int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_MONT_CTX *mont, BN_CTX *ctx) { int ret = bn_mul_mont_fixed_top(r, a, b, mont, ctx); bn_correct_top(r); bn_check_top(r); return ret; }
static ECDSA_SIG *ecdsa_do_sign(const unsigned char *dgst, int dgst_len, const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey) { int ok = 0, i; BIGNUM *kinv = NULL, *s, *m = NULL, *order = NULL; const BIGNUM *ckinv; BN_CTX *ctx = NULL; const EC_GROUP *group; ECDSA_SIG *ret; ECDSA_DATA *ecdsa; const BIGNUM *priv_key; BN_MONT_CTX *mont_data; ecdsa = ecdsa_check(eckey); group = EC_KEY_get0_group(eckey); priv_key = EC_KEY_get0_private_key(eckey); if (group == NULL || priv_key == NULL || ecdsa == NULL) { ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_PASSED_NULL_PARAMETER); return NULL; } ret = ECDSA_SIG_new(); if (!ret) { ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE); return NULL; } s = ret->s; if ((ctx = BN_CTX_new()) == NULL || (order = BN_new()) == NULL || (m = BN_new()) == NULL) { ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE); goto err; } if (!EC_GROUP_get_order(group, order, ctx)) { ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_EC_LIB); goto err; } mont_data = EC_GROUP_get_mont_data(group); i = BN_num_bits(order); /* * Need to truncate digest if it is too long: first truncate whole bytes. */ if (8 * dgst_len > i) dgst_len = (i + 7) / 8; if (!BN_bin2bn(dgst, dgst_len, m)) { ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB); goto err; } /* If still too long truncate remaining bits with a shift */ if ((8 * dgst_len > i) && !BN_rshift(m, m, 8 - (i & 0x7))) { ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB); goto err; } do { if (in_kinv == NULL || in_r == NULL) { if (!ECDSA_sign_setup(eckey, ctx, &kinv, &ret->r)) { ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_ECDSA_LIB); goto err; } ckinv = kinv; } else { ckinv = in_kinv; if (BN_copy(ret->r, in_r) == NULL) { ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE); goto err; } } /* * With only one multiplicant being in Montgomery domain * multiplication yields real result without post-conversion. * Also note that all operations but last are performed with * zero-padded vectors. Last operation, BN_mod_mul_montgomery * below, returns user-visible value with removed zero padding. */ if (!bn_to_mont_fixed_top(s, ret->r, mont_data, ctx) || !bn_mul_mont_fixed_top(s, s, priv_key, mont_data, ctx)) { goto err; } if (!bn_mod_add_fixed_top(s, s, m, order)) { ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB); goto err; } /* * |s| can still be larger than modulus, because |m| can be. In * such case we count on Montgomery reduction to tie it up. */ if (!bn_to_mont_fixed_top(s, s, mont_data, ctx) || !BN_mod_mul_montgomery(s, s, ckinv, mont_data, ctx)) { ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB); goto err; } if (BN_is_zero(s)) { /* * if kinv and r have been supplied by the caller don't to * generate new kinv and r values */ if (in_kinv != NULL && in_r != NULL) { ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ECDSA_R_NEED_NEW_SETUP_VALUES); goto err; } } else /* s != 0 => we have a valid signature */ break; } while (1); ok = 1; err: if (!ok) { ECDSA_SIG_free(ret); ret = NULL; } if (ctx) BN_CTX_free(ctx); if (m) BN_clear_free(m); if (order) BN_free(order); if (kinv) BN_clear_free(kinv); return ret; }
