Esempio n. 1
0
void ecb_md(FILE *outf, f_dctx alg[1], const unsigned long blen, const unsigned long klen)
{   unsigned long  j, k;
    unsigned char  pt[32], ct[64], key[32], dummy;

    block_clear(pt, blen);                          // clear initial plaintext and key
    block_clear(key, klen);
    block_copy(ct + blen, pt, blen);                // copy plaintext into upper half
                                                    // of double length ciphertext block
    for(j = 0; j < 400; j++)                        // 400 Monte Carlo tests
    {
        block_out(test_no, &dummy, outf, j);        // output test number
        block_out(key_val, key, outf, klen);        // output key
        block_out(ct_val, pt, outf, blen);          // output plaintext
        f_dec_key(alg, key, klen);                  // set key

        for(k = 0; k < 5000; ++k)                   // 10000 decryptions alternating
        {                                           // upper and lower blocks in ct
            do_dec(alg, ct + blen, ct, 1);
            do_dec(alg, ct, ct + blen, 1);
        }

        // compile next key as defined by NIST

        block_xor(key, ct + 2 * blen - klen, klen);
        block_out(pt_val, ct + blen, outf, blen);   // output ciphertext
        block_copy(pt, ct + blen, blen);            // set ciphertext as next plaintext
    }
}
Esempio n. 2
0
static inline void apply_motion_generic(RoqContext *ri, int x, int y, int deltax,
                                        int deltay, int sz)
{
  int mx, my, cp;

  mx = x + deltax;
  my = y + deltay;

  /* check MV against frame boundaries */
  if ((mx < 0) || (mx > ri->width - sz) ||
      (my < 0) || (my > ri->height - sz)) {
    av_log(ri->avctx, AV_LOG_ERROR, "motion vector out of bounds: MV = (%d, %d), boundaries = (0, 0, %d, %d)\n",
           mx, my, ri->width, ri->height);
    return;
  }

  if (ri->last_frame->data[0] == NULL) {
    av_log(ri->avctx, AV_LOG_ERROR, "Invalid decode type. Invalid header?\n");
    return;
  }

  for(cp = 0; cp < 3; cp++) {
    int outstride = ri->current_frame->linesize[cp];
    int instride  = ri->last_frame   ->linesize[cp];
    block_copy(ri->current_frame->data[cp] + y*outstride + x,
               ri->last_frame->data[cp] + my*instride + mx,
               outstride, instride, sz);
  }
}
Esempio n. 3
0
/**
 * Inverses mixed columns
 * @param dt Data
 */
void AES::inv_mix_sub_columns( uint_8t dt[N_BLOCK] )
{
    uint_8t st[N_BLOCK];
    block_copy(st, dt);

    dt[ 0] = is_box(gfm_e(st[ 0]) ^ gfm_b(st[ 1]) ^ gfm_d(st[ 2]) ^ gfm_9(st[ 3]));
    dt[ 5] = is_box(gfm_9(st[ 0]) ^ gfm_e(st[ 1]) ^ gfm_b(st[ 2]) ^ gfm_d(st[ 3]));
    dt[10] = is_box(gfm_d(st[ 0]) ^ gfm_9(st[ 1]) ^ gfm_e(st[ 2]) ^ gfm_b(st[ 3]));
    dt[15] = is_box(gfm_b(st[ 0]) ^ gfm_d(st[ 1]) ^ gfm_9(st[ 2]) ^ gfm_e(st[ 3]));

    dt[ 4] = is_box(gfm_e(st[ 4]) ^ gfm_b(st[ 5]) ^ gfm_d(st[ 6]) ^ gfm_9(st[ 7]));
    dt[ 9] = is_box(gfm_9(st[ 4]) ^ gfm_e(st[ 5]) ^ gfm_b(st[ 6]) ^ gfm_d(st[ 7]));
    dt[14] = is_box(gfm_d(st[ 4]) ^ gfm_9(st[ 5]) ^ gfm_e(st[ 6]) ^ gfm_b(st[ 7]));
    dt[ 3] = is_box(gfm_b(st[ 4]) ^ gfm_d(st[ 5]) ^ gfm_9(st[ 6]) ^ gfm_e(st[ 7]));

    dt[ 8] = is_box(gfm_e(st[ 8]) ^ gfm_b(st[ 9]) ^ gfm_d(st[10]) ^ gfm_9(st[11]));
    dt[13] = is_box(gfm_9(st[ 8]) ^ gfm_e(st[ 9]) ^ gfm_b(st[10]) ^ gfm_d(st[11]));
    dt[ 2] = is_box(gfm_d(st[ 8]) ^ gfm_9(st[ 9]) ^ gfm_e(st[10]) ^ gfm_b(st[11]));
    dt[ 7] = is_box(gfm_b(st[ 8]) ^ gfm_d(st[ 9]) ^ gfm_9(st[10]) ^ gfm_e(st[11]));

    dt[12] = is_box(gfm_e(st[12]) ^ gfm_b(st[13]) ^ gfm_d(st[14]) ^ gfm_9(st[15]));
    dt[ 1] = is_box(gfm_9(st[12]) ^ gfm_e(st[13]) ^ gfm_b(st[14]) ^ gfm_d(st[15]));
    dt[ 6] = is_box(gfm_d(st[12]) ^ gfm_9(st[13]) ^ gfm_e(st[14]) ^ gfm_b(st[15]));
    dt[11] = is_box(gfm_b(st[12]) ^ gfm_d(st[13]) ^ gfm_9(st[14]) ^ gfm_e(st[15]));
  }
Esempio n. 4
0
/**
 * Mixes columns
 * @param dt Data
 */
void AES::mix_sub_columns( uint_8t dt[N_BLOCK] )
{
    uint_8t st[N_BLOCK];
    block_copy(st, dt);

