void up_decodeirq(uint32_t *regs)
{
#ifdef CONFIG_SUPPRESS_INTERRUPTS
  board_autoled_on(LED_INIRQ);
  lowsyslog(LOG_ERR, "Unexpected IRQ\n");
  current_regs = regs;
  PANIC();
#else
  unsigned int irq;

  /* Read the IRQ number from the IVR register (Could probably get the same
   * info from CIC register without the setup).
   */

  board_autoled_on(LED_INIRQ);
  irq = getreg32(STR71X_EIC_IVR);

  /* Verify that the resulting IRQ number is valid */

  if (irq < NR_IRQS)
    {
      uint32_t *savestate;

      /* Current regs non-zero indicates that we are processing an interrupt;
       * current_regs is also used to manage interrupt level context switches.
       */

      savestate     = (uint32_t *)current_regs;
      current_regs = regs;

      /* Acknowledge the interrupt */

      up_ack_irq(irq);

      /* Deliver the IRQ */

      irq_dispatch(irq, regs);

      /* Restore the previous value of current_regs.  NULL would indicate that
       * we are no longer in an interrupt handler.  It will be non-NULL if we
       * are returning from a nested interrupt.
       */

      current_regs = savestate;
    }
#ifdef CONFIG_DEBUG
  else
    {
      PANIC(); /* Normally never happens */
    }
#endif
  board_autoled_off(LED_INIRQ);
#endif
}
Esempio n. 2
0
void up_allocate_heap(FAR void **heap_start, size_t *heap_size)
{
#if defined(CONFIG_BUILD_PROTECTED) && defined(CONFIG_MM_KERNEL_HEAP)
  /* Get the unaligned size and position of the user-space heap.
   * This heap begins after the user-space .bss section at an offset
   * of CONFIG_MM_KERNEL_HEAPSIZE (subject to alignment).
   */

  uintptr_t ubase = (uintptr_t)USERSPACE->us_bssend + CONFIG_MM_KERNEL_HEAPSIZE;
  size_t    usize = SRAM1_END - ubase;
  int       log2;

  DEBUGASSERT(ubase < (uintptr_t)SRAM1_END);

  /* Adjust that size to account for MPU alignment requirements.
   * NOTE that there is an implicit assumption that the SRAM1_END
   * is aligned to the MPU requirement.
   */

  log2  = (int)mpu_log2regionfloor(usize);
  DEBUGASSERT((SRAM1_END & ((1 << log2) - 1)) == 0);

  usize = (1 << log2);
  ubase = SRAM1_END - usize;

  /* Return the user-space heap settings */

  board_autoled_on(LED_HEAPALLOCATE);
  *heap_start = (FAR void *)ubase;
  *heap_size  = usize;

  /* Colorize the heap for debug */

  up_heap_color((FAR void *)ubase, usize);

  /* Allow user-mode access to the user heap memory */

   stm32_mpu_uheap((uintptr_t)ubase, usize);
#else

  /* Return the heap settings */

  board_autoled_on(LED_HEAPALLOCATE);
  *heap_start = (FAR void *)g_idle_topstack;
  *heap_size  = SRAM1_END - g_idle_topstack;

  /* Colorize the heap for debug */

  up_heap_color(*heap_start, *heap_size);
#endif
}
Esempio n. 3
0
static void _up_assert(int errorcode)
{
  /* Flush any buffered SYSLOG data */

  (void)syslog_flush();

  /* Are we in an interrupt handler or the idle task? */

  if (g_current_regs || this_task()->pid == 0)
    {
       (void)up_irq_save();
        for (; ; )
          {
#if CONFIG_BOARD_RESET_ON_ASSERT >= 1
            board_reset(0);
#endif
#ifdef CONFIG_ARCH_LEDS
            board_autoled_on(LED_PANIC);
            up_mdelay(250);
            board_autoled_off(LED_PANIC);
            up_mdelay(250);
#endif
          }
    }
  else
    {
#if CONFIG_BOARD_RESET_ON_ASSERT >= 2
      board_reset(0);
#endif
      exit(errorcode);
    }
}
Esempio n. 4
0
void up_assert(const uint8_t *filename, int lineno)
{
#if CONFIG_TASK_NAME_SIZE > 0 && defined(CONFIG_DEBUG_ALERT)
  struct tcb_s *rtcb = this_task();
#endif

  board_autoled_on(LED_ASSERTION);

#if CONFIG_TASK_NAME_SIZE > 0
  _alert("Assertion failed at file:%s line: %d task: %s\n",
        filename, lineno, rtcb->name);
#else
  _alert("Assertion failed at file:%s line: %d\n",
        filename, lineno);
#endif

  up_dumpstate();

#ifdef CONFIG_BOARD_CRASHDUMP
  board_crashdump(up_getsp(), this_task(), filename, lineno);
#endif

#ifdef CONFIG_ARCH_USBDUMP
  /* Dump USB trace data */

  (void)usbtrace_enumerate(assert_tracecallback, NULL);
#endif

  _up_assert(EXIT_FAILURE);
}
void up_sigdeliver(void)
{
#ifndef CONFIG_DISABLE_SIGNALS
  FAR struct tcb_s *rtcb = this_task();
  chipreg_t regs[XCPTCONTEXT_REGS];
  sig_deliver_t sigdeliver;

  /* Save the errno.  This must be preserved throughout the signal handling
   * so that the user code final gets the correct errno value (probably
   * EINTR).
   */

  int saved_errno = rtcb->pterrno;

  board_autoled_on(LED_SIGNAL);

  sdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
        rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
  ASSERT(rtcb->xcp.sigdeliver != NULL);

  /* Save the real return state on the stack. */

  ez80_copystate(regs, rtcb->xcp.regs);
  regs[XCPT_PC] = rtcb->xcp.saved_pc;
  regs[XCPT_I]  = rtcb->xcp.saved_i;

  /* Get a local copy of the sigdeliver function pointer.  We do this so
   * that we can nullify the sigdeliver function pointer in the TCB and
   * accept more signal deliveries while processing the current pending
   * signals.
   */

  sigdeliver           = rtcb->xcp.sigdeliver;
  rtcb->xcp.sigdeliver = NULL;

  /* Then restore the task interrupt state. */

  irqrestore(regs[XCPT_I]);

  /* Deliver the signals */

  sigdeliver(rtcb);

  /* Output any debug messages BEFORE restoring errno (because they may
   * alter errno), then disable interrupts again and restore the original
   * errno that is needed by the user logic (it is probably EINTR).
   */

  sdbg("Resuming\n");
  (void)irqsave();
  rtcb->pterrno = saved_errno;

  /* Then restore the correct state for this thread of
   * execution.
   */

  board_autoled_off(LED_SIGNAL);
  ez80_restorecontext(regs);
#endif
}
Esempio n. 6
0
void up_allocate_heap(FAR void **heap_start, size_t *heap_size)
{
  /* Start with the first SRAM region */

  board_autoled_on(LED_HEAPALLOCATE);
  *heap_start = (FAR void *)g_idle_topstack;
  *heap_size = CONFIG_RAM_END - g_idle_topstack;
}
Esempio n. 7
0
void up_sigdeliver(void)
{
	struct tcb_s *rtcb = this_task();
	uint32_t regs[XCPTCONTEXT_REGS];
	sig_deliver_t sigdeliver;

