Esempio n. 1
0
int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
                          BN_MONT_CTX *mont, BN_CTX *ctx)
{
    int ret = bn_mul_mont_fixed_top(r, a, b, mont, ctx);

    bn_correct_top(r);
    bn_check_top(r);

    return ret;
}
Esempio n. 2
0
static ECDSA_SIG *ecdsa_do_sign(const unsigned char *dgst, int dgst_len,
                                const BIGNUM *in_kinv, const BIGNUM *in_r,
                                EC_KEY *eckey)
{
    int ok = 0, i;
    BIGNUM *kinv = NULL, *s, *m = NULL, *order = NULL;
    const BIGNUM *ckinv;
    BN_CTX *ctx = NULL;
    const EC_GROUP *group;
    ECDSA_SIG *ret;
    ECDSA_DATA *ecdsa;
    const BIGNUM *priv_key;
    BN_MONT_CTX *mont_data;

    ecdsa = ecdsa_check(eckey);
    group = EC_KEY_get0_group(eckey);
    priv_key = EC_KEY_get0_private_key(eckey);

    if (group == NULL || priv_key == NULL || ecdsa == NULL) {
        ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_PASSED_NULL_PARAMETER);
        return NULL;
    }

    ret = ECDSA_SIG_new();
    if (!ret) {
        ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
        return NULL;
    }
    s = ret->s;

    if ((ctx = BN_CTX_new()) == NULL || (order = BN_new()) == NULL ||
        (m = BN_new()) == NULL) {
        ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (!EC_GROUP_get_order(group, order, ctx)) {
        ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_EC_LIB);
        goto err;
    }
    mont_data = EC_GROUP_get_mont_data(group);

    i = BN_num_bits(order);
    /*
     * Need to truncate digest if it is too long: first truncate whole bytes.
     */
    if (8 * dgst_len > i)
        dgst_len = (i + 7) / 8;
    if (!BN_bin2bn(dgst, dgst_len, m)) {
        ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
        goto err;
    }
    /* If still too long truncate remaining bits with a shift */
    if ((8 * dgst_len > i) && !BN_rshift(m, m, 8 - (i & 0x7))) {
        ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
        goto err;
    }
    do {
        if (in_kinv == NULL || in_r == NULL) {
            if (!ECDSA_sign_setup(eckey, ctx, &kinv, &ret->r)) {
                ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_ECDSA_LIB);
                goto err;
            }
            ckinv = kinv;
        } else {
            ckinv = in_kinv;
            if (BN_copy(ret->r, in_r) == NULL) {
                ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
                goto err;
            }
        }

        /*
         * With only one multiplicant being in Montgomery domain
         * multiplication yields real result without post-conversion.
         * Also note that all operations but last are performed with
         * zero-padded vectors. Last operation, BN_mod_mul_montgomery
         * below, returns user-visible value with removed zero padding.
         */
        if (!bn_to_mont_fixed_top(s, ret->r, mont_data, ctx)
            || !bn_mul_mont_fixed_top(s, s, priv_key, mont_data, ctx)) {
            goto err;
        }
        if (!bn_mod_add_fixed_top(s, s, m, order)) {
            ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
            goto err;
        }
        /*
         * |s| can still be larger than modulus, because |m| can be. In
         * such case we count on Montgomery reduction to tie it up.
         */
        if (!bn_to_mont_fixed_top(s, s, mont_data, ctx)
            || !BN_mod_mul_montgomery(s, s, ckinv, mont_data, ctx)) {
            ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
            goto err;
        }
        if (BN_is_zero(s)) {
            /*
             * if kinv and r have been supplied by the caller don't to
             * generate new kinv and r values
             */
            if (in_kinv != NULL && in_r != NULL) {
                ECDSAerr(ECDSA_F_ECDSA_DO_SIGN,
                         ECDSA_R_NEED_NEW_SETUP_VALUES);
                goto err;
            }
        } else
            /* s != 0 => we have a valid signature */
            break;
    }
    while (1);

    ok = 1;
 err:
    if (!ok) {
        ECDSA_SIG_free(ret);
        ret = NULL;
    }
    if (ctx)
        BN_CTX_free(ctx);
    if (m)
        BN_clear_free(m);
    if (order)
        BN_free(order);
    if (kinv)
        BN_clear_free(kinv);
    return ret;
}
Esempio n. 3
0
static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
{
    BIGNUM *r1, *m1, *vrfy, *r2, *m[RSA_MAX_PRIME_NUM - 2];
    int ret = 0, i, ex_primes = 0, smooth = 0;
    RSA_PRIME_INFO *pinfo;