    dt[ 0] = gfm2_sb(st[0]) ^ gfm3_sb(st[5]) ^ s_box(st[10]) ^ s_box(st[15]);
    dt[ 1] = s_box(st[0]) ^ gfm2_sb(st[5]) ^ gfm3_sb(st[10]) ^ s_box(st[15]);
    dt[ 2] = s_box(st[0]) ^ s_box(st[5]) ^ gfm2_sb(st[10]) ^ gfm3_sb(st[15]);
    dt[ 3] = gfm3_sb(st[0]) ^ s_box(st[5]) ^ s_box(st[10]) ^ gfm2_sb(st[15]);

    dt[ 4] = gfm2_sb(st[4]) ^ gfm3_sb(st[9]) ^ s_box(st[14]) ^ s_box(st[3]);
    dt[ 5] = s_box(st[4]) ^ gfm2_sb(st[9]) ^ gfm3_sb(st[14]) ^ s_box(st[3]);
    dt[ 6] = s_box(st[4]) ^ s_box(st[9]) ^ gfm2_sb(st[14]) ^ gfm3_sb(st[3]);
    dt[ 7] = gfm3_sb(st[4]) ^ s_box(st[9]) ^ s_box(st[14]) ^ gfm2_sb(st[3]);

    dt[ 8] = gfm2_sb(st[8]) ^ gfm3_sb(st[13]) ^ s_box(st[2]) ^ s_box(st[7]);
    dt[ 9] = s_box(st[8]) ^ gfm2_sb(st[13]) ^ gfm3_sb(st[2]) ^ s_box(st[7]);
    dt[10] = s_box(st[8]) ^ s_box(st[13]) ^ gfm2_sb(st[2]) ^ gfm3_sb(st[7]);
    dt[11] = gfm3_sb(st[8]) ^ s_box(st[13]) ^ s_box(st[2]) ^ gfm2_sb(st[7]);

    dt[12] = gfm2_sb(st[12]) ^ gfm3_sb(st[1]) ^ s_box(st[6]) ^ s_box(st[11]);
    dt[13] = s_box(st[12]) ^ gfm2_sb(st[1]) ^ gfm3_sb(st[6]) ^ s_box(st[11]);
    dt[14] = s_box(st[12]) ^ s_box(st[1]) ^ gfm2_sb(st[6]) ^ gfm3_sb(st[11]);
    dt[15] = gfm3_sb(st[12]) ^ s_box(st[1]) ^ s_box(st[6]) ^ gfm2_sb(st[11]);
  }
Esempio n. 5
0
	void * block_copy_construct(void *inp)
	{
		block * x = (block *) inp;
		block * y = block_alloc(x->vec->size);
		block_copy(x, y);
		return y;
	}
Esempio n. 6
0
return_type aes_set_key( const unsigned char key[], length_type keylen, aes_context ctx[1] )
{
    uint_8t cc, rc, hi;

    switch( keylen )
    {
    case 16:
    case 128:
        keylen = 16;
        break;
    case 24:
    case 192:
        keylen = 24;
        break;
    case 32:
    case 256:
        keylen = 32;
        break;
    default:
        ctx->rnd = 0;
        return (return_type) -1;
    }
    block_copy(ctx->ksch, key, keylen);
    hi = (keylen + 28) << 2;
    ctx->rnd = (hi >> 4) - 1;
    for( cc = keylen, rc = 1; cc < hi; cc += 4 )
    {   uint_8t tt, t0, t1, t2, t3;

        t0 = ctx->ksch[cc - 4];
        t1 = ctx->ksch[cc - 3];
        t2 = ctx->ksch[cc - 2];
        t3 = ctx->ksch[cc - 1];
        if( cc % keylen == 0 )
        {
            tt = t0;
            t0 = s_box[t1] ^ rc;
            t1 = s_box[t2];
            t2 = s_box[t3];
            t3 = s_box[tt];
            rc = f2(rc);
        }
        else if( keylen > 24 && cc % keylen == 16 )
        {
            t0 = s_box[t0];
            t1 = s_box[t1];
            t2 = s_box[t2];
            t3 = s_box[t3];
        }
        tt = cc - keylen;
        ctx->ksch[cc + 0] = ctx->ksch[tt + 0] ^ t0;
        ctx->ksch[cc + 1] = ctx->ksch[tt + 1] ^ t1;
        ctx->ksch[cc + 2] = ctx->ksch[tt + 2] ^ t2;
        ctx->ksch[cc + 3] = ctx->ksch[tt + 3] ^ t3;
    }
    return 0;
}
Esempio n. 7
0
SHORT  quick_paste(void)
{                                   /* copy the marked block without */
if (view_block_active()) {          /*   disturbing current scrap */
   my_new_scrap();
   block_copy (FALSE);
   block_paste(FALSE);
   restore_scrap();
   }
else block_paste(FALSE);
}
 bool reallocate_with_copy(OldAllocator &oldAllocator, NewAllocator &newAllocator, block &b,
   size_t n) noexcept
 {
   auto newBlock = newAllocator.allocate(n);
   if (!newBlock) {
     return false;
   }
   block_copy(b, newBlock);
   oldAllocator.deallocate(b);
   b = newBlock;
   return true;
 }
Esempio n. 9
0
static void mesh_prepare_write(mesh_t *mesh)
{
    block_t *blocks, *block, *new_block;
    if (*mesh->ref == 1)
        return;
    (*mesh->ref)--;
    mesh->ref = calloc(1, sizeof(*mesh->ref));
    *mesh->ref = 1;
    blocks = mesh->blocks;
    mesh->blocks = NULL;
    DL_FOREACH(blocks, block) {
        new_block = block_copy(block);
        new_block->id = block->id;
        DL_APPEND(mesh->blocks, new_block);
    }
Esempio n. 10
0
int code_one(struct zint_symbol *symbol, unsigned char source[], int length)
{
	int size = 1, i, j, data_blocks;

	char datagrid[136][120];
	int row, col;
	int sub_version = 0;
	
	if((symbol->option_2 < 0) || (symbol->option_2 > 10)) {
		strcpy(symbol->errtxt, "Invalid symbol size");
		return ERROR_INVALID_OPTION;
	}
	
	if(symbol->option_2 == 9) {
		/* Version S */
		int codewords;
		short int elreg[112];
		unsigned int data[15], ecc[15];
		int stream[30];
		int block_width;
		
