packing A1 and C1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_init( &c1, &c1_pack, cntl_sub_packm_c( cntl ) ); // Pack A1 and scale by alpha (if instructed). bli_packm_int( alpha, &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack C1 and scale by beta (if instructed). bli_packm_int( beta, &c1, &c1_pack, cntl_sub_packm_c( cntl ) ); // Perform trmm subproblem. if ( bli_obj_intersects_diag( a1_pack ) ) bli_trmm_int( BLIS_LEFT, alpha, &a1_pack, &b_pack, beta, &c1_pack, cntl_sub_trmm( cntl ) ); else bli_gemm_int( alpha, &a1_pack, &b_pack, &BLIS_ONE, &c1_pack, cntl_sub_gemm( cntl ) ); // Unpack C1 (if C1 was packed). bli_unpackm_int( &c1_pack, &c1, cntl_sub_unpackm_c( cntl ) ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. bli_obj_release_pack( &a1_pack ); bli_obj_release_pack( &b_pack ); bli_obj_release_pack( &c1_pack ); }
void bli_gemm_blk_var2( obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, gemm_t* cntl ) { obj_t a_pack_s; obj_t b1_pack_s; obj_t c1_pack_s; obj_t b1, c1; obj_t* a_pack = NULL; obj_t* b1_pack = NULL; obj_t* c1_pack = NULL; dim_t i; dim_t b_alg; dim_t n_trans; dim_t num_groups = bli_gemm_num_thread_groups( cntl->thread_info ); dim_t group_id = bli_gemm_group_id( cntl->thread_info ); if( bli_gemm_am_a_master( cntl->thread_info ) ) { // Initialize object for packing A. bli_obj_init_pack( &a_pack_s ); bli_packm_init( a, &a_pack_s, cntl_sub_packm_a( cntl ) ); } a_pack = bli_gemm_broadcast_a( cntl->thread_info, &a_pack_s ); // Pack A and scale by alpha (if instructed). bli_packm_int( alpha, a, a_pack, cntl_sub_packm_a( cntl ) ); bli_gemm_a_barrier( cntl->thread_info ); if( bli_gemm_am_b_master( cntl->thread_info )) { bli_obj_init_pack( &b1_pack_s ); } b1_pack = bli_gemm_broadcast_b( cntl->thread_info, &b1_pack_s ); if( bli_gemm_am_c_master( cntl->thread_info )) { bli_obj_init_pack( &c1_pack_s ); // Scale C by beta (if instructed). bli_scalm_int( beta, c, cntl_sub_scalm( cntl ) ); } c1_pack = bli_gemm_broadcast_c( cntl->thread_info, &c1_pack_s ); // Query dimension in partitioning direction. n_trans = bli_obj_width_after_trans( *b ); dim_t n_pt = n_trans / num_groups; n_pt = (n_pt * num_groups < n_trans) ? n_pt + 1 : n_pt; n_pt = (n_pt % 8 == 0) ? n_pt : n_pt + 8 - (n_pt % 8); dim_t start = group_id * n_pt; dim_t end = bli_min( start + n_pt, n_trans ); // Partition along the n dimension. for ( i = start; i < end; i += b_alg ) { // Determine the current algorithmic blocksize. // NOTE: Use of b (for execution datatype) is intentional! // This causes the right blocksize to be used if c and a are // complex and b is real. b_alg = bli_determine_blocksize_f( i, end, b, cntl_blocksize( cntl ) ); // Acquire partitions for C1 bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, c, &c1 ); // Acquire partitions for B1 bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, b, &b1 ); if( bli_gemm_am_b_master( cntl->thread_info )) { // Initialize objects for packing B1 bli_packm_init( &b1, &b1_pack_s, cntl_sub_packm_b( cntl ) ); } if( bli_gemm_am_c_master( cntl->thread_info )) { // Initialize objects for packing C1 bli_packm_init( &c1, &c1_pack_s, cntl_sub_packm_c( cntl ) ); } bli_gemm_b_barrier( cntl->thread_info ); bli_gemm_c_barrier( cntl->thread_info ); // Pack B1 and scale by alpha (if instructed). bli_packm_int( alpha, &b1, b1_pack, cntl_sub_packm_b( cntl ) ); // Pack C1 and scale by beta (if instructed). bli_packm_int( beta, &c1, c1_pack, cntl_sub_packm_c( cntl ) ); // Packing must be done before computation bli_gemm_b_barrier( cntl->thread_info ); bli_gemm_c_barrier( cntl->thread_info ); // Perform gemm subproblem. bli_gemm_int( alpha, a_pack, b1_pack, beta, c1_pack, cntl_sub_gemm( cntl ) ); // Unpack C1 (if C1 was packed). bli_unpackm_int( c1_pack, &c1, cntl_sub_unpackm_c( cntl ) ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. bli_gemm_a_barrier( cntl->thread_info ); if( bli_gemm_am_a_master( cntl->thread_info )) bli_obj_release_pack( &a_pack_s ); bli_gemm_b_barrier( cntl->thread_info ); if( bli_gemm_am_b_master( cntl->thread_info )) { bli_obj_release_pack( &b1_pack_s ); } bli_gemm_c_barrier( cntl->thread_info ); if( bli_gemm_am_c_master( cntl->thread_info )) { bli_obj_release_pack( &c1_pack_s ); } }
void bli_trsm_u_blk_var4( obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, trsm_t* cntl ) { obj_t a1, a1_pack; obj_t b_pack; obj_t c1; dim_t i; dim_t bm_alg; dim_t m_trans; // Initialize all pack objects that are passed into packm_init(). bli_obj_init_pack( &a1_pack ); bli_obj_init_pack( &b_pack ); // Query dimension in partitioning direction. m_trans = bli_obj_length_after_trans( *a ); // Initialize object for packing B. bli_packm_init( b, &b_pack, cntl_sub_packm_b( cntl ) ); // Find the offset to the first non-zero block of A. for ( i = 0; i < m_trans; i += bm_alg ) { // Determine the current algorithmic blocksize. bm_alg = bli_determine_blocksize_b( i, m_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_b2t( BLIS_SUBPART1, i, bm_alg, a, &a1 ); if ( !bli_obj_is_zeros( a1 ) ) break; } // Fuse the first iteration with incremental packing and computation. { obj_t b_inc, b_pack_inc; obj_t c1_inc; dim_t j; dim_t bn_inc; dim_t n_trans; // Query dimension in partitioning direction. n_trans = bli_obj_width( b_pack ); // Determine the current algorithmic blocksize. bm_alg = bli_determine_blocksize_b( i, m_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_b2t( BLIS_SUBPART1, i, bm_alg, a, &a1 ); bli_acquire_mpart_b2t( BLIS_SUBPART1, i, bm_alg, c, &c1 ); // Initialize objects for packing A1 and C1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack A1 and scale by alpha (if instructed). bli_packm_int( alpha, &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Partition along the n dimension. for ( j = 0; j < n_trans; j += bn_inc ) { // Determine the current incremental packing blocksize. bn_inc = bli_determine_blocksize_f( j, n_trans, b, cntl_blocksize_aux( cntl ) ); // Acquire partitions. bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, b, &b_inc ); bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, &b_pack, &b_pack_inc ); bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, &c1, &c1_inc ); // Pack B1 and scale by alpha (if instructed). bli_packm_int( alpha, &b_inc, &b_pack_inc, cntl_sub_packm_b( cntl ) ); // Perform trsm subproblem. bli_trsm_int( BLIS_LEFT, alpha, &a1_pack, &b_pack_inc, beta, &c1_inc, cntl_sub_trsm( cntl ) ); } } // Partition along the remaining portion of the m dimension. for ( i = i + bm_alg; i < m_trans; i += bm_alg ) { // Determine the current algorithmic blocksize. bm_alg = bli_determine_blocksize_b( i, m_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_b2t( BLIS_SUBPART1, i, bm_alg, a, &a1 ); bli_acquire_mpart_b2t( BLIS_SUBPART1, i, bm_alg, c, &c1 ); // Initialize object for packing A1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack A1 and scale by alpha (if instructed). bli_packm_int( alpha, &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); if ( bli_obj_intersects_diag( a1_pack ) ) bli_trsm_int( BLIS_LEFT, alpha, &a1_pack, &b_pack, beta, &c1, cntl_sub_trsm( cntl ) ); else bli_gemm_int( &BLIS_MINUS_ONE, &a1_pack, &b_pack, &BLIS_ONE, &c1, cntl_sub_gemm( cntl ) ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. bli_obj_release_pack( &a1_pack ); bli_obj_release_pack( &b_pack ); }
void bli_trsm_blk_var3f( obj_t* a, obj_t* b, obj_t* c, trsm_t* cntl, trsm_thrinfo_t* thread ) { obj_t c_pack_s; obj_t a1_pack_s, b1_pack_s; obj_t a1, b1; obj_t* a1_pack = NULL; obj_t* b1_pack = NULL; obj_t* c_pack = NULL; dim_t i; dim_t b_alg; dim_t k_trans; // Initialize pack objects for C that are passed into packm_init(). if( thread_am_ochief( thread ) ) { bli_obj_init_pack( &c_pack_s ); // Initialize object for packing C. bli_packm_init( c, &c_pack_s, cntl_sub_packm_c( cntl ) ); // Scale C by beta (if instructed). bli_scalm_int( &BLIS_ONE, c, cntl_sub_scalm( cntl ) ); } c_pack = thread_obroadcast( thread, &c_pack_s ); if( thread_am_ichief( thread ) ) { bli_obj_init_pack( &a1_pack_s ); bli_obj_init_pack( &b1_pack_s ); } a1_pack = thread_ibroadcast( thread, &a1_pack_s ); b1_pack = thread_ibroadcast( thread, &b1_pack_s ); // Pack C (if instructed). bli_packm_int( c, c_pack, cntl_sub_packm_c( cntl ), trsm_thread_sub_opackm( thread ) ); // Query dimension in partitioning direction. k_trans = bli_obj_width_after_trans( *a ); // Partition along the k dimension. for ( i = 0; i < k_trans; i += b_alg ) { // Determine the current algorithmic blocksize. // NOTE: We call a trsm-specific function to determine the kc // blocksize so that we can implement the "nudging" of kc to be // a multiple of mr, as needed. b_alg = bli_trsm_determine_kc_f( i, k_trans, b, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and B1. bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, a, &a1 ); bli_acquire_mpart_t2b( BLIS_SUBPART1, i, b_alg, b, &b1 ); // Initialize objects for packing A1 and B1. if( thread_am_ichief( thread ) ) { bli_packm_init( &a1, a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_init( &b1, b1_pack, cntl_sub_packm_b( cntl ) ); } thread_ibarrier( thread ); // Pack A1 (if instructed). bli_packm_int( &a1, a1_pack, cntl_sub_packm_a( cntl ), trsm_thread_sub_ipackm( thread ) ); // Pack B1 (if instructed). bli_packm_int( &b1, b1_pack, cntl_sub_packm_b( cntl ), trsm_thread_sub_ipackm( thread ) ); // Perform trsm subproblem. bli_trsm_int( &BLIS_ONE, a1_pack, b1_pack, &BLIS_ONE, c_pack, cntl_sub_trsm( cntl ), trsm_thread_sub_trsm( thread ) ); // This variant executes multiple rank-k updates. Therefore, if