    BN_CTX_start(ctx);

    r1 = BN_CTX_get(ctx);
    r2 = BN_CTX_get(ctx);
    m1 = BN_CTX_get(ctx);
    vrfy = BN_CTX_get(ctx);
    if (vrfy == NULL)
        goto err;

    if (rsa->version == RSA_ASN1_VERSION_MULTI
        && ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0
             || ex_primes > RSA_MAX_PRIME_NUM - 2))
        goto err;

    if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) {
        BIGNUM *factor = BN_new();

        if (factor == NULL)
            goto err;

        /*
         * Make sure BN_mod_inverse in Montgomery initialization uses the
         * BN_FLG_CONSTTIME flag
         */
        if (!(BN_with_flags(factor, rsa->p, BN_FLG_CONSTTIME),
              BN_MONT_CTX_set_locked(&rsa->_method_mod_p, rsa->lock,
                                     factor, ctx))
            || !(BN_with_flags(factor, rsa->q, BN_FLG_CONSTTIME),
                 BN_MONT_CTX_set_locked(&rsa->_method_mod_q, rsa->lock,
                                        factor, ctx))) {
            BN_free(factor);
            goto err;
        }
        for (i = 0; i < ex_primes; i++) {
            pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i);
            BN_with_flags(factor, pinfo->r, BN_FLG_CONSTTIME);
            if (!BN_MONT_CTX_set_locked(&pinfo->m, rsa->lock, factor, ctx)) {
                BN_free(factor);
                goto err;
            }
        }
        /*
         * We MUST free |factor| before any further use of the prime factors
         */
        BN_free(factor);

        smooth = (ex_primes == 0)
                 && (rsa->meth->bn_mod_exp == BN_mod_exp_mont)
                 && (BN_num_bits(rsa->q) == BN_num_bits(rsa->p));
    }

    if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
        if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock,
                                    rsa->n, ctx))
            goto err;

    if (smooth) {
        /*
         * Conversion from Montgomery domain, a.k.a. Montgomery reduction,
         * accepts values in [0-m*2^w) range. w is m's bit width rounded up
         * to limb width. So that at the very least if |I| is fully reduced,
         * i.e. less than p*q, we can count on from-to round to perform
         * below modulo operations on |I|. Unlike BN_mod it's constant time.
         */
        if (/* m1 = I moq q */
            !bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx)
            || !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx)
            /* m1 = m1^dmq1 mod q */
            || !BN_mod_exp_mont_consttime(m1, m1, rsa->dmq1, rsa->q, ctx,
                                          rsa->_method_mod_q)
            /* r1 = I mod p */
            || !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx)
            || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx)
            /* r1 = r1^dmp1 mod p */
            || !BN_mod_exp_mont_consttime(r1, r1, rsa->dmp1, rsa->p, ctx,
                                          rsa->_method_mod_p)
            /* r1 = (r1 - m1) mod p */
            /*
             * bn_mod_sub_fixed_top is not regular modular subtraction,
             * it can tolerate subtrahend to be larger than modulus, but
             * not bit-wise wider. This makes up for uncommon q>p case,
             * when |m1| can be larger than |rsa->p|.
             */
            || !bn_mod_sub_fixed_top(r1, r1, m1, rsa->p)