		if(length > 18) {
			strcpy(symbol->errtxt, "Input data too long");
			return ERROR_TOO_LONG;
		}
		if(is_sane(NEON, source, length) == ERROR_INVALID_DATA) {
			strcpy(symbol->errtxt, "Invalid input data (Version S encodes numeric input only)");
			return ERROR_INVALID_DATA;
		}
		
		sub_version = 3; codewords = 12; block_width = 6; /* Version S-30 */
		if(length <= 12) { sub_version = 2; codewords = 8; block_width = 4; } /* Version S-20 */
		if(length <= 6) { sub_version = 1; codewords = 4; block_width = 2; } /* Version S-10 */
		
		binary_load(elreg, (char *)source, length);
		hex_dump(elreg);
		
		for(i = 0; i < 15; i++) {
			data[i] = 0;
			ecc[i] = 0;
		}
		
		for(i = 0; i < codewords; i++) {
			data[codewords - i - 1] += 1 * elreg[(i * 5)];
			data[codewords - i - 1] += 2 * elreg[(i * 5) + 1];
			data[codewords - i - 1] += 4 * elreg[(i * 5) + 2];
			data[codewords - i - 1] += 8 * elreg[(i * 5) + 3];
			data[codewords - i - 1] += 16 * elreg[(i * 5) + 4];
		}
		
		rs_init_gf(0x25);
		rs_init_code(codewords, 1);
		rs_encode_long(codewords, data, ecc);
		rs_free();
		
		for(i = 0; i < codewords; i++) {
			stream[i] = data[i];
			stream[i + codewords] = ecc[codewords - i - 1];
		}
		
		for(i = 0; i < 136; i++) {
			for(j = 0; j < 120; j++) {
				datagrid[i][j] = '0';
			}
		}
		
		i = 0;
		for(row = 0; row < 2; row++) {
			for(col = 0; col < block_width; col++) {
				if(stream[i] & 0x10) { datagrid[row * 2][col * 5] = '1'; }
				if(stream[i] & 0x08) { datagrid[row * 2][(col * 5) + 1] = '1'; }
				if(stream[i] & 0x04) { datagrid[row * 2][(col * 5) + 2] = '1'; }
				if(stream[i] & 0x02) { datagrid[(row * 2) + 1][col * 5] = '1'; }
				if(stream[i] & 0x01) { datagrid[(row * 2) + 1][(col * 5) + 1] = '1'; }
				if(stream[i + 1] & 0x10) { datagrid[row * 2][(col * 5) + 3] = '1'; }
				if(stream[i + 1] & 0x08) { datagrid[row * 2][(col * 5) + 4] = '1'; }
				if(stream[i + 1] & 0x04) { datagrid[(row * 2) + 1][(col * 5) + 2] = '1'; }
				if(stream[i + 1] & 0x02) { datagrid[(row * 2) + 1][(col * 5) + 3] = '1'; }
				if(stream[i + 1] & 0x01) { datagrid[(row * 2) + 1][(col * 5) + 4] = '1'; }
				i += 2;
			}
		}
		
		size = 9;	
		symbol->rows = 8;
		symbol->width = 10 * sub_version + 1;
	}
	
	if(symbol->option_2 == 10) {
		/* Version T */
		unsigned int data[40], ecc[25];
		unsigned int stream[65];
		int data_length;
		int data_cw, ecc_cw, block_width;
		
		for(i = 0; i < 40; i++) { data[i] = 0; }
		data_length = c1_encode(symbol, source, data, length);
		
		if(data_length == 0) {
			return ERROR_TOO_LONG;
		}
		
		if(data_length > 38) {
			strcpy(symbol->errtxt, "Input data too long");
			return ERROR_TOO_LONG;
		}
		
		size = 10;
		sub_version = 3; data_cw = 38; ecc_cw = 22; block_width = 12;
		if(data_length <= 24) { sub_version = 2; data_cw = 24; ecc_cw = 16; block_width = 8; }
		if(data_length <= 10) { sub_version = 1; data_cw = 10; ecc_cw = 10; block_width = 4; }
		
		for(i = data_length; i < data_cw; i++) {
			data[i] = 129; /* Pad */
		}
		
		/* Calculate error correction data */
		rs_init_gf(0x12d);
		rs_init_code(ecc_cw, 1);	
		rs_encode_long(data_cw, data, ecc);
		rs_free();
		
		/* "Stream" combines data and error correction data */
		for(i = 0; i < data_cw; i++) {
			stream[i] = data[i];
		}
		for(i = 0; i < ecc_cw; i++) {
			stream[data_cw + i] = ecc[ecc_cw - i - 1];
		}
	
		for(i = 0; i < 136; i++) {
			for(j = 0; j < 120; j++) {
				datagrid[i][j] = '0';
			}
		}
		
		i = 0;
		for(row = 0; row < 5; row++) {
			for(col = 0; col < block_width; col++) {
				if(stream[i] & 0x80) { datagrid[row * 2][col * 4] = '1'; }
				if(stream[i] & 0x40) { datagrid[row * 2][(col * 4) + 1] = '1'; }
				if(stream[i] & 0x20) { datagrid[row * 2][(col * 4) + 2] = '1'; }
				if(stream[i] & 0x10) { datagrid[row * 2][(col * 4) + 3] = '1'; }
				if(stream[i] & 0x08) { datagrid[(row * 2) + 1][col * 4] = '1'; }
				if(stream[i] & 0x04) { datagrid[(row * 2) + 1][(col * 4) + 1] = '1'; }
				if(stream[i] & 0x02) { datagrid[(row * 2) + 1][(col * 4) + 2] = '1'; }
				if(stream[i] & 0x01) { datagrid[(row * 2) + 1][(col * 4) + 3] = '1'; }
				i++;
			}
		}
		
		symbol->rows = 16;
		symbol->width = (sub_version * 16) + 1;
	}
		
	if((symbol->option_2 != 9) && (symbol->option_2 != 10)) {
		/* Version A to H */
		unsigned int data[1500], ecc[600];
		unsigned int sub_data[190], sub_ecc[75];
		unsigned int stream[2100];
		int data_length;
				
		for(i = 0; i < 1500; i++) { data[i] = 0; }
		data_length = c1_encode(symbol, source, data, length);
		
		if(data_length == 0) {
			return ERROR_TOO_LONG;
		}
		
		for(i = 7; i >= 0; i--) {
			if(c1_data_length[i] >= data_length) {
				size = i + 1;
			}
		}
		
		if(symbol->option_2 > size) {
			size = symbol->option_2;
		}
		
		for(i = data_length; i < c1_data_length[size - 1]; i++) {
			data[i] = 129; /* Pad */
		}
		