static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) { BIGNUM *r1, *m1, *vrfy, *r2, *m[RSA_MAX_PRIME_NUM - 2]; int ret = 0, i, ex_primes = 0, smooth = 0; RSA_PRIME_INFO *pinfo; BN_CTX_start(ctx); r1 = BN_CTX_get(ctx); r2 = BN_CTX_get(ctx); m1 = BN_CTX_get(ctx); vrfy = BN_CTX_get(ctx); if (vrfy == NULL) goto err; if (rsa->version == RSA_ASN1_VERSION_MULTI && ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0 || ex_primes > RSA_MAX_PRIME_NUM - 2)) goto err; if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) { BIGNUM *factor = BN_new(); if (factor == NULL) goto err; /* * Make sure BN_mod_inverse in Montgomery initialization uses the * BN_FLG_CONSTTIME flag */ if (!(BN_with_flags(factor, rsa->p, BN_FLG_CONSTTIME), BN_MONT_CTX_set_locked(&rsa->_method_mod_p, rsa->lock, factor, ctx)) || !(BN_with_flags(factor, rsa->q, BN_FLG_CONSTTIME), BN_MONT_CTX_set_locked(&rsa->_method_mod_q, rsa->lock, factor, ctx))) { BN_free(factor); goto err; } for (i = 0; i < ex_primes; i++) { pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); BN_with_flags(factor, pinfo->r, BN_FLG_CONSTTIME); if (!BN_MONT_CTX_set_locked(&pinfo->m, rsa->lock, factor, ctx)) { BN_free(factor); goto err; } } /* * We MUST free |factor| before any further use of the prime factors */ BN_free(factor); smooth = (ex_primes == 0) && (rsa->meth->bn_mod_exp == BN_mod_exp_mont) && (BN_num_bits(rsa->q) == BN_num_bits(rsa->p)); } if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, rsa->n, ctx)) goto err; if (smooth) { /* * Conversion from Montgomery domain, a.k.a. Montgomery reduction, * accepts values in [0-m*2^w) range. w is m's bit width rounded up * to limb width. So that at the very least if |I| is fully reduced, * i.e. less than p*q, we can count on from-to round to perform * below modulo operations on |I|. Unlike BN_mod it's constant time. */ if (/* m1 = I moq q */ !bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx) || !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx) /* m1 = m1^dmq1 mod q */ || !BN_mod_exp_mont_consttime(m1, m1, rsa->dmq1, rsa->q, ctx, rsa->_method_mod_q) /* r1 = I mod p */ || !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx) || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) /* r1 = r1^dmp1 mod p */ || !BN_mod_exp_mont_consttime(r1, r1, rsa->dmp1, rsa->p, ctx, rsa->_method_mod_p) /* r1 = (r1 - m1) mod p */ /* * bn_mod_sub_fixed_top is not regular modular subtraction, * it can tolerate subtrahend to be larger than modulus, but * not bit-wise wider. This makes up for uncommon q>p case, * when |m1| can be larger than |rsa->p|. */ || !bn_mod_sub_fixed_top(r1, r1, m1, rsa->p) /* r1 = r1 * iqmp mod p */ || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) || !bn_mul_mont_fixed_top(r1, r1, rsa->iqmp, rsa->_method_mod_p, ctx) /* r0 = r1 * q + m1 */ || !bn_mul_fixed_top(r0, r1, rsa->q, ctx) || !bn_mod_add_fixed_top(r0, r0, m1, rsa->n)) goto err; goto tail; } /* compute I mod q */ { BIGNUM *c = BN_new(); if (c == NULL) goto err; BN_with_flags(c, I, BN_FLG_CONSTTIME); if (!BN_mod(r1, c, rsa->q, ctx)) { BN_free(c); goto err; } { BIGNUM *dmq1 = BN_new(); if (dmq1 == NULL) { BN_free(c); goto err; } BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME); /* compute r1^dmq1 mod q */ if (!rsa->meth->bn_mod_exp(m1, r1, dmq1, rsa->q, ctx, rsa->_method_mod_q)) { BN_free(c); BN_free(dmq1); goto err; } /* We MUST free dmq1 before any further use of rsa->dmq1 */ BN_free(dmq1); } /* compute I mod p */ if (!BN_mod(r1, c, rsa->p, ctx)) { BN_free(c); goto err; } /* We MUST free c before any further use of I */ BN_free(c); } { BIGNUM *dmp1 = BN_new(); if (dmp1 == NULL) goto err; BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME); /* compute r1^dmp1 mod p */ if (!rsa->meth->bn_mod_exp(r0, r1, dmp1, rsa->p, ctx, rsa->_method_mod_p)) { BN_free(dmp1); goto err; } /* We MUST free dmp1 before any further use of rsa->dmp1 */ BN_free(dmp1); } /* * calculate m_i in multi-prime case * * TODO: * 1. squash the following two loops and calculate |m_i| there. * 2. remove cc and reuse |c|. * 3. remove |dmq1| and |dmp1| in previous block and use |di|. * * If these things are done, the code will be more readable. */ if (ex_primes > 0) { BIGNUM *di = BN_new(), *cc = BN_new(); if (cc == NULL || di == NULL) { BN_free(cc); BN_free(di); goto err; } for (i = 0; i < ex_primes; i++) { /* prepare m_i */ if ((m[i] = BN_CTX_get(ctx)) == NULL) { BN_free(cc); BN_free(di); goto err; } pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); /* prepare c and d_i */ BN_with_flags(cc, I, BN_FLG_CONSTTIME); BN_with_flags(di, pinfo->d, BN_FLG_CONSTTIME); if (!BN_mod(r1, cc, pinfo->r, ctx)) { BN_free(cc); BN_free(di); goto err; } /* compute r1 ^ d_i mod r_i */ if (!rsa->meth->bn_mod_exp(m[i], r1, di, pinfo->r, ctx, pinfo->m)) { BN_free(cc); BN_free(di); goto err; } } BN_free(cc); BN_free(di); } if (!BN_sub(r0, r0, m1)) goto err; /* * This will help stop the size of r0 increasing, which does affect the * multiply if it optimised for a power of 2 size */ if (BN_is_negative(r0)) if (!BN_add(r0, r0, rsa->p)) goto err; if (!BN_mul(r1, r0, rsa->iqmp, ctx)) goto err; { BIGNUM *pr1 = BN_new(); if (pr1 == NULL) goto err; BN_with_flags(pr1, r1, BN_FLG_CONSTTIME); if (!BN_mod(r0, pr1, rsa->p, ctx)) { BN_free(pr1); goto err; } /* We MUST free pr1 before any further use of r1 */ BN_free(pr1); } /* * If p < q it is occasionally possible for the correction of adding 'p' * if r0 is negative above to leave the result still negative. This can * break the private key operations: the following second correction * should *always* correct this rare occurrence. This will *never* happen * with OpenSSL generated keys because they ensure p > q [steve] */ if (BN_is_negative(r0)) if (!BN_add(r0, r0, rsa->p)) goto err; if (!BN_mul(r1, r0, rsa->q, ctx)) goto err; if (!BN_add(r0, r1, m1)) goto err; /* add m_i to m in multi-prime case */ if (ex_primes > 0) { BIGNUM *pr2 = BN_new(); if (pr2 == NULL) goto err; for (i = 0; i < ex_primes; i++) { pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); if (!BN_sub(r1, m[i], r0)) { BN_free(pr2); goto err; } if (!BN_mul(r2, r1, pinfo->t, ctx)) { BN_free(pr2); goto err; } BN_with_flags(pr2, r2, BN_FLG_CONSTTIME); if (!BN_mod(r1, pr2, pinfo->r, ctx)) { BN_free(pr2); goto err; } if (BN_is_negative(r1)) if (!BN_add(r1, r1, pinfo->r)) { BN_free(pr2); goto err; } if (!BN_mul(r1, r1, pinfo->pp, ctx)) { BN_free(pr2); goto err; } if (!BN_add(r0, r0, r1)) { BN_free(pr2); goto err; } } BN_free(pr2); } tail: if (rsa->e && rsa->n) { if (rsa->meth->bn_mod_exp == BN_mod_exp_mont) { if (!BN_mod_exp_mont(vrfy, r0, rsa->e, rsa->n, ctx, rsa->_method_mod_n)) goto err; } else { bn_correct_top(r0); if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx, rsa->_method_mod_n)) goto err; } /* * If 'I' was greater than (or equal to) rsa->n, the operation will * be equivalent to using 'I mod n'. However, the result of the * verify will *always* be less than 'n' so we don't check for * absolute equality, just congruency. */ if (!BN_sub(vrfy, vrfy, I)) goto err; if (BN_is_zero(vrfy)) { bn_correct_top(r0); ret = 1; goto err; /* not actually error */ } if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) goto err; if (BN_is_negative(vrfy)) if (!BN_add(vrfy, vrfy, rsa->n)) goto err; if (!BN_is_zero(vrfy)) { /* * 'I' and 'vrfy' aren't congruent mod n. Don't leak * miscalculated CRT output, just do a raw (slower) mod_exp and * return that instead. */ BIGNUM *d = BN_new(); if (d == NULL) goto err; BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); if (!rsa->meth->bn_mod_exp(r0, I, d, rsa->n, ctx, rsa->_method_mod_n)) { BN_free(d); goto err; } /* We MUST free d before any further use of rsa->d */ BN_free(d); } } /* * It's unfortunate that we have to bn_correct_top(r0). What hopefully * saves the day is that correction is highly unlike, and private key * operations are customarily performed on blinded message. Which means * that attacker won't observe correlation with chosen plaintext. * Secondly, remaining code would still handle it in same computational * time and even conceal memory access pattern around corrected top. */ bn_correct_top(r0); ret = 1; err: BN_CTX_end(ctx); return ret; }
int bn_to_mont_fixed_top(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx) { return bn_mul_mont_fixed_top(r, a, &(mont->RR), mont, ctx); }