	/* Save the errno.  This must be preserved throughout the signal handling
	 * so that the user code final gets the correct errno value (probably
	 * EINTR).
	 */

	int saved_errno = rtcb->pterrno;

	board_autoled_on(LED_SIGNAL);

	svdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n", rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
	ASSERT(rtcb->xcp.sigdeliver != NULL);

	/* Save the real return state on the stack. */

	up_copyfullstate(regs, rtcb->xcp.regs);
	regs[REG_PC] = rtcb->xcp.saved_pc;
	regs[REG_CPSR] = rtcb->xcp.saved_cpsr;

	/* Get a local copy of the sigdeliver function pointer. we do this so that
	 * we can nullify the sigdeliver function pointer in the TCB and accept
	 * more signal deliveries while processing the current pending signals.
	 */

	sigdeliver = rtcb->xcp.sigdeliver;
	rtcb->xcp.sigdeliver = NULL;

	/* Then restore the task interrupt state */

	irqrestore(regs[REG_CPSR]);

	/* Deliver the signals */

	sigdeliver(rtcb);

	/* Output any debug messages BEFORE restoring errno (because they may
	 * alter errno), then disable interrupts again and restore the original
	 * errno that is needed by the user logic (it is probably EINTR).
	 */

	svdbg("Resuming\n");
	(void)irqsave();
	rtcb->pterrno = saved_errno;

	/* Then restore the correct state for this thread of execution. */

	board_autoled_off(LED_SIGNAL);
#ifdef CONFIG_TASK_SCHED_HISTORY
	/* Save the task name which will be scheduled */
	save_task_scheduling_status(rtcb);
#endif
	up_fullcontextrestore(regs);
}
Esempio n. 8
0
void efm32_led_pminitialize(void)
{
  /* Register to receive power management callbacks */

  int ret = pm_register(&g_ledscb);
  if (ret != OK)
    {
      board_autoled_on(LED_ASSERTION);
    }
}
Esempio n. 9
0
uint32_t *up_doirq(int irq, uint32_t *regs)
{
  board_autoled_on(LED_INIRQ);
#ifdef CONFIG_SUPPRESS_INTERRUPTS
  PANIC();
#else
  uint32_t *savestate;

  /* Nested interrupts are not supported in this implementation.  If you want
   * to implement nested interrupts, you would have to (1) change the way that
   * current_regs is handled and (2) the design associated with
   * CONFIG_ARCH_INTERRUPTSTACK.  The savestate variable will not work for
   * that purpose as implemented here because only the outermost nested
   * interrupt can result in a context switch (it can probably be deleted).
   */

  /* Current regs non-zero indicates that we are processing an interrupt;
   * current_regs is also used to manage interrupt level context switches.
   */

  savestate    = (uint32_t *)current_regs;
  current_regs = regs;

  /* Acknowledge the interrupt */

  up_ack_irq(irq);

  /* Deliver the IRQ */

  irq_dispatch(irq, regs);

  /* If a context switch occurred while processing the interrupt then
   * current_regs may have change value.  If we return any value different
   * from the input regs, then the lower level will know that a context
   * switch occurred during interrupt processing.
   */

  regs = (uint32_t *)current_regs;

  /* Restore the previous value of current_regs.  NULL would indicate that
   * we are no longer in an interrupt handler.  It will be non-NULL if we
   * are returning from a nested interrupt.
   */

  current_regs = savestate;
#endif
  board_autoled_off(LED_INIRQ);
  return regs;
}
Esempio n. 10
0
void up_assert(void)
#endif
{
#if CONFIG_TASK_NAME_SIZE > 0
  struct tcb_s *rtcb = this_task();
#endif

  board_autoled_on(LED_ASSERTION);

#ifdef CONFIG_HAVE_FILENAME
#if CONFIG_TASK_NAME_SIZE > 0
  lldbg("Assertion failed at file:%s line: %d task: %s\n",
        filename, lineno, rtcb->name);
#else
  lldbg("Assertion failed at file:%s line: %d\n",
        filename, lineno);
#endif
#else
#if CONFIG_TASK_NAME_SIZE > 0
  lldbg("Assertion failed: task: %s\n", rtcb->name);
#else
  lldbg("Assertion failed\n");
#endif
#endif

  up_stackdump();
  up_registerdump();

#ifdef CONFIG_ARCH_USBDUMP
  /* Dump USB trace data */

  (void)usbtrace_enumerate(assert_tracecallback, NULL);
#endif

#ifdef CONFIG_BOARD_CRASHDUMP
  board_crashdump(up_getsp(), this_task(), filename, lineno);
#endif

  _up_assert(EXIT_FAILURE);
}
Esempio n. 11
0
static void _up_assert(int errorcode)
{
  /* Are we in an interrupt handler or the idle task? */

  if (g_current_regs || this_task()->pid == 0)
    {
      (void)up_irq_save();
      for (; ; )
        {
#ifdef CONFIG_ARCH_LEDS
          board_autoled_on(LED_PANIC);
          up_mdelay(250);
          board_autoled_off(LED_PANIC);
          up_mdelay(250);
#endif
        }
    }
  else
    {
      exit(errorcode);
    }
}
Esempio n. 12
0
static void _up_assert(int errorcode) /* noreturn_function */
{
  /* Are we in an interrupt handler or the idle task? */

  if (up_interrupt_context() || this_task()->pid == 0)
    {
       (void)irqsave();
        for (;;)
          {
#ifdef CONFIG_ARCH_LEDS
            board_autoled_on(LED_PANIC);
            up_mdelay(250);
            board_autoled_off(LED_PANIC);
            up_mdelay(250);
#endif
          }
    }
  else
    {
      exit(errorcode);
    }
}
Esempio n. 13
0
void up_assert(const uint8_t *filename, int lineno)
{
#ifdef CONFIG_PRINT_TASKNAME
  struct tcb_s *rtcb = this_task();
#endif

  board_autoled_on(LED_ASSERTION);

#ifdef CONFIG_PRINT_TASKNAME
  lldbg("Assertion failed at file:%s line: %d task: %s\n",
        filename, lineno, rtcb->name);
#else
  lldbg("Assertion failed at file:%s line: %d\n",
        filename, lineno);
#endif

  up_dumpstate();

#ifdef CONFIG_BOARD_CRASHDUMP
  board_crashdump(up_getsp(), this_task(), filename, lineno);
#endif

  _up_assert(EXIT_FAILURE);
}
Esempio n. 14
0
int up_create_stack(FAR struct tcb_s *tcb, size_t stack_size, uint8_t ttype)
{
  /* Is there already a stack allocated of a different size?  Because of
   * alignment issues, stack_size might erroneously appear to be of a
   * different size.  Fortunately, this is not a critical operation.
   */

  if (tcb->stack_alloc_ptr && tcb->adj_stack_size != stack_size)
    {
      /* Yes.. Release the old stack */

      up_release_stack(tcb, ttype);
    }

  /* Do we need to allocate a new stack? */

  if (!tcb->stack_alloc_ptr)
    {
      /* Allocate the stack.  If DEBUG is enabled (but not stack debug),
       * then create a zeroed stack to make stack dumps easier to trace.
       */