		/* Calculate error correction data */
		data_length = c1_data_length[size - 1];
		for(i = 0; i < 190; i++) { sub_data[i] = 0; }
		for(i = 0; i < 75; i++) { sub_ecc[i] = 0; }
		
		data_blocks = c1_blocks[size - 1];
		
		rs_init_gf(0x12d);
		rs_init_code(c1_ecc_blocks[size - 1], 0);	
		for(i = 0; i < data_blocks; i++) {
			for(j = 0; j < c1_data_blocks[size - 1]; j++) {
				
				sub_data[j] = data[j * data_blocks + i];
			}
			rs_encode_long(c1_data_blocks[size - 1], sub_data, sub_ecc);
			for(j = 0; j < c1_ecc_blocks[size - 1]; j++) {
				ecc[c1_ecc_length[size - 1] - (j * data_blocks + i) - 1] = sub_ecc[j];
			}
		}
		rs_free();
		
		/* "Stream" combines data and error correction data */
		for(i = 0; i < data_length; i++) {
			stream[i] = data[i];
		}
		for(i = 0; i < c1_ecc_length[size - 1]; i++) {
			stream[data_length + i] = ecc[i];
		}
	
		for(i = 0; i < 136; i++) {
			for(j = 0; j < 120; j++) {
				datagrid[i][j] = '0';
			}
		}
		
		i = 0;
		for(row = 0; row < c1_grid_height[size - 1]; row++) {
			for(col = 0; col < c1_grid_width[size - 1]; col++) {
				if(stream[i] & 0x80) { datagrid[row * 2][col * 4] = '1'; }
				if(stream[i] & 0x40) { datagrid[row * 2][(col * 4) + 1] = '1'; }
				if(stream[i] & 0x20) { datagrid[row * 2][(col * 4) + 2] = '1'; }
				if(stream[i] & 0x10) { datagrid[row * 2][(col * 4) + 3] = '1'; }
				if(stream[i] & 0x08) { datagrid[(row * 2) + 1][col * 4] = '1'; }
				if(stream[i] & 0x04) { datagrid[(row * 2) + 1][(col * 4) + 1] = '1'; }
				if(stream[i] & 0x02) { datagrid[(row * 2) + 1][(col * 4) + 2] = '1'; }
				if(stream[i] & 0x01) { datagrid[(row * 2) + 1][(col * 4) + 3] = '1'; }
				i++;
			}
		}
		
		/* for(i = 0; i < (c1_grid_height[size - 1] * 2); i++) {
			for(j = 0; j < (c1_grid_width[size - 1] * 4); j++) {
				printf("%c", datagrid[i][j]);
			}
			printf("\n");
		} */
		