the // internal alpha scalars on A/B and C are non-zero, we must ensure // that they are only used in the first iteration. thread_ibarrier( thread ); if ( i == 0 && thread_am_ichief( thread ) ) { bli_obj_scalar_reset( a ); bli_obj_scalar_reset( b ); bli_obj_scalar_reset( c_pack ); } } thread_obarrier( thread ); // Unpack C (if C was packed). bli_unpackm_int( c_pack, c, cntl_sub_unpackm_c( cntl ), trsm_thread_sub_opackm( thread ) ); // If any packing buffers were acquired within packm, release them back // to the memory manager. if( thread_am_ochief( thread ) ) { bli_packm_release( c_pack, cntl_sub_packm_c( cntl ) ); } if( thread_am_ichief( thread ) ) { bli_packm_release( a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_release( b1_pack, cntl_sub_packm_b( cntl ) ); } }
void bli_gemm_blk_var4( obj_t* a, obj_t* b, obj_t* c, gemm_t* cntl ) { obj_t a1, a1_pack; obj_t b_pack; obj_t c1, c1_pack; dim_t i; dim_t bm_alg; dim_t m_trans; // Initialize all pack objects that are passed into packm_init(). bli_obj_init_pack( &a1_pack ); bli_obj_init_pack( &b_pack ); bli_obj_init_pack( &c1_pack ); // Query dimension in partitioning direction. m_trans = bli_obj_length_after_trans( *a ); // Scale C by beta (if instructed). bli_scalm_int( &BLIS_ONE, c, cntl_sub_scalm( cntl ) ); // Initialize object for packing B. bli_packm_init( b, &b_pack, cntl_sub_packm_b( cntl ) ); // Fuse the first iteration with incremental packing and computation. { obj_t b_inc, b_pack_inc; obj_t c1_pack_inc; dim_t j; dim_t bn_inc; dim_t n_trans; // Query dimension in partitioning direction. n_trans = bli_obj_width( b_pack ); // Determine the current algorithmic blocksize. bm_alg = bli_determine_blocksize_f( 0, m_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_t2b( BLIS_SUBPART1, 0, bm_alg, a, &a1 ); bli_acquire_mpart_t2b( BLIS_SUBPART1, 0, bm_alg, c, &c1 ); // Initialize objects for packing A1 and C1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_init( &c1, &c1_pack, cntl_sub_packm_c( cntl ) ); // Pack A1 (if instructed). bli_packm_int( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack C1 (if instructed). bli_packm_int( &c1, &c1_pack, cntl_sub_packm_c( cntl ) ); // Partition along the n dimension. for ( j = 0; j < n_trans; j += bn_inc ) { // Determine the current incremental packing blocksize. bn_inc = bli_determine_blocksize_f( j, n_trans, b, cntl_blocksize_aux( cntl ) ); // Acquire partitions. bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, b, &b_inc ); bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, &b_pack, &b_pack_inc ); bli_acquire_mpart_l2r( BLIS_SUBPART1, j, bn_inc, &c1_pack, &c1_pack_inc ); // Pack B1 (if instructed). bli_packm_int( &b_inc, &b_pack_inc, cntl_sub_packm_b( cntl ) ); // Perform gemm subproblem. bli_gemm_int( &BLIS_ONE, &a1_pack, &b_pack_inc, &BLIS_ONE, &c1_pack_inc, cntl_sub_gemm( cntl ) ); } // Unpack C1 (if C1 was packed). bli_unpackm_int( &c1_pack, &c1, cntl_sub_unpackm_c( cntl ) ); } // Partition along the remaining portion of the m dimension. for ( i = bm_alg; i < m_trans; i += bm_alg ) { // Determine the current algorithmic blocksize. // NOTE: Use of a (for execution datatype) is intentional! // This causes