#if defined(CONFIG_BUILD_KERNEL) && defined(CONFIG_MM_KERNEL_HEAP)
      /* Use the kernel allocator if this is a kernel thread */

      if (ttype == TCB_FLAG_TTYPE_KERNEL)
        {
          tcb->stack_alloc_ptr = (uint32_t *)kmm_malloc(stack_size);
        }
      else
#endif
        {
          /* Use the user-space allocator if this is a task or pthread */

          tcb->stack_alloc_ptr = (uint32_t *)kumm_malloc(stack_size);
        }

#ifdef CONFIG_DEBUG_FEATURES
      /* Was the allocation successful? */

      if (!tcb->stack_alloc_ptr)
        {
          serr("ERROR: Failed to allocate stack, size %d\n", stack_size);
        }
#endif
    }

  /* Did we successfully allocate a stack? */

  if (tcb->stack_alloc_ptr)
    {
      size_t top_of_stack;
      size_t size_of_stack;

      /* Yes.. If stack debug is enabled, then fill the stack with a
       * recognizable value that we can use later to test for high
       * water marks.
       */

#ifdef CONFIG_STACK_COLORATION
      memset(tcb->stack_alloc_ptr, 0xaa, stack_size);
#endif

      /* The SH family uses a push-down stack:  the stack grows
       * toward loweraddresses in memory.  The stack pointer
       * register, points to the lowest, valid work address
       * (the "top" of the stack).  Items on the stack are
       * referenced as positive word offsets from sp.
       */

      top_of_stack = (uint32_t)tcb->stack_alloc_ptr + stack_size - 4;

      /* The SH stack must be aligned at word (4 byte)
       * boundaries. If necessary top_of_stack must be rounded
       * down to the next boundary
       */

      top_of_stack &= ~3;
      size_of_stack = top_of_stack - (uint32_t)tcb->stack_alloc_ptr + 4;

      /* Save the adjusted stack values in the struct tcb_s */

      tcb->adj_stack_ptr  = (uint32_t*)top_of_stack;
      tcb->adj_stack_size = size_of_stack;

      board_autoled_on(LED_STACKCREATED);
      return OK;
    }

   return ERROR;
}
Esempio n. 15
0
uint8_t *up_doirq(int irq, uint8_t *regs)
{
    board_autoled_on(LED_INIRQ);
#ifdef CONFIG_SUPPRESS_INTERRUPTS
    PANIC();
#else
    /* Current regs non-zero indicates that we are processing an interrupt;
     * current_regs is also used to manage interrupt level context switches.
     *
     * Nested interrupts are not supported
     */

    DEBUGASSERT(current_regs == NULL);
    current_regs = regs;

    /* Deliver the IRQ */

    irq_dispatch(irq, regs);

#if defined(CONFIG_ARCH_FPU) || defined(CONFIG_ARCH_ADDRENV)
    /* Check for a context switch.  If a context switch occurred, then
     * current_regs will have a different value than it did on entry.  If an
     * interrupt level context switch has occurred, then restore the floating
     * point state and the establish the correct address environment before
     * returning from the interrupt.
     */

    if (regs != current_regs)
    {
#ifdef CONFIG_ARCH_FPU
        /* Restore floating point registers */

        up_restorefpu((uint32_t*)current_regs);
#endif

#ifdef CONFIG_ARCH_ADDRENV
        /* Make sure that the address environment for the previously
         * running task is closed down gracefully (data caches dump,
         * MMU flushed) and set up the address environment for the new
         * thread at the head of the ready-to-run list.
         */

        (void)group_addrenv(NULL);
#endif
    }
#endif

    /* If a context switch occurred while processing the interrupt then
     * current_regs may have change value.  If we return any value different
     * from the input regs, then the lower level will know that a context
     * switch occurred during interrupt processing.
     */

    regs = (uint8_t*)current_regs;

    /* Set current_regs to NULL to indicate that we are no longer in an
     * interrupt handler.
     */

    current_regs = NULL;
#endif
    board_autoled_off(LED_INIRQ);
    return regs;
}
Esempio n. 16
0
__EXPORT int board_app_initialize(uintptr_t arg)
{

#if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE)

	/* run C++ ctors before we go any further */

	up_cxxinitialize();

#	if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE)
#  		error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE.
#	endif

#else
#  error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined.
#endif

	/* configure the high-resolution time/callout interface */
	hrt_init();

	param_init();

	/* configure the DMA allocator */

	if (board_dma_alloc_init() < 0) {
		message("DMA alloc FAILED");
	}

	/* configure CPU load estimation */
#ifdef CONFIG_SCHED_INSTRUMENTATION
	cpuload_initialize_once();
#endif

	/* set up the serial DMA polling */
	static struct hrt_call serial_dma_call;
	struct timespec ts;

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
	ts.tv_sec = 0;
	ts.tv_nsec = 1000000;

	hrt_call_every(&serial_dma_call,
		       ts_to_abstime(&ts),
		       ts_to_abstime(&ts),
		       (hrt_callout)stm32_serial_dma_poll,
		       NULL);

#if defined(CONFIG_STM32_BBSRAM)

	/* NB. the use of the console requires the hrt running
	 * to poll the DMA
	 */

	/* Using Battery Backed Up SRAM */

	int filesizes[CONFIG_STM32_BBSRAM_FILES + 1] = BSRAM_FILE_SIZES;

	stm32_bbsraminitialize(BBSRAM_PATH, filesizes);

#if defined(CONFIG_STM32_SAVE_CRASHDUMP)

	/* Panic Logging in Battery Backed Up Files */

	/*
	 * In an ideal world, if a fault happens in flight the
	 * system save it to BBSRAM will then reboot. Upon
	 * rebooting, the system will log the fault to disk, recover
	 * the flight state and continue to fly.  But if there is
	 * a fault on the bench or in the air that prohibit the recovery
	 * or committing the log to disk, the things are too broken to
	 * fly. So the question is:
	 *
	 * Did we have a hard fault and not make it far enough
	 * through the boot sequence to commit the fault data to
	 * the SD card?
	 */

	/* Do we have an uncommitted hard fault in BBSRAM?
	 *  - this will be reset after a successful commit to SD
	 */
	int hadCrash = hardfault_check_status("boot");

	if (hadCrash == OK) {

		message("[boot] There is a hard fault logged. Hold down the SPACE BAR," \
			" while booting to halt the system!\n");

		/* Yes. So add one to the boot count - this will be reset after a successful
		 * commit to SD
		 */

		int reboots = hardfault_increment_reboot("boot", false);

		/* Also end the misery for a user that holds for a key down on the console */

		int bytesWaiting;
		ioctl(fileno(stdin), FIONREAD, (unsigned long)((uintptr_t) &bytesWaiting));

		if (reboots > 2 || bytesWaiting != 0) {

			/* Since we can not commit the fault dump to disk. Display it
			 * to the console.
			 */

			hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false);

			message("[boot] There were %d reboots with Hard fault that were not committed to disk - System halted %s\n",
				reboots,
				(bytesWaiting == 0 ? "" : " Due to Key Press\n"));


			/* For those of you with a debugger set a break point on up_assert and
			 * then set dbgContinue = 1 and go.
			 */