		symbol->rows = c1_height[size - 1];
		symbol->width = c1_width[size - 1];
	}
	
	switch(size) {
		case 1: /* Version A */
			central_finder(symbol, 6, 3, 1);
			vert(symbol, 4, 6, 1);
			vert(symbol, 12, 5, 0); 
			set_module(symbol, 5, 12);
			spigot(symbol, 0);
			spigot(symbol, 15);
			block_copy(symbol, datagrid, 0, 0, 5, 4, 0, 0);
			block_copy(symbol, datagrid, 0, 4, 5, 12, 0, 2);
			block_copy(symbol, datagrid, 5, 0, 5, 12, 6, 0);
			block_copy(symbol, datagrid, 5, 12, 5, 4, 6, 2);
			break;
		case 2: /* Version B */
			central_finder(symbol, 8, 4, 1);
			vert(symbol, 4, 8, 1);
			vert(symbol, 16, 7, 0); 
			set_module(symbol, 7, 16);
			spigot(symbol, 0);
			spigot(symbol, 21);
			block_copy(symbol, datagrid, 0, 0, 7, 4, 0, 0);
			block_copy(symbol, datagrid, 0, 4, 7, 16, 0, 2);
			block_copy(symbol, datagrid, 7, 0, 7, 16, 8, 0);
			block_copy(symbol, datagrid, 7, 16, 7, 4, 8, 2);
			break;
		case 3: /* Version C */
			central_finder(symbol, 11, 4, 2);
			vert(symbol, 4, 11, 1);
			vert(symbol, 26, 13, 1);
			vert(symbol, 4, 10, 0);
			vert(symbol, 26, 10, 0); 
			spigot(symbol, 0);
			spigot(symbol, 27);
			block_copy(symbol, datagrid, 0, 0, 10, 4, 0, 0);
			block_copy(symbol, datagrid, 0, 4, 10, 20, 0, 2);
			block_copy(symbol, datagrid, 0, 24, 10, 4, 0, 4);
			block_copy(symbol, datagrid, 10, 0, 10, 4, 8, 0);
			block_copy(symbol, datagrid, 10, 4, 10, 20, 8, 2);
			block_copy(symbol, datagrid, 10, 24, 10, 4, 8, 4);
			break;
		case 4: /* Version D */
			central_finder(symbol, 16, 5, 1); 
			vert(symbol, 4, 16, 1);
			vert(symbol, 20, 16, 1);
			vert(symbol, 36, 16, 1);
			vert(symbol, 4, 15, 0);
			vert(symbol, 20, 15, 0);
			vert(symbol, 36, 15, 0);
			spigot(symbol, 0);
			spigot(symbol, 12);
			spigot(symbol, 27);
			spigot(symbol, 39);
			block_copy(symbol, datagrid, 0, 0, 15, 4, 0, 0);
			block_copy(symbol, datagrid, 0, 4, 15, 14, 0, 2);
			block_copy(symbol, datagrid, 0, 18, 15, 14, 0, 4);
			block_copy(symbol, datagrid, 0, 32, 15, 4, 0, 6);
			block_copy(symbol, datagrid, 15, 0, 15, 4, 10, 0);
			block_copy(symbol, datagrid, 15, 4, 15, 14, 10, 2);
			block_copy(symbol, datagrid, 15, 18, 15, 14, 10, 4);
			block_copy(symbol, datagrid, 15, 32, 15, 4, 10, 6);
			break;
		case 5: /* Version E */
			central_finder(symbol, 22, 5, 2); 
			vert(symbol, 4, 22, 1);
			vert(symbol, 26, 24, 1);
			vert(symbol, 48, 22, 1);
			vert(symbol, 4, 21, 0);
			vert(symbol, 26, 21, 0);
			vert(symbol, 48, 21, 0);
			spigot(symbol, 0);
			spigot(symbol, 12);
			spigot(symbol, 39);
			spigot(symbol, 51);
			block_copy(symbol, datagrid, 0, 0, 21, 4, 0, 0);
			block_copy(symbol, datagrid, 0, 4, 21, 20, 0, 2);
			block_copy(symbol, datagrid, 0, 24, 21, 20, 0, 4);
			block_copy(symbol, datagrid, 0, 44, 21, 4, 0, 6);
			block_copy(symbol, datagrid, 21, 0, 21, 4, 10, 0);
			block_copy(symbol, datagrid, 21, 4, 21, 20, 10, 2);
			block_copy(symbol, datagrid, 21, 24, 21, 20, 10, 4);
			block_copy(symbol, datagrid, 21, 44, 21, 4, 10, 6);
			break;
		case 6: /* Version F */
			central_finder(symbol, 31, 5, 3); 
			vert(symbol, 4, 31, 1);
			vert(symbol, 26, 35, 1);
			vert(symbol, 48, 31, 1);
			vert(symbol, 70, 35, 1);
			vert(symbol, 4, 30, 0);
			vert(symbol, 26, 30, 0);
			vert(symbol, 48, 30, 0);
			vert(symbol, 70, 30, 0);
			spigot(symbol, 0);
			spigot(symbol, 12);
			spigot(symbol, 24);
			spigot(symbol, 45);
			spigot(symbol, 57);
			spigot(symbol, 69);
			block_copy(symbol, datagrid, 0, 0, 30, 4, 0, 0);
			block_copy(symbol, datagrid, 0, 4, 30, 20, 0, 2);
			block_copy(symbol, datagrid, 0, 24, 30, 20, 0, 4);
			block_copy(symbol, datagrid, 0, 44, 30, 20, 0, 6);
			block_copy(symbol, datagrid, 0, 64, 30, 4, 0, 8);
			block_copy(symbol, datagrid, 30, 0, 30, 4, 10, 0);
			block_copy(symbol, datagrid, 30, 4, 30, 20, 10, 2);
			block_copy(symbol, datagrid, 30, 24, 30, 20, 10, 4);
			block_copy(symbol, datagrid, 30, 44, 30, 20, 10, 6);
			block_copy(symbol, datagrid, 30, 64, 30, 4, 10, 8);
			break;
		case 7: /* Version G */
			central_finder(symbol, 47, 6, 2); 
			vert(symbol, 6, 47, 1);
			vert(symbol, 27, 49, 1);
			vert(symbol, 48, 47, 1);
			vert(symbol, 69, 49, 1);
			vert(symbol, 90, 47, 1);
			vert(symbol, 6, 46, 0);
			vert(symbol, 27, 46, 0);
			vert(symbol, 48, 46, 0);
			vert(symbol, 69, 46, 0);
			vert(symbol, 90, 46, 0);
			spigot(symbol, 0);
			spigot(symbol, 12);
			spigot(symbol, 24);
			spigot(symbol, 36);
			spigot(symbol, 67);
			spigot(symbol, 79);
			spigot(symbol, 91);
			spigot(symbol, 103);
			block_copy(symbol, datagrid, 0, 0, 46, 6, 0, 0);
			block_copy(symbol, datagrid, 0, 6, 46, 19, 0, 2);
			block_copy(symbol, datagrid, 0, 25, 46, 19, 0, 4);
			block_copy(symbol, datagrid, 0, 44, 46, 19, 0, 6);
			block_copy(symbol, datagrid, 0, 63, 46, 19, 0, 8);
			block_copy(symbol, datagrid, 0, 82, 46, 6, 0, 10);
			block_copy(symbol, datagrid, 46, 0, 46, 6, 12, 0);
			block_copy(symbol, datagrid, 46, 6, 46, 19, 12, 2);
			block_copy(symbol, datagrid, 46, 25, 46, 19, 12, 4);
			block_copy(symbol, datagrid, 46, 44, 46, 19, 12, 6);
			block_copy(symbol, datagrid, 46, 63, 46, 19, 12, 8);
			block_copy(symbol, datagrid, 46, 82, 46, 6, 12, 10);
			break;
		case 8: /* Version H */
			central_finder(symbol, 69, 6, 3);
			vert(symbol, 6, 69, 1);
			vert(symbol, 26, 73, 1);
			vert(symbol, 46, 69, 1);
			vert(symbol, 66, 73, 1);
			vert(symbol, 86, 69, 1);
			vert(symbol, 106, 73, 1);
			vert(symbol, 126, 69, 1);
			vert(symbol, 6, 68, 0);
			vert(symbol, 26, 68, 0);
			vert(symbol, 46, 68, 0);
			vert(symbol, 66, 68, 0);
			vert(symbol, 86, 68, 0);
			vert(symbol, 106, 68, 0);
			vert(symbol, 126, 68, 0); 
			spigot(symbol, 0);
			spigot(symbol, 12);
			spigot(symbol, 24);
			spigot(symbol, 36);
			spigot(symbol, 48);
			spigot(symbol, 60);
			spigot(symbol, 87);
			spigot(symbol, 99);
			spigot(symbol, 111);
			spigot(symbol, 123);
			spigot(symbol, 135);
			spigot(symbol, 147);
			block_copy(symbol, datagrid, 0, 0, 68, 6, 0, 0);
			block_copy(symbol, datagrid, 0, 6, 68, 18, 0, 2);
			block_copy(symbol, datagrid, 0, 24, 68, 18, 0, 4);
			block_copy(symbol, datagrid, 0, 42, 68, 18, 0, 6);
			block_copy(symbol, datagrid, 0, 60, 68, 18, 0, 8);
			block_copy(symbol, datagrid, 0, 78, 68, 18, 0, 10);
			block_copy(symbol, datagrid, 0, 96, 68, 18, 0, 12);
			block_copy(symbol, datagrid, 0, 114, 68, 6, 0, 14);
			block_copy(symbol, datagrid, 68, 0, 68, 6, 12, 0);
			block_copy(symbol, datagrid, 68, 6, 68, 18, 12, 2);
			block_copy(symbol, datagrid, 68, 24, 68, 18, 12, 4);
			block_copy(symbol, datagrid, 68, 42, 68, 18, 12, 6);
			block_copy(symbol, datagrid, 68, 60, 68, 18, 12, 8);
			block_copy(symbol, datagrid, 68, 78, 68, 18, 12, 10);
			block_copy(symbol, datagrid, 68, 96, 68, 18, 12, 12);
			block_copy(symbol, datagrid, 68, 114, 68, 6, 12, 14);
			break;
		case 9: /* Version S */
			horiz(symbol, 5, 1);
			horiz(symbol, 7, 1);
			set_module(symbol, 6, 0);
			set_module(symbol, 6, symbol->width - 1);
			unset_module(symbol, 7, 1);
			unset_module(symbol, 7, symbol->width - 2);
			switch(sub_version) {
				case 1: /* Version S-10 */
					set_module(symbol, 0, 5);
					block_copy(symbol, datagrid, 0, 0, 4, 5, 0, 0);
					block_copy(symbol, datagrid, 0, 5, 4, 5, 0, 1);
					break;
				case 2: /* Version S-20 */
					set_module(symbol, 0, 10);
					set_module(symbol, 4, 10);
					block_copy(symbol, datagrid, 0, 0, 4, 10, 0, 0);
					block_copy(symbol, datagrid, 0, 10, 4, 10, 0, 1);
					break;
				case 3: /* Version S-30 */
					set_module(symbol, 0, 15);
					set_module(symbol, 4, 15);
					set_module(symbol, 6, 15);
					block_copy(symbol, datagrid, 0, 0, 4, 15, 0, 0);
					block_copy(symbol, datagrid, 0, 15, 4, 15, 0, 1);
					break;
			}
			break;
		case 10: /* Version T */
			horiz(symbol, 11, 1);
			horiz(symbol, 13, 1);
			horiz(symbol, 15, 1);
			set_module(symbol, 12, 0);
			set_module(symbol, 12, symbol->width - 1);
			set_module(symbol, 14, 0);
			set_module(symbol, 14, symbol->width - 1);
			unset_module(symbol, 13, 1);
			unset_module(symbol, 13, symbol->width - 2);
			unset_module(symbol, 15, 1);
			unset_module(symbol, 15, symbol->width - 2);
			switch(sub_version) {
				case 1: /* Version T-16 */
					set_module(symbol, 0, 8);
					set_module(symbol, 10, 8);
					block_copy(symbol, datagrid, 0, 0, 10, 8, 0, 0);
					block_copy(symbol, datagrid, 0, 8, 10, 8, 0, 1);
					break;
				case 2: /* Version T-32 */
					set_module(symbol, 0, 16);
					set_module(symbol, 10, 16);
					set_module(symbol, 12, 16);
					block_copy(symbol, datagrid, 0, 0, 10, 16, 0, 0);
					block_copy(symbol, datagrid, 0, 16, 10, 16, 0, 1);
					break;
				case 3: /* Verion T-48 */
					set_module(symbol, 0, 24);
					set_module(symbol, 10, 24);
					set_module(symbol, 12, 24);
					set_module(symbol, 14, 24);
					block_copy(symbol, datagrid, 0, 0, 10, 24, 0, 0);
					block_copy(symbol, datagrid, 0, 24, 10, 24, 0, 1);
					break;
			}
			break;
	}
	