the right blocksize to be used if c and a are // complex and b is real. bm_alg = bli_determine_blocksize_f( i, m_trans, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1 and C1. bli_acquire_mpart_t2b( BLIS_SUBPART1, i, bm_alg, a, &a1 ); bli_acquire_mpart_t2b( BLIS_SUBPART1, i, bm_alg, c, &c1 ); // Initialize objects for packing A1 and C1. bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); bli_packm_init( &c1, &c1_pack, cntl_sub_packm_c( cntl ) ); // Pack A1 (if instructed). bli_packm_int( &a1, &a1_pack, cntl_sub_packm_a( cntl ) ); // Pack C1 (if instructed). bli_packm_int( &c1, &c1_pack, cntl_sub_packm_c( cntl ) ); // Perform gemm subproblem. bli_gemm_int( &BLIS_ONE, &a1_pack, &b_pack, &BLIS_ONE, &c1_pack, cntl_sub_gemm( cntl ) ); // Unpack C1 (if C1 was packed). bli_unpackm_int( &c1_pack, &c1, cntl_sub_unpackm_c( cntl ) ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. bli_obj_release_pack( &a1_pack ); bli_obj_release_pack( &b_pack ); bli_obj_release_pack( &c1_pack ); }
void bli_trsm_blk_var2f( obj_t* a, obj_t* b, obj_t* c, trsm_t* cntl, trsm_thrinfo_t* thread ) { obj_t a_pack_s; obj_t b1_pack_s, c1_pack_s; obj_t b1, c1; obj_t* a_pack = NULL; obj_t* b1_pack = NULL; obj_t* c1_pack = NULL; dim_t i; dim_t b_alg; dim_t n_trans; // Initialize pack objects for A that are passed into packm_init(). if( thread_am_ochief( thread ) ) { bli_obj_init_pack( &a_pack_s ); // Initialize object for packing A. bli_packm_init( a, &a_pack_s, cntl_sub_packm_a( cntl ) ); // Scale C by beta (if instructed). bli_scalm_int( &BLIS_ONE, c, cntl_sub_scalm( cntl ) ); } a_pack = thread_obroadcast( thread, &a_pack_s ); // Initialize pack objects for B and C that are passed into packm_init(). if( thread_am_ichief( thread ) ) { bli_obj_init_pack( &b1_pack_s ); bli_obj_init_pack( &c1_pack_s ); } b1_pack = thread_ibroadcast( thread, &b1_pack_s ); c1_pack = thread_ibroadcast( thread, &c1_pack_s ); // Pack A (if instructed). bli_packm_int( a, a_pack, cntl_sub_packm_a( cntl ), trmm_thread_sub_opackm( thread ) ); // Query dimension in partitioning direction. n_trans = bli_obj_width_after_trans( *b ); dim_t start, end; num_t datatype = bli_obj_execution_datatype( *a ); bli_get_range( thread, 0, n_trans, bli_lcm( bli_info_get_default_nr( datatype ), bli_info_get_default_mr( datatype ) ), &start, &end ); // Partition along the n dimension. for ( i = start; i < end; i += b_alg ) { // Determine the current algorithmic blocksize. b_alg = bli_determine_blocksize_f( i, end, b, cntl_blocksize( cntl ) ); // Acquire partitions for B1 and C1. bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, b, &b1 ); bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, c, &c1 ); // Initialize objects for packing A1 and B1. if( thread_am_ichief( thread ) ) { bli_packm_init( &b1, b1_pack, cntl_sub_packm_b( cntl ) ); bli_packm_init( &c1, c1_pack, cntl_sub_packm_c( cntl ) ); } thread_ibarrier( thread ); // Pack B1 (if instructed). bli_packm_int( &b1, b1_pack, cntl_sub_packm_b( cntl ), trsm_thread_sub_ipackm( thread ) ); // Pack C1 (if instructed). bli_packm_int( &c1, c1_pack, cntl_sub_packm_c( cntl ), trsm_thread_sub_ipackm( thread ) ); // Perform trsm