			/* Clear any key press that got us here */

			static volatile bool dbgContinue = false;
			int c = '>';

			while (!dbgContinue) {

				switch (c) {

				case EOF:


				case '\n':
				case '\r':
				case ' ':
					continue;

				default:

					putchar(c);
					putchar('\n');

					switch (c) {

					case 'D':
					case 'd':
						hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false);
						break;

					case 'C':
					case 'c':
						hardfault_rearm("boot");
						hardfault_increment_reboot("boot", true);
						break;

					case 'B':
					case 'b':
						dbgContinue = true;
						break;

					default:
						break;
					} // Inner Switch

					message("\nEnter B - Continue booting\n" \
						"Enter C - Clear the fault log\n" \
						"Enter D - Dump fault log\n\n?>");
					fflush(stdout);

					if (!dbgContinue) {
						c = getchar();
					}

					break;

				} // outer switch
			} // for

		} // inner if
	} // outer if

#endif // CONFIG_STM32_SAVE_CRASHDUMP
#endif // CONFIG_STM32_BBSRAM

	/* initial LED state */
	drv_led_start();
	led_off(LED_RED);
	led_off(LED_GREEN);
	led_off(LED_BLUE);

#ifdef CONFIG_SPI
	int ret = stm32_spi_bus_initialize();

	if (ret != OK) {
		board_autoled_on(LED_RED);
		return ret;
	}

#endif

#ifdef CONFIG_MMCSD
	ret = stm32_sdio_initialize();

	if (ret != OK) {
		board_autoled_on(LED_RED);
		return ret;
	}

#endif

	return OK;
}
Esempio n. 17
0
void up_initialize(void)
{
  /* Initialize global variables */

  g_current_regs = NULL;

  /* Calibrate the timing loop */

  up_calibratedelay();

  /* Colorize the interrupt stack */

  up_color_intstack();

  /* Add any extra memory fragments to the memory manager */

  up_addregion();

  /* Initialize the interrupt subsystem */

  up_irqinitialize();

  /* Initialize the DMA subsystem if the weak function stm32_dmainitialize has been
   * brought into the build
   */

#ifdef CONFIG_ARCH_DMA
#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (up_dmainitialize)
#endif
    {
      up_dmainitialize();
    }
#endif

  /* Initialize the system timer interrupt */

#if !defined(CONFIG_SUPPRESS_INTERRUPTS) && !defined(CONFIG_SUPPRESS_TIMER_INTS)
  up_timer_initialize();
#endif

  /* Register devices */

#if CONFIG_NFILE_DESCRIPTORS > 0

#if defined(CONFIG_DEV_NULL)
  devnull_register();   /* Standard /dev/null */
#endif

#if defined(CONFIG_DEV_ZERO)
  devzero_register();   /* Standard /dev/zero */
#endif

#if defined(CONFIG_DEV_LOOP)
  loop_register();      /* Standard /dev/loop */
#endif
#endif /* CONFIG_NFILE_DESCRIPTORS */

#if defined(CONFIG_SCHED_INSTRUMENTATION_BUFFER) && \
    defined(CONFIG_DRIVER_NOTE)
  note_register();      /* Non-standard /dev/note */
#endif

  /* Initialize the serial device driver */

#ifdef USE_SERIALDRIVER
  up_serialinit();
#endif

  /* Initialize the console device driver (if it is other than the standard
   * serial driver).
   */

#if defined(CONFIG_DEV_LOWCONSOLE)
  lowconsole_init();
#elif defined(CONFIG_SYSLOG_CONSOLE)
  syslog_console_init();
#elif defined(CONFIG_RAMLOG_CONSOLE)
  ramlog_consoleinit();
#endif

  /* Initialize the system logging device */

#ifdef CONFIG_SYSLOG_CHAR
  syslog_initialize();
#endif
#ifdef CONFIG_RAMLOG_SYSLOG
  ramlog_sysloginit();
#endif

#ifndef CONFIG_NETDEV_LATEINIT
  /* Initialize the network */

  up_netinitialize();
#endif

#ifdef CONFIG_NETDEV_LOOPBACK
  /* Initialize the local loopback device */

  (void)localhost_initialize();
#endif

#ifdef CONFIG_NET_TUN
  /* Initialize the TUN device */

  (void)tun_initialize();
#endif

#ifdef CONFIG_NETDEV_TELNET
  /* Initialize the Telnet session factory */

  (void)telnet_initialize();
#endif

  /* Initialize USB */

  up_usbinitialize();

#if defined(ARCH_HAVE_LEDS)
  board_autoled_on(LED_IRQSENABLED);
#endif
}
Esempio n. 18
0
void up_sigdeliver(void)
{
  struct tcb_s *rtcb = this_task();
#if 0
  uint32_t regs[XCPTCONTEXT_REGS+3];  /* Why +3? See below */
#else
  uint32_t regs[XCPTCONTEXT_REGS];
#endif
  sig_deliver_t sigdeliver;

  /* Save the errno.  This must be preserved throughout the signal handling
   * so that the user code final gets the correct errno value (probably EINTR).
   */

  int saved_errno = rtcb->pterrno;

  board_autoled_on(LED_SIGNAL);

  sdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
        rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
  ASSERT(rtcb->xcp.sigdeliver != NULL);

  /* Save the real return state on the stack. */

  up_copystate(regs, rtcb->xcp.regs);
  regs[REG_PC]         = rtcb->xcp.saved_pc;
  regs[REG_SR]         = rtcb->xcp.saved_sr;

  /* Get a local copy of the sigdeliver function pointer. We do this so that
   * we can nullify the sigdeliver function pointer in the TCB and accept
   * more signal deliveries while processing the current pending signals.
   */

  sigdeliver           = rtcb->xcp.sigdeliver;
  rtcb->xcp.sigdeliver = NULL;

  /* Then restore the task interrupt state */

  up_irq_restore(regs[REG_SR]);

  /* Deliver the signals */

  sigdeliver(rtcb);

  /* Output any debug messages BEFORE restoring errno (because they may
   * alter errno), then disable interrupts again and restore the original
   * errno that is needed by the user logic (it is probably EINTR).
   */

  sdbg("Resuming\n");
  (void)up_irq_save();
  rtcb->pterrno = saved_errno;

  /* Then restore the correct state for this thread of execution. This is an
   * unusual case that must be handled by up_fullcontextresore. This case is
   * unusal in two ways:
   *
   *   1. It is not a context switch between threads.  Rather, up_fullcontextrestore
   *      must behave more it more like a longjmp within the same task, using
   *      he same stack.
   *   2. In this case, up_fullcontextrestore is called with r12 pointing to
   *      a register save area on the stack to be destroyed.  This is
   *      dangerous because there is the very real possibility that the new
   *      stack pointer might overlap with the register save area and hat stack
   *      usage in up_fullcontextrestore might corrupt the register save data
   *      before the state is restored.  At present, there does not appear to
   *      be any stack overlap problems.  If there were, then adding 3 words
   *      to the size of register save structure size will protect its contents.
   */

  board_autoled_off(LED_SIGNAL);
  up_fullcontextrestore(regs);
}
Esempio n. 19
0
void up_initialize(void)
{
#ifdef CONFIG_SMP
  int i;

  /* Initialize global variables */

  for (i = 0; i < CONFIG_SMP_NCPUS; i++)
    {
      g_current_regs[i] = NULL;
    }
#else
  CURRENT_REGS = NULL;
#endif