	for(i = 0; i < symbol->rows; i++) {
		symbol->row_height[i] = 1;
	}
	
	return 0;
}
Esempio n. 11
0
void ref_test(const char *in_file, const unsigned int it_cnt, enum test_type t_type, AESREF alg)
{   u4byte          i, kl, test_no, cnt, e_cnt;
    u1byte          key[32], pt[16], iv[16], ect[16], act[32];
    char            str[128], tstr[16];
    int             ty;
    IFILE           inf;

    con_string("\nTest file: "); con_string(in_file); con_string("\nStatus: \n");

    if(!(inf = open_ifile(inf, in_file)))   // reference file for test vectors
    {                                       // if file is not present
        con_string("error in running test\n"); return;
    }

    cnt = 0; e_cnt = test_no = 0;

    for(;;)                         // while there are tests
    {
        ty = find_line(inf, str);   // input a line

        if(ty < 0)                  // until end of file

            break;

        switch(ty)      // process line type
        {
          case 0:   kl = get_dec(str + 8); continue;        // key length
          case 1:   test_no = get_dec(str + 2); continue;   // test number
          case 2:   block_in(iv, str + 3); continue;        // init vector
          case 3:   block_in(key, str + 4); continue;       // key
          case 4:   block_in(pt, str + 3);                  // plaintext
                    if(t_type != ecb_md && t_type != cbc_md)
                        continue;
                    break;
          case 5:   block_in(ect, str + 3);                 // ciphertext
                    if(t_type == ecb_md || t_type == cbc_md)
                        continue;
                    break;
        }

        if(serpent_hack)
        
            block_reverse(key, kl / 8);

        alg.set_key(key, kl, both); // set the key

        if(it_cnt > 100)