subproblem. bli_trsm_int( &BLIS_ONE, a_pack, b1_pack, &BLIS_ONE, c1_pack, cntl_sub_trsm( cntl ), trsm_thread_sub_trsm( thread ) ); // Unpack C1 (if C1 was packed). bli_unpackm_int( c1_pack, &c1, cntl_sub_unpackm_c( cntl ), trsm_thread_sub_ipackm( thread ) ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. thread_obarrier( thread ); if( thread_am_ochief( thread ) ) bli_obj_release_pack( a_pack ); if( thread_am_ichief( thread ) ) { bli_obj_release_pack( b1_pack ); bli_obj_release_pack( c1_pack ); } }
void bli_trmm_blk_var2f( obj_t* a, obj_t* b, obj_t* c, gemm_t* cntl, trmm_thrinfo_t* thread ) { obj_t a_pack_s; obj_t b1_pack_s, c1_pack_s; obj_t b1, c1; obj_t* a_pack = NULL; obj_t* b1_pack = NULL; obj_t* c1_pack = NULL; dim_t i; dim_t b_alg; // Prune any zero region that exists along the partitioning dimension. bli_trmm_prune_unref_mparts_n( a, b, c ); if( thread_am_ochief( thread ) ) { // Initialize object for packing A bli_obj_init_pack( &a_pack_s ); bli_packm_init( a, &a_pack_s, cntl_sub_packm_a( cntl ) ); // Scale C by beta (if instructed). bli_scalm_int( &BLIS_ONE, c, cntl_sub_scalm( cntl ) ); } a_pack = thread_obroadcast( thread, &a_pack_s ); // Initialize pack objects for B and C that are passed into packm_init(). if( thread_am_ichief( thread ) ) { bli_obj_init_pack( &b1_pack_s ); bli_obj_init_pack( &c1_pack_s ); } b1_pack = thread_ibroadcast( thread, &b1_pack_s ); c1_pack = thread_ibroadcast( thread, &c1_pack_s ); // Pack A (if instructed). bli_packm_int( a, a_pack, cntl_sub_packm_a( cntl ), trmm_thread_sub_opackm( thread ) ); dim_t my_start, my_end; bli_get_range_weighted_l2r( thread, b, bli_blksz_get_mult_for_obj( b, cntl_blocksize( cntl ) ), &my_start, &my_end ); // Partition along the n dimension. for ( i = my_start; i < my_end; i += b_alg ) { // Determine the current algorithmic blocksize. b_alg = bli_determine_blocksize_f( i, my_end, b, cntl_blocksize( cntl ) ); // Acquire partitions for B1 and C1. bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, b, &b1 ); bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, c, &c1 ); // Initialize objects for packing A1 and B1. if( thread_am_ichief( thread ) ) { bli_packm_init( &b1, b1_pack, cntl_sub_packm_b( cntl ) ); bli_packm_init( &c1, c1_pack, cntl_sub_packm_c( cntl ) ); } thread_ibarrier( thread ); // Pack B1 (if instructed). bli_packm_int( &b1, b1_pack, cntl_sub_packm_b( cntl ), trmm_thread_sub_ipackm( thread ) ); // Pack C1 (if instructed). bli_packm_int( &c1, c1_pack, cntl_sub_packm_c( cntl ), trmm_thread_sub_ipackm( thread ) ); // Perform trmm subproblem. bli_trmm_int( &BLIS_ONE, a_pack, b1_pack, &BLIS_ONE, c1_pack, cntl_sub_gemm( cntl ), trmm_thread_sub_trmm( thread ) ); thread_ibarrier( thread ); // Unpack C1 (if C1 was packed). bli_unpackm_int( c1_pack, &c1, cntl_sub_unpackm_c( cntl ), trmm_thread_sub_ipackm( thread ) ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. thread_obarrier( thread ); if( thread_am_ochief( thread ) ) bli_packm_release( a_pack, cntl_sub_packm_a( cntl ) ); if( thread_am_ichief( thread ) ) { bli_packm_release( b1_pack, cntl_sub_packm_b( cntl ) ); bli_packm_release( c1_pack, cntl_sub_packm_c( cntl ) ); } }