  /* Add any extra memory fragments to the memory manager */

  xtensa_add_region();

  /* Initialize the interrupt subsystem */

  xtensa_irq_initialize();

#ifdef CONFIG_PM
  /* Initialize the power management subsystem.  This MCU-specific function
   * must be called *very* early in the initialization sequence *before* any
   * other device drivers are initialized (since they may attempt to register
   * with the power management subsystem).
   */

  up_pminitialize();
#endif

#ifdef CONFIG_ARCH_DMA
  /* Initialize the DMA subsystem if the weak function xtensa_dma_initialize
   * has been brought into the build
   */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (xtensa_dma_initialize)
#endif
    {
      xtensa_dma_initialize();
    }
#endif

#if !defined(CONFIG_SUPPRESS_INTERRUPTS) && !defined(CONFIG_SUPPRESS_TIMER_INTS)
  /* Initialize the system timer interrupt */

  xtensa_timer_initialize();
#endif

#ifdef CONFIG_MM_IOB
  /* Initialize IO buffering */

  iob_initialize();
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0
  /* Register devices */

#if defined(CONFIG_DEV_NULL)
  devnull_register();   /* Standard /dev/null */
#endif

#if defined(CONFIG_DEV_RANDOM)
  devrandom_register(); /* Standard /dev/random */
#endif

#if defined(CONFIG_DEV_URANDOM)
  devurandom_register();   /* Standard /dev/urandom */
#endif

#if defined(CONFIG_DEV_ZERO)
  devzero_register();   /* Standard /dev/zero */
#endif

#if defined(CONFIG_DEV_LOOP)
  loop_register();      /* Standard /dev/loop */
#endif
#endif /* CONFIG_NFILE_DESCRIPTORS */

#if defined(CONFIG_SCHED_INSTRUMENTATION_BUFFER) && \
    defined(CONFIG_DRIVER_NOTE)
  note_register();      /* Non-standard /dev/note */
#endif

  /* Initialize the serial device driver */

#ifdef USE_SERIALDRIVER
  xtensa_serial_initialize();
#endif

  /* Initialize the console device driver (if it is other than the standard
   * serial driver).
   */

#if defined(CONFIG_DEV_LOWCONSOLE)
  lowconsole_init();
#elif defined(CONFIG_CONSOLE_SYSLOG)
  syslog_console_init();
#elif defined(CONFIG_RAMLOG_CONSOLE)
  ramlog_consoleinit();
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0 && defined(CONFIG_PSEUDOTERM_SUSV1)
  /* Register the master pseudo-terminal multiplexor device */

  (void)ptmx_register();
#endif

  /* Early initialization of the system logging device.  Some SYSLOG channel
   * can be initialized early in the initialization sequence because they
   * depend on only minimal OS initialization.
   */

  syslog_initialize(SYSLOG_INIT_EARLY);

#if defined(CONFIG_CRYPTO)
  /* Initialize the HW crypto and /dev/crypto */

  up_cryptoinitialize();
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0 && defined(CONFIG_CRYPTO_CRYPTODEV)
  devcrypto_register();
#endif

#ifndef CONFIG_NETDEV_LATEINIT
  /* Initialize the network */

  up_netinitialize();
#endif

#ifdef CONFIG_NETDEV_LOOPBACK
  /* Initialize the local loopback device */

  (void)localhost_initialize();
#endif

#ifdef CONFIG_NET_TUN
  /* Initialize the TUN device */

  (void)tun_initialize();
#endif

#ifdef CONFIG_NETDEV_TELNET
  /* Initialize the Telnet session factory */

  (void)telnet_initialize();
#endif

  /* Initialize USB -- device and/or host */

  up_usbinitialize();
  board_autoled_on(LED_IRQSENABLED);
}
Esempio n. 20
0
int up_create_stack(FAR struct tcb_s *tcb, size_t stack_size, uint8_t ttype)
{
  /* Is there already a stack allocated of a different size?  Because of
   * alignment issues, stack_size might erroneously appear to be of a
   * different size.  Fortunately, this is not a critical operation.
   */

  if (tcb->stack_alloc_ptr && tcb->adj_stack_size != stack_size)
    {
      /* Yes.. Release the old stack */

      up_release_stack(tcb, ttype);
    }

  /* Do we need to allocate a new stack? */

  if (!tcb->stack_alloc_ptr)
    {
      /* Allocate the stack.  If DEBUG is enabled (but not stack debug),
       * then create a zeroed stack to make stack dumps easier to trace.
       */

      tcb->stack_alloc_ptr = (uint32_t *)kumm_malloc(stack_size);

#ifdef CONFIG_DEBUG
      /* Was the allocation successful? */

      if (!tcb->stack_alloc_ptr)
        {
          sdbg("ERROR: Failed to allocate stack, size %d\n", stack_size);
        }
#endif
    }

  /* Did we successfully allocate a stack? */

  if (tcb->stack_alloc_ptr)
    {
      size_t top_of_stack;

      /* Yes.. If stack debug is enabled, then fill the stack with a
       * recognizable value that we can use later to test for high
       * water marks.
       */

#ifdef CONFIG_STACK_COLORATION
      memset(tcb->stack_alloc_ptr, STACK_COLOR, stack_size);
#endif

      /* The AVR uses a push-down stack:  the stack grows toward lower
       * addresses in memory.  The stack pointer register, points to the
       * lowest, valid work address (the "top" of the stack).  Items on the
       * stack are referenced as positive word offsets from sp.
       */

      top_of_stack = (size_t)tcb->stack_alloc_ptr + stack_size - 1;

      /* Save the adjusted stack values in the struct tcb_s */

      tcb->adj_stack_ptr  = (FAR void *)top_of_stack;
      tcb->adj_stack_size = stack_size;

#if defined(ARCH_HAVE_LEDS)
      board_autoled_on(LED_STACKCREATED);
#endif
      return OK;
    }

  return ERROR;
}
Esempio n. 21
0
void up_sigdeliver(void)
{
  struct tcb_s *rtcb = this_task();
  uint32_t regs[XCPTCONTEXT_REGS];
  sig_deliver_t sigdeliver;

  /* Save the errno.  This must be preserved throughout the signal handling
   * so that the user code final gets the correct errno value (probably
   * EINTR).
   */

  int saved_errno = rtcb->pterrno;

  board_autoled_on(LED_SIGNAL);

  sinfo("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
        rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
  ASSERT(rtcb->xcp.sigdeliver != NULL);

  /* Save the real return state on the stack. */

  up_copystate(regs, rtcb->xcp.regs);
  regs[REG_EPC]        = rtcb->xcp.saved_epc;
  regs[REG_STATUS]     = rtcb->xcp.saved_status;

  /* Get a local copy of the sigdeliver function pointer. We do this so that
   * we can nullify the sigdeliver function pointer in the TCB and accept
   * more signal deliveries while processing the current pending signals.
   */

  sigdeliver           = rtcb->xcp.sigdeliver;
  rtcb->xcp.sigdeliver = NULL;

  /* Then restore the task interrupt state */

  up_irq_restore((irqstate_t)regs[REG_STATUS]);

  /* Deliver the signals */

  sigdeliver(rtcb);