            OUT_DOTS(test_no);

        if(t_type == ecb_md || t_type == cbc_md)
        {
            block_copy(act, ect, 16);           // encrypted text to low block

            if(t_type == cbc_md)                // CBC Monte Carlo decryption
            {
                block_copy(act + 16, iv, 16);   // IV to high block

                for(i = 0; i < it_cnt; i += 2)  // do decryptions two at a time
                {
                    if(serpent_hack)
                
                        block_reverse(act, 16);

                    alg.decrypt(act, ect);      // decrypt low block

                    if(serpent_hack)
                    {
                        block_reverse(act, 16); block_reverse(ect, 16);

                    }

                    block_xor(act + 16, ect, 16);// xor into high block

                    if(serpent_hack)
                
                        block_reverse(act + 16, 16);

                    alg.decrypt(act + 16, ect); // decrypt high block

                    if(serpent_hack)
                    {               
                        block_reverse(ect, 16); block_reverse(act + 16, 16);
                    }

                    block_xor(act, ect, 16);    // xor into low block
                }
            }
            else    // ECB Monte Carlo decryption 
            {
                if(serpent_hack)

                    block_reverse(act, 16);

                for(i = 0; i < it_cnt; ++i)
        
                    alg.decrypt(act, act);
        
                if(serpent_hack)

                    block_reverse(act, 16);
            }

            if(!block_cmp(pt, act, 16))
            {
                con_string("\n\ndecryption error on test "); 
                put_dec(tstr, test_no); con_string(tstr); e_cnt++;
            }

            if(t_type == ecb_md)    // test encryption if ECB mode
            {
                if(serpent_hack)

                    block_reverse(act, 16);

                for(i = 0; i < it_cnt; ++i)

                    alg.encrypt(act, act); 

                if(serpent_hack)

                    block_reverse(act, 16);

                if(!block_cmp(ect, act, 16))
                {   
                    con_string("\n\nencryption error on test ");
                    put_dec(tstr, test_no); con_string(tstr); e_cnt++;
                }
            }
        }
        else    // if(t_type == ecb_me || t_type == cbc_me || ecb_vk || ecb_vt)
        {
            if(t_type == cbc_me)                        // CBC Monte Carlo encryption
            {
                block_copy(act, iv, 16); 
                block_copy(act + 16, pt, 16);           // copy IV and plaintext

                for(i = 0; i < it_cnt; i += 2)
                {
                    block_xor(act + 16, act, 16);       // xor low block into high block

                    if(serpent_hack)

                        block_reverse(act + 16, 16);

                    alg.encrypt(act + 16, act + 16);    // encrypt high block

                    if(serpent_hack)

                        block_reverse(act + 16, 16);

                    block_xor(act, act + 16, 16);       // xor high block into low block

                    if(serpent_hack)

                        block_reverse(act, 16);

                    alg.encrypt(act, act);              // encrypt low block
        
                    if(serpent_hack)

                        block_reverse(act, 16);
                }
            }
            else    // ECB Monte Carlo encryption
            {
                block_copy(act, pt, 16);

                if(serpent_hack)

                    block_reverse(act, 16);

                for(i = 0; i < it_cnt; ++i)
        
                    alg.encrypt(act, act);

                if(serpent_hack)
                
                    block_reverse(act, 16);
            }

            if(!block_cmp(ect, act, 16))
            {
                    con_string("\n\nencryption error on test ");
                    put_dec(tstr, test_no); con_string(tstr); e_cnt++;
            }
        
            if(t_type != cbc_me)    // if ECB mode test decrytpion
            {
                if(serpent_hack)
                
                    block_reverse(act, 16);

                for(i = 0; i < it_cnt; ++i)

                    alg.decrypt(act, act); 

                if(serpent_hack)
                
                    block_reverse(act, 16);

                if(!block_cmp(pt, act, 16))
                {   
                    con_string("\n\ndecryption error on test ");
                    put_dec(tstr, test_no); con_string(tstr); e_cnt++;
                }
            }
        }
    }

    close_ifile(inf);

    if(e_cnt > 0)   // report any errors
    {
        put_dec(tstr, e_cnt); con_string("\n"); con_string(tstr);
        con_string(" errors during test\n");
    }
    else            // else report all is well

        con_string("\nall tests correct\n");
}
Esempio n. 12
0
/**
 * Writes all entries except ".class" to the data_file_handle,
 * writes corresponding central directory records and the end of central
 * directory record to the directory_file_handle.
 * Treats .ZIP file format as documented in
 * ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip.
 * Assumes that the .ZIP file doesn't span across multiple disks.
 * Assumes that raw_current_entry()->nextCenOffset contains the offset 
 * of the first entry of the central directory (as set in the constructor).
 * Returns true if completes successfully, false otherwise.
 */
bool
JarFileParser::copy_non_class_entries_to(OsFile_Handle data_file_handle,
                                         OsFile_Handle directory_file_handle 
                                         JVM_TRAPS) {
  UsingFastOops fast_oops;
  BufferedFile::Fast jar_buffer = buffered_file();

  const char class_suffix[] = {'.','c','l','a','s','s','\0'};
  juint locOffset = raw_current_entry()->locOffset;
  const juint buffer_size = MAX_ENTRY_NAME;
  DECLARE_STATIC_BUFFER(unsigned char, buffer,  buffer_size);
  unsigned int name_length = 0;
  juint loc_header_offset = 0;
  juint cen_header_offset = 0;
  size_t bytes_to_copy = 0;

  unsigned int written_entry_count = 0;
  unsigned int read_entry_count = 0;
  unsigned int total_entry_count = raw_current_entry()->totalEntryCount;

  // No OsFile_ routine to get the current position, 
  // so keep this information by ourselves.
  juint data_file_position = 0;
  juint directory_file_position = 0;