void bli_herk_blk_var2f( obj_t* a, obj_t* ah, obj_t* c, gemm_t* cntl, herk_thrinfo_t* thread ) { obj_t a_pack_s; obj_t ah1_pack_s, c1S_pack_s; obj_t ah1, c1, c1S; obj_t aS_pack; obj_t* a_pack; obj_t* ah1_pack; obj_t* c1S_pack; dim_t i; dim_t b_alg; dim_t n_trans; subpart_t stored_part; // The upper and lower variants are identical, except for which // merged subpartition is acquired in the loop body. if ( bli_obj_is_lower( *c ) ) stored_part = BLIS_SUBPART1B; else stored_part = BLIS_SUBPART1T; if( thread_am_ochief( thread ) ) { // Initialize object for packing A bli_obj_init_pack( &a_pack_s ); bli_packm_init( a, &a_pack_s, cntl_sub_packm_a( cntl ) ); // Scale C by beta (if instructed). bli_scalm_int( &BLIS_ONE, c, cntl_sub_scalm( cntl ) ); } a_pack = thread_obroadcast( thread, &a_pack_s ); // Initialize pack objects for C and A' that are passed into packm_init(). if( thread_am_ichief( thread ) ) { bli_obj_init_pack( &ah1_pack_s ); bli_obj_init_pack( &c1S_pack_s ); } ah1_pack = thread_ibroadcast( thread, &ah1_pack_s ); c1S_pack = thread_ibroadcast( thread, &c1S_pack_s ); // Pack A (if instructed). bli_packm_int( a, a_pack, cntl_sub_packm_a( cntl ), herk_thread_sub_opackm( thread ) ); // Query dimension in partitioning direction. n_trans = bli_obj_width_after_trans( *c ); dim_t start, end; // Needs to be replaced with a weighted range because triangle bli_get_range_weighted( thread, 0, n_trans, bli_blksz_get_mult_for_obj( a, cntl_blocksize( cntl ) ), bli_obj_is_lower( *c ), &start, &end ); // Partition along the n dimension. for ( i = start; i < end; i += b_alg ) { // Determine the current algorithmic blocksize. b_alg = bli_determine_blocksize_f( i, end, a, cntl_blocksize( cntl ) ); // Acquire partitions for A1' and C1. bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, ah, &ah1 ); bli_acquire_mpart_l2r( BLIS_SUBPART1, i, b_alg, c, &c1 ); // Partition off the stored region of C1 and the corresponding region // of A_pack. bli_acquire_mpart_t2b( stored_part, i, b_alg, &c1, &c1S ); bli_acquire_mpart_t2b( stored_part, i, b_alg, a_pack, &aS_pack ); // Initialize objects for packing A1' and C1. if( thread_am_ichief( thread ) ) { bli_packm_init( &ah1, ah1_pack, cntl_sub_packm_b( cntl ) ); bli_packm_init( &c1S, c1S_pack, cntl_sub_packm_c( cntl ) ); } thread_ibarrier( thread ) ; // Pack A1' (if instructed). bli_packm_int( &ah1, ah1_pack, cntl_sub_packm_b( cntl ), herk_thread_sub_ipackm( thread ) ); // Pack C1 (if instructed). bli_packm_int( &c1S, c1S_pack, cntl_sub_packm_c( cntl ), herk_thread_sub_ipackm( thread ) ) ; // Perform herk subproblem. bli_herk_int( &BLIS_ONE, &aS_pack, ah1_pack, &BLIS_ONE, c1S_pack, cntl_sub_gemm( cntl ), herk_thread_sub_herk( thread ) ); thread_ibarrier( thread ); // Unpack C1 (if C1 was packed). bli_unpackm_int( c1S_pack, &c1S, cntl_sub_unpackm_c( cntl ), herk_thread_sub_ipackm( thread ) ); } // If any packing buffers were acquired within packm, release them back // to the memory manager. thread_obarrier( thread ); if( thread_am_ochief( thread ) ) bli_packm_release( a_pack, cntl_sub_packm_a( cntl ) ); if( thread_am_ichief( thread ) ) { bli_packm_release( ah1_pack, cntl_sub_packm_b( cntl ) ); bli_packm_release( c1S_pack, cntl_sub_packm_c( cntl ) ); } }