  /* Output any debug messages BEFORE restoring errno (because they may
   * alter errno), then disable interrupts again and restore the original
   * errno that is needed by the user logic (it is probably EINTR).
   */

  sinfo("Resuming EPC: %08x STATUS: %08x\n", regs[REG_EPC], regs[REG_STATUS]);

  (void)up_irq_save();
  rtcb->pterrno = saved_errno;

  /* Then restore the correct state for this thread of
   * execution.
   */

  board_autoled_off(LED_SIGNAL);
  up_fullcontextrestore(regs);

  /* up_fullcontextrestore() should not return but could if the software
   * interrupts are disabled.
   */

  PANIC();
}
Esempio n. 22
0
__EXPORT int board_app_initialize(uintptr_t arg)
{
#if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE)

	/* run C++ ctors before we go any further */

	up_cxxinitialize();

#       if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE)
#               error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE.
#       endif

#else
#  error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined.
#endif

	/* configure the high-resolution time/callout interface */
	hrt_init();

	param_init();

	/* configure the DMA allocator */

	if (board_dma_alloc_init() < 0) {
		message("DMA alloc FAILED");
	}

	/* configure CPU load estimation */
#ifdef CONFIG_SCHED_INSTRUMENTATION
	cpuload_initialize_once();
#endif

	/* set up the serial DMA polling */
	static struct hrt_call serial_dma_call;
	struct timespec ts;

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
	ts.tv_sec = 0;
	ts.tv_nsec = 1000000;

	hrt_call_every(&serial_dma_call,
		       ts_to_abstime(&ts),
		       ts_to_abstime(&ts),
		       (hrt_callout)stm32_serial_dma_poll,
		       NULL);

	/* initial LED state */
	drv_led_start();
	led_off(LED_AMBER);

	/* Configure SPI-based devices */

	spi3 = px4_spibus_initialize(3);

	if (!spi3) {
		message("[boot] FAILED to initialize SPI port 3\n");
		board_autoled_on(LED_AMBER);
		return -ENODEV;
	}

	/* Default SPI3 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi3, 10000000);
	SPI_SETBITS(spi3, 8);
	SPI_SETMODE(spi3, SPIDEV_MODE3);
	SPI_SELECT(spi3, PX4_SPIDEV_GYRO, false);
	SPI_SELECT(spi3, PX4_SPIDEV_ACCEL_MAG, false);
	SPI_SELECT(spi3, PX4_SPIDEV_BARO, false);
	up_udelay(20);

	/* Get the SPI port for the FRAM */

	spi4 = px4_spibus_initialize(4);

	if (!spi4) {
		message("[boot] FAILED to initialize SPI port 4\n");
		board_autoled_on(LED_AMBER);
		return -ENODEV;
	}

	/* Default SPI4 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max)
	 * and de-assert the known chip selects. */

	// XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated
	SPI_SETFREQUENCY(spi4, 12 * 1000 * 1000);
	SPI_SETBITS(spi4, 8);
	SPI_SETMODE(spi4, SPIDEV_MODE3);
	SPI_SELECT(spi4, SPIDEV_FLASH(0), false);

	return OK;
}
Esempio n. 23
0
void up_allocate_heap(FAR void **heap_start, size_t *heap_size)
{
  board_autoled_on(LED_HEAPALLOCATE);
  *heap_start = (FAR void *)g_idle_topstack;
  *heap_size = CONFIG_RAM_END - g_idle_topstack;
}
Esempio n. 24
0
void up_initialize(void)
{
  /* Initialize global variables */

  g_current_regs = NULL;

  /* Calibrate the timing loop */

  up_calibratedelay();

  /* Initialize the interrupt subsystem */

  up_irqinitialize();

#ifdef CONFIG_PM
  /* Initialize the power management subsystem.  This MCU-specific function
   * must be called *very* early in the initialization sequence *before* any
   * other device drivers are initialized (since they may attempt to register
   * with the power management subsystem).
   */

  up_pminitialize();
#endif

#if !defined(CONFIG_SUPPRESS_INTERRUPTS) && !defined(CONFIG_SUPPRESS_TIMER_INTS)
  /* Initialize the system timer interrupt */

  up_timer_initialize();
#endif

  /* Register devices */

#if CONFIG_NFILE_DESCRIPTORS > 0

#if defined(CONFIG_DEV_NULL)
  devnull_register();   /* Standard /dev/null */
#endif

#if defined(CONFIG_DEV_RANDOM)
  devrandom_register(); /* Standard /dev/random */
#endif

#if defined(CONFIG_DEV_URANDOM)
  devurandom_register();   /* Standard /dev/urandom */
#endif

#if defined(CONFIG_DEV_ZERO)
  devzero_register();   /* Standard /dev/zero */
#endif

#if defined(CONFIG_DEV_LOOP)
  loop_register();      /* Standard /dev/loop */
#endif
#endif /* CONFIG_NFILE_DESCRIPTORS */

#if defined(CONFIG_SCHED_INSTRUMENTATION_BUFFER) && \
    defined(CONFIG_DRIVER_NOTE)
  note_register();      /* Non-standard /dev/note */
#endif

  /* Initialize the serial device driver */

#ifdef USE_SERIALDRIVER
  up_serialinit();
#endif

  /* Initialize the console device driver (if it is other than the standard
   * serial driver). NOTE that the naming implies that the console is a serial
   * driver.  That is usually the case, however, if no UARTs are enabled, the
   * console could als be provided through some other device, such as an LCD.
   * Architecture-specific logic will have to detect that case.
   */

#if defined(CONFIG_DEV_LOWCONSOLE)
  lowconsole_init();
#elif defined(CONFIG_CONSOLE_SYSLOG)
  syslog_console_init();
#elif defined(CONFIG_RAMLOG_CONSOLE)
  ramlog_consoleinit();
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0 && defined(CONFIG_PSEUDOTERM_SUSV1)
  /* Register the master pseudo-terminal multiplexor device */

  (void)ptmx_register();
#endif

  /* Early initialization of the system logging device.  Some SYSLOG channel
   * can be initialized early in the initialization sequence because they
   * depend on only minimal OS initialization.
   */

  syslog_initialize(SYSLOG_INIT_EARLY);

#if defined(CONFIG_CRYPTO)
  /* Initialize the HW crypto and /dev/crypto */

  up_cryptoinitialize();
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0 && defined(CONFIG_CRYPTO_CRYPTODEV)
  devcrypto_register();
#endif

#ifndef CONFIG_NETDEV_LATEINIT
  /* Initialize the network */

  up_netinitialize();
#endif

#ifdef CONFIG_NETDEV_LOOPBACK
  /* Initialize the local loopback device */

  (void)localhost_initialize();
#endif

#ifdef CONFIG_NET_TUN
  /* Initialize the TUN device */

  (void)tun_initialize();
#endif

#ifdef CONFIG_NETDEV_TELNET
  /* Initialize the Telnet session factory */

  (void)telnet_initialize();
#endif

  /* Initialize USB */

  up_usbinitialize();

  board_autoled_on(LED_IRQSENABLED);
}
Esempio n. 25
0
uint32_t *up_doirq(int irq, uint32_t* regs)
{
  board_autoled_on(LED_INIRQ);
#ifdef CONFIG_SUPPRESS_INTERRUPTS
  PANIC();
#else
  if ((unsigned)irq < NR_IRQS)
    {
      /* Current regs non-zero indicates that we are processing
       * an interrupt; g_current_regs is also used to manage
       * interrupt level context switches.
       *
       * Nested interrupts are not supported.
       */