  GUARANTEE(buffer_size >= LOCHDRSIZ && 
            buffer_size >= EXTHDRSIZ && 
            buffer_size >= ENDHDRSIZ && 
            buffer_size >= MAX_ENTRY_NAME, "Buffer is too small");

  if ((OsFile_seek(data_file_handle, 0L, SEEK_SET) < 0) 
      || (OsFile_seek(directory_file_handle, 0L, SEEK_SET) < 0)) {
    return false;
  }

  for (read_entry_count = 0; read_entry_count < total_entry_count;
       read_entry_count++) {

    // Find the next entry in the JAR.
    bool found = find_entry(NULL JVM_MUST_SUCCEED);
    if (!found) {
      return false;
    }

    cen_header_offset = raw_current_entry()->nextCenOffset;

    // If find_entry succeeded, centralHeader contains the central directory  
    // header for the found entry.
    unsigned char *cenp = (unsigned char *)raw_current_entry()->centralHeader;

    name_length = CENNAM(cenp);

    if (name_length >= MAX_ENTRY_NAME) {
      Throw::error(jarfile_error JVM_THROW_0);
    } else {
      jar_buffer().get_bytes(buffer, name_length);
      if (!JarFileParser::match(class_suffix, (char*)buffer, name_length)) {
        loc_header_offset = locOffset + CENOFF(cenp);

        // Update the relative offset of local header 
        // in the central directory entry.
        // Use little-endian order according to the .ZIP format.
        Bytes::put_Java_u4(cenp + CENOFF_OFFSET,
                           Bytes::swap_u4(data_file_position));

        // Write the central directory entry to the directory file.
        if (OsFile_write(directory_file_handle, 
                         cenp, 1, CENHDRSIZ) != CENHDRSIZ) {
          return false;
        }

        directory_file_position += CENHDRSIZ;

        // Write the file name to the direcory file.
        if (OsFile_write(directory_file_handle, 
                         buffer, 1, name_length) != name_length) {
          return false;
        }

        directory_file_position += name_length;

        // Copy the extra field and file comment to the directory file.
        bytes_to_copy = CENEXT(cenp) + CENCOM(cenp);
        if (block_copy(&jar_buffer, directory_file_handle,
                       bytes_to_copy) != bytes_to_copy) {
          return false;
        }

        directory_file_position += bytes_to_copy;

        // Copy the local file header to the data file.
        if ((jar_buffer().seek(loc_header_offset, SEEK_SET) < 0) 
            || (jar_buffer().get_bytes(buffer, LOCHDRSIZ) != LOCHDRSIZ)
            || (OsFile_write(data_file_handle, 
                             buffer, 1, LOCHDRSIZ) != LOCHDRSIZ)) {
          return false;
        }

        data_file_position += LOCHDRSIZ;

        {
          unsigned char *locp = (unsigned char *)buffer;

          // Copy the file name, extra field and the compressed file data 
          // to the data file.
          bytes_to_copy = LOCNAM(locp) + LOCEXT(locp) + CENSIZ(cenp);
          if (block_copy(&jar_buffer, data_file_handle,
                         bytes_to_copy) != bytes_to_copy) {
            return false;
          }

          data_file_position += bytes_to_copy;

          // Check if the data descriptor exists.
          if ((LOCFLG(locp) & 8) == 8) {
            // Copy the data descriptor to the data file.
            if (jar_buffer().get_bytes(buffer, EXTHDRSIZ) != EXTHDRSIZ) {
              return false;
            }

            // The data descriptor may or may not start with the signature
            // depending on .ZIP file format revision used.
            if (GETSIG(buffer) == EXTSIG) {
              // According to the Info-ZIP Application Note 970311,
              // the data descriptor starts with the signature.
              if (OsFile_write(data_file_handle, 
                               buffer, 1, EXTHDRSIZ) != EXTHDRSIZ) {
                return false;
              }

              data_file_position += EXTHDRSIZ;
            } else {
              // According to the .ZIP format specification version 6.1.0,
              // the data descriptor doesn't start with the signature.
              if (OsFile_write(data_file_handle, 
                               buffer, 1, EXTHDRSIZ - 4) != EXTHDRSIZ - 4) {
                return false;
              }

              data_file_position += EXTHDRSIZ - 4;
            }
          }
        }

        written_entry_count++;
      }
    }

    cen_header_offset += CENHDRSIZ + name_length + CENEXT(cenp) + CENCOM(cenp);
    raw_current_entry()->nextCenOffset = cen_header_offset;
  }

  // Now that all central directory entries are processed, 
  // cen_header_offset points to the end of the central directory.
  if (jar_buffer().seek(cen_header_offset, SEEK_SET) < 0) {
    return false;
  }

  if (jar_buffer().get_bytes(buffer, ENDHDRSIZ) != ENDHDRSIZ) {
    return false;
  }

  {
    unsigned char *endp = (unsigned char *)buffer;

    if (GETSIG(endp) != ENDSIG) {
      return false;
    }

    // Update the record to match the new number of entries.
    // Use little-endian order according to the .ZIP format.

    Bytes::put_Java_u2(endp + ENDSUB_OFFSET,
                       Bytes::swap_u2(written_entry_count)); 
    Bytes::put_Java_u2(endp + ENDTOT_OFFSET,
                       Bytes::swap_u2(written_entry_count)); 

    // The size of the central directory is exactly 
    // the number of bytes written to the directory_file.
    Bytes::put_Java_u4(endp + ENDSIZ_OFFSET,
                       Bytes::swap_u4(directory_file_position)); 
    // The offset of the central directory is exactly 
    // the number of bytes written to the data_file.
    Bytes::put_Java_u4(endp + ENDOFF_OFFSET,
                       Bytes::swap_u4(data_file_position)); 

    if (OsFile_write(directory_file_handle, endp, 1, ENDHDRSIZ) != ENDHDRSIZ) {
      return false;
    }

    if (block_copy(&jar_buffer,
                   directory_file_handle, ENDCOM(endp)) != (size_t)ENDCOM(endp)) {
      return false;
    }
  }

  return true;
}
Esempio n. 13
0
SHORT block_cut(void)  { block_copy(TRUE); }
Esempio n. 14
0
SHORT block_copy(void) { block_copy(FALSE); }