            /* r1 = r1 * iqmp mod p */
            || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx)
            || !bn_mul_mont_fixed_top(r1, r1, rsa->iqmp, rsa->_method_mod_p,
                                      ctx)
            /* r0 = r1 * q + m1 */
            || !bn_mul_fixed_top(r0, r1, rsa->q, ctx)
            || !bn_mod_add_fixed_top(r0, r0, m1, rsa->n))
            goto err;

        goto tail;
    }

    /* compute I mod q */
    {
        BIGNUM *c = BN_new();
        if (c == NULL)
            goto err;
        BN_with_flags(c, I, BN_FLG_CONSTTIME);

        if (!BN_mod(r1, c, rsa->q, ctx)) {
            BN_free(c);
            goto err;
        }

        {
            BIGNUM *dmq1 = BN_new();
            if (dmq1 == NULL) {
                BN_free(c);
                goto err;
            }
            BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);

            /* compute r1^dmq1 mod q */
            if (!rsa->meth->bn_mod_exp(m1, r1, dmq1, rsa->q, ctx,
                                       rsa->_method_mod_q)) {
                BN_free(c);
                BN_free(dmq1);
                goto err;
            }
            /* We MUST free dmq1 before any further use of rsa->dmq1 */
            BN_free(dmq1);
        }

        /* compute I mod p */
        if (!BN_mod(r1, c, rsa->p, ctx)) {
            BN_free(c);
            goto err;
        }
        /* We MUST free c before any further use of I */
        BN_free(c);
    }

    {
        BIGNUM *dmp1 = BN_new();
        if (dmp1 == NULL)
            goto err;
        BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);

        /* compute r1^dmp1 mod p */
        if (!rsa->meth->bn_mod_exp(r0, r1, dmp1, rsa->p, ctx,
                                   rsa->_method_mod_p)) {
            BN_free(dmp1);
            goto err;
        }
        /* We MUST free dmp1 before any further use of rsa->dmp1 */
        BN_free(dmp1);
    }

    /*
     * calculate m_i in multi-prime case
     *
     * TODO:
     * 1. squash the following two loops and calculate |m_i| there.
     * 2. remove cc and reuse |c|.
     * 3. remove |dmq1| and |dmp1| in previous block and use |di|.
     *
     * If these things are done, the code will be more readable.
     */
    if (ex_primes > 0) {
        BIGNUM *di = BN_new(), *cc = BN_new();

        if (cc == NULL || di == NULL) {
            BN_free(cc);
            BN_free(di);
            goto err;
        }

        for (i = 0; i < ex_primes; i++) {
            /* prepare m_i */
            if ((m[i] = BN_CTX_get(ctx)) == NULL) {
                BN_free(cc);
                BN_free(di);
                goto err;
            }

            pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i);

            /* prepare c and d_i */
            BN_with_flags(cc, I, BN_FLG_CONSTTIME);
            BN_with_flags(di, pinfo->d, BN_FLG_CONSTTIME);

            if (!BN_mod(r1, cc, pinfo->r, ctx)) {
                BN_free(cc);
                BN_free(di);
                goto err;
            }
            /* compute r1 ^ d_i mod r_i */
            if (!rsa->meth->bn_mod_exp(m[i], r1, di, pinfo->r, ctx, pinfo->m)) {
                BN_free(cc);
                BN_free(di);
                goto err;
            }
        }

        BN_free(cc);
        BN_free(di);
    }

    if (!BN_sub(r0, r0, m1))
        goto err;
    /*
     * This will help stop the size of r0 increasing, which does affect the
     * multiply if it optimised for a power of 2 size
     */
    if (BN_is_negative(r0))
        if (!BN_add(r0, r0, rsa->p))
            goto err;

    if (!BN_mul(r1, r0, rsa->iqmp, ctx))
        goto err;

    {
        BIGNUM *pr1 = BN_new();
        if (pr1 == NULL)
            goto err;
        BN_with_flags(pr1, r1, BN_FLG_CONSTTIME);

        if (!BN_mod(r0, pr1, rsa->p, ctx)) {
            BN_free(pr1);
            goto err;
        }
        /* We MUST free pr1 before any further use of r1 */
        BN_free(pr1);
    }