      DEBUGASSERT(g_current_regs == NULL);
      g_current_regs = regs;

      /* Deliver the IRQ */

      irq_dispatch(irq, regs);

#if defined(CONFIG_ARCH_FPU) || defined(CONFIG_ARCH_ADDRENV)
      /* Check for a context switch.  If a context switch occurred, then
       * g_current_regs will have a different value than it did on entry.  If an
       * interrupt level context switch has occurred, then restore the floating
       * point state and the establish the correct address environment before
       * returning from the interrupt.
       */

      if (regs != g_current_regs)
        {
#ifdef CONFIG_ARCH_FPU
          /* Restore floating point registers */

          up_restorefpu((uint32_t*)g_current_regs);
#endif

#ifdef CONFIG_ARCH_ADDRENV
          /* Make sure that the address environment for the previously
           * running task is closed down gracefully (data caches dump,
           * MMU flushed) and set up the address environment for the new
           * thread at the head of the ready-to-run list.
           */

          (void)group_addrenv(NULL);
#endif
        }
#endif
      /* Get the current value of regs... it may have changed because
       * of a context switch performed during interrupt processing.
       */

      regs = g_current_regs;

      /* Set g_current_regs to NULL to indicate that we are no longer in an
       * interrupt handler.
       */

      g_current_regs = NULL;
    }

  board_autoled_off(LED_INIRQ);
#endif
  return regs;
}
Esempio n. 26
0
void up_initialize(void)
{
  /* Initialize global variables */

  INIT_IRQCONTEXT();

  /* Calibrate the timing loop */

  up_calibratedelay();

#if CONFIG_MM_REGIONS > 1
  /* Add any extra memory fragments to the memory manager */

  up_addregion();
#endif

  /* Initialize the interrupt subsystem */

  up_irqinitialize();

#ifdef CONFIG_PM
  /* Initialize the power management subsystem.  This MCU-specific function
   * must be called *very* early in the initialization sequence *before* any
   * other device drivers are initialized (since they may attempt to register
   * with the power management subsystem).
   */

  up_pminitialize();
#endif

#if !defined(CONFIG_SUPPRESS_INTERRUPTS) && !defined(CONFIG_SUPPRESS_TIMER_INTS)
  /* Initialize the system timer interrupt */

  z80_timer_initialize();
#endif

  /* Initialize the CPU for those that use it (only for the Z180).  This
   * needs to be done before any tasks are created).
   */

#ifdef CONFIG_ARCH_ADDRENV
  (void)up_mmuinit();
#endif

#ifdef CONFIG_MM_IOB
  /* Initialize IO buffering */

  iob_initialize();
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0
  /* Register devices */

#if defined(CONFIG_DEV_NULL)
  devnull_register();   /* Standard /dev/null */
#endif

#if defined(CONFIG_DEV_RANDOM)
  devrandom_register(); /* Standard /dev/random */
#endif

#if defined(CONFIG_DEV_URANDOM)
  devurandom_register();   /* Standard /dev/urandom */
#endif

#if defined(CONFIG_DEV_ZERO)
  devzero_register();   /* Standard /dev/zero */
#endif

#if defined(CONFIG_DEV_LOOP)
  loop_register();      /* Standard /dev/loop */
#endif
#endif /* CONFIG_NFILE_DESCRIPTORS */

#if defined(CONFIG_SCHED_INSTRUMENTATION_BUFFER) && \
    defined(CONFIG_DRIVER_NOTE)
  note_register();      /* Non-standard /dev/note */
#endif

  /* Initialize the serial device driver */

#ifdef USE_SERIALDRIVER
  up_serialinit();
#endif

  /* Initialize the console device driver (if it is other than the standard
   * serial driver).
   */

#if defined(CONFIG_DEV_LOWCONSOLE)
  lowconsole_init();
#elif defined(CONFIG_CONSOLE_SYSLOG)
  syslog_console_init();
#elif defined(CONFIG_RAMLOG_CONSOLE)
  ramlog_consoleinit();
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0 && defined(CONFIG_PSEUDOTERM_SUSV1)
  /* Register the master pseudo-terminal multiplexor device */

  (void)ptmx_register();
#endif

  /* Early initialization of the system logging device.  Some SYSLOG channel
   * can be initialized early in the initialization sequence because they
   * depend on minimal OS initialization.
   */

  syslog_initialize(SYSLOG_INIT_EARLY);

#if defined(CONFIG_CRYPTO)
  /* Initialize the HW crypto and /dev/crypto */

  up_cryptoinitialize();
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0 && defined(CONFIG_CRYPTO_CRYPTODEV)
  devcrypto_register();
#endif

#ifndef CONFIG_NETDEV_LATEINIT
  /* Initialize the network */

  up_netinitialize();
#endif

#ifdef CONFIG_NETDEV_LOOPBACK
  /* Initialize the local loopback device */

  (void)localhost_initialize();
#endif

#ifdef CONFIG_NET_TUN
  /* Initialize the TUN device */

  (void)tun_initialize();
#endif

#ifdef CONFIG_NETDEV_TELNET
  /* Initialize the Telnet session factory */

  (void)telnet_initialize();
#endif

  board_autoled_on(LED_IRQSENABLED);
}
Esempio n. 27
0
__EXPORT int board_app_initialize(uintptr_t arg)
{

	int result;

	/* IN12 and IN13 further below */

#if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE)

	/* run C++ ctors before we go any further */

	up_cxxinitialize();

#	if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE)
#  		error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE.
#	endif

#else
#  error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined.
#endif

	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* configure CPU load estimation */
#ifdef CONFIG_SCHED_INSTRUMENTATION
	cpuload_initialize_once();
#endif

	/* set up the serial DMA polling */
	static struct hrt_call serial_dma_call;
	struct timespec ts;

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
	ts.tv_sec = 0;
	ts.tv_nsec = 1000000;

	hrt_call_every(&serial_dma_call,
		       ts_to_abstime(&ts),
		       ts_to_abstime(&ts),
		       (hrt_callout)stm32_serial_dma_poll,
		       NULL);

	/* initial LED state */
	drv_led_start();
	led_off(LED_AMBER);
	led_off(LED_BLUE);


	/* Configure SPI-based devices */

	spi1 = stm32_spibus_initialize(1);

	if (!spi1) {
		message("[boot] FAILED to initialize SPI port 1\r\n");
		board_autoled_on(LED_AMBER);
		return -ENODEV;
	}

	/* Default SPI1 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi1, 10000000);
	SPI_SETBITS(spi1, 8);
	SPI_SETMODE(spi1, SPIDEV_MODE3);
	SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false);
	SPI_SELECT(spi1, PX4_SPIDEV_ACCEL, false);
	SPI_SELECT(spi1, PX4_SPIDEV_MPU, false);
	up_udelay(20);

	/*
	 * If SPI2 is enabled in the defconfig, we loose some ADC pins as chip selects.
	 * Keep the SPI2 init optional and conditionally initialize the ADC pins
	 */