    /*
     * If p < q it is occasionally possible for the correction of adding 'p'
     * if r0 is negative above to leave the result still negative. This can
     * break the private key operations: the following second correction
     * should *always* correct this rare occurrence. This will *never* happen
     * with OpenSSL generated keys because they ensure p > q [steve]
     */
    if (BN_is_negative(r0))
        if (!BN_add(r0, r0, rsa->p))
            goto err;
    if (!BN_mul(r1, r0, rsa->q, ctx))
        goto err;
    if (!BN_add(r0, r1, m1))
        goto err;

    /* add m_i to m in multi-prime case */
    if (ex_primes > 0) {
        BIGNUM *pr2 = BN_new();

        if (pr2 == NULL)
            goto err;

        for (i = 0; i < ex_primes; i++) {
            pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i);
            if (!BN_sub(r1, m[i], r0)) {
                BN_free(pr2);
                goto err;
            }

            if (!BN_mul(r2, r1, pinfo->t, ctx)) {
                BN_free(pr2);
                goto err;
            }

            BN_with_flags(pr2, r2, BN_FLG_CONSTTIME);

            if (!BN_mod(r1, pr2, pinfo->r, ctx)) {
                BN_free(pr2);
                goto err;
            }

            if (BN_is_negative(r1))
                if (!BN_add(r1, r1, pinfo->r)) {
                    BN_free(pr2);
                    goto err;
                }
            if (!BN_mul(r1, r1, pinfo->pp, ctx)) {
                BN_free(pr2);
                goto err;
            }
            if (!BN_add(r0, r0, r1)) {
                BN_free(pr2);
                goto err;
            }
        }
        BN_free(pr2);
    }

 tail:
    if (rsa->e && rsa->n) {
        if (rsa->meth->bn_mod_exp == BN_mod_exp_mont) {
            if (!BN_mod_exp_mont(vrfy, r0, rsa->e, rsa->n, ctx,
                                 rsa->_method_mod_n))
                goto err;
        } else {
            bn_correct_top(r0);
            if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx,
                                       rsa->_method_mod_n))
                goto err;
        }
        /*
         * If 'I' was greater than (or equal to) rsa->n, the operation will
         * be equivalent to using 'I mod n'. However, the result of the
         * verify will *always* be less than 'n' so we don't check for
         * absolute equality, just congruency.
         */
        if (!BN_sub(vrfy, vrfy, I))
            goto err;
        if (BN_is_zero(vrfy)) {
            bn_correct_top(r0);
            ret = 1;
            goto err;   /* not actually error */
        }
        if (!BN_mod(vrfy, vrfy, rsa->n, ctx))
            goto err;
        if (BN_is_negative(vrfy))
            if (!BN_add(vrfy, vrfy, rsa->n))
                goto err;
        if (!BN_is_zero(vrfy)) {
            /*
             * 'I' and 'vrfy' aren't congruent mod n. Don't leak
             * miscalculated CRT output, just do a raw (slower) mod_exp and
             * return that instead.
             */

            BIGNUM *d = BN_new();
            if (d == NULL)
                goto err;
            BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);

            if (!rsa->meth->bn_mod_exp(r0, I, d, rsa->n, ctx,
                                       rsa->_method_mod_n)) {
                BN_free(d);
                goto err;
            }
            /* We MUST free d before any further use of rsa->d */
            BN_free(d);
        }
    }
    /*
     * It's unfortunate that we have to bn_correct_top(r0). What hopefully
     * saves the day is that correction is highly unlike, and private key
     * operations are customarily performed on blinded message. Which means
     * that attacker won't observe correlation with chosen plaintext.
     * Secondly, remaining code would still handle it in same computational
     * time and even conceal memory access pattern around corrected top.
     */
    bn_correct_top(r0);
    ret = 1;
 err:
    BN_CTX_end(ctx);
    return ret;
}
Esempio n. 4
0
int bn_to_mont_fixed_top(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
                         BN_CTX *ctx)
{
    return bn_mul_mont_fixed_top(r, a, &(mont->RR), mont, ctx);
}