#ifdef CONFIG_STM32_SPI2
	spi2 = stm32_spibus_initialize(2);
	/* Default SPI2 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi2, 10000000);
	SPI_SETBITS(spi2, 8);
	SPI_SETMODE(spi2, SPIDEV_MODE3);
	SPI_SELECT(spi2, PX4_SPIDEV_GYRO, false);
	SPI_SELECT(spi2, PX4_SPIDEV_ACCEL_MAG, false);

	message("[boot] Initialized SPI port2 (ADC IN12/13 blocked)\n");
#else
	spi2 = NULL;
	message("[boot] Enabling IN12/13 instead of SPI2\n");
	/* no SPI2, use pins for ADC */
	stm32_configgpio(GPIO_ADC1_IN12);
	stm32_configgpio(GPIO_ADC1_IN13);	// jumperable to MPU6000 DRDY on some boards
#endif

	/* Get the SPI port for the microSD slot */

	spi3 = stm32_spibus_initialize(3);

	if (!spi3) {
		message("[boot] FAILED to initialize SPI port 3\n");
		board_autoled_on(LED_AMBER);
		return -ENODEV;
	}

	/* Now bind the SPI interface to the MMCSD driver */
	result = mmcsd_spislotinitialize(CONFIG_NSH_MMCSDMINOR, CONFIG_NSH_MMCSDSLOTNO, spi3);

	if (result != OK) {
		message("[boot] FAILED to bind SPI port 3 to the MMCSD driver\n");
		board_autoled_on(LED_AMBER);
		return -ENODEV;
	}

	return OK;
}
Esempio n. 28
0
void up_sigdeliver(void)
{
  struct tcb_s  *rtcb = this_task();
  uint32_t regs[XCPTCONTEXT_REGS];
  sig_deliver_t sigdeliver;

  /* Save the errno.  This must be preserved throughout the signal handling
   * so that the user code final gets the correct errno value (probably
   * EINTR).
   */

  int saved_errno = rtcb->pterrno;

  board_autoled_on(LED_SIGNAL);

  sdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
        rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
  ASSERT(rtcb->xcp.sigdeliver != NULL);

  /* Save the real return state on the stack. */

  up_copyfullstate(regs, rtcb->xcp.regs);
  regs[REG_PC]         = rtcb->xcp.saved_pc;
#ifdef CONFIG_ARMV7M_USEBASEPRI
  regs[REG_BASEPRI]    = rtcb->xcp.saved_basepri;
#else
  regs[REG_PRIMASK]    = rtcb->xcp.saved_primask;
#endif
  regs[REG_XPSR]       = rtcb->xcp.saved_xpsr;
#ifdef CONFIG_BUILD_PROTECTED
  regs[REG_LR]         = rtcb->xcp.saved_lr;
#endif

  /* Get a local copy of the sigdeliver function pointer. We do this so that
   * we can nullify the sigdeliver function pointer in the TCB and accept
   * more signal deliveries while processing the current pending signals.
   */

  sigdeliver           = rtcb->xcp.sigdeliver;
  rtcb->xcp.sigdeliver = NULL;

  /* Then restore the task interrupt state */

#ifdef CONFIG_ARMV7M_USEBASEPRI
  irqrestore((uint8_t)regs[REG_BASEPRI]);
#else
  irqrestore((uint16_t)regs[REG_PRIMASK]);
#endif

  /* Deliver the signal */

  sigdeliver(rtcb);

  /* Output any debug messages BEFORE restoring errno (because they may
   * alter errno), then disable interrupts again and restore the original
   * errno that is needed by the user logic (it is probably EINTR).
   */

  sdbg("Resuming\n");
  (void)irqsave();
  rtcb->pterrno = saved_errno;

  /* Then restore the correct state for this thread of
   * execution.
   */

  board_autoled_off(LED_SIGNAL);
  up_fullcontextrestore(regs);
}
Esempio n. 29
0
__EXPORT int board_app_initialize(uintptr_t arg)
{

#if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE)

	/* run C++ ctors before we go any further */

	up_cxxinitialize();

#	if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE)
#  		error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE.
#	endif

#else
#  error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined.
#endif

	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* configure the DMA allocator */

	if (board_dma_alloc_init() < 0) {
		message("DMA alloc FAILED");
	}

	/* configure CPU load estimation */
#ifdef CONFIG_SCHED_INSTRUMENTATION
	cpuload_initialize_once();
#endif

	/* set up the serial DMA polling */
	static struct hrt_call serial_dma_call;
	struct timespec ts;

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
	ts.tv_sec = 0;
	ts.tv_nsec = 1000000;

	hrt_call_every(&serial_dma_call,
		       ts_to_abstime(&ts),
		       ts_to_abstime(&ts),
		       (hrt_callout)stm32_serial_dma_poll,
		       NULL);

#if defined(CONFIG_STM32_BBSRAM)

	/* NB. the use of the console requires the hrt running
	 * to poll the DMA
	 */

	/* Using Battery Backed Up SRAM */

	int filesizes[CONFIG_STM32_BBSRAM_FILES + 1] = BSRAM_FILE_SIZES;

	stm32_bbsraminitialize(BBSRAM_PATH, filesizes);

#if defined(CONFIG_STM32_SAVE_CRASHDUMP)

	/* Panic Logging in Battery Backed Up Files */

	/*
	 * In an ideal world, if a fault happens in flight the
	 * system save it to BBSRAM will then reboot. Upon
	 * rebooting, the system will log the fault to disk, recover
	 * the flight state and continue to fly.  But if there is
	 * a fault on the bench or in the air that prohibit the recovery
	 * or committing the log to disk, the things are too broken to
	 * fly. So the question is:
	 *
	 * Did we have a hard fault and not make it far enough
	 * through the boot sequence to commit the fault data to
	 * the SD card?
	 */

	/* Do we have an uncommitted hard fault in BBSRAM?
	 *  - this will be reset after a successful commit to SD
	 */
	int hadCrash = hardfault_check_status("boot");

	if (hadCrash == OK) {

		message("[boot] There is a hard fault logged. Hold down the SPACE BAR," \
			" while booting to halt the system!\n");

		/* Yes. So add one to the boot count - this will be reset after a successful
		 * commit to SD
		 */

		int reboots = hardfault_increment_reboot("boot", false);

		/* Also end the misery for a user that holds for a key down on the console */

		int bytesWaiting;
		ioctl(fileno(stdin), FIONREAD, (unsigned long)((uintptr_t) &bytesWaiting));

		if (reboots > 2 || bytesWaiting != 0) {

			/* Since we can not commit the fault dump to disk. Display it
			 * to the console.
			 */

			hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false);

			message("[boot] There were %d reboots with Hard fault that were not committed to disk - System halted %s\n",
				reboots,
				(bytesWaiting == 0 ? "" : " Due to Key Press\n"));


			/* For those of you with a debugger set a break point on up_assert and
			 * then set dbgContinue = 1 and go.
			 */

			/* Clear any key press that got us here */

			static volatile bool dbgContinue = false;
			int c = '>';

			while (!dbgContinue) {

				switch (c) {

				case EOF:


				case '\n':
				case '\r':
				case ' ':
					continue;

				default:

					putchar(c);
					putchar('\n');

					switch (c) {

					case 'D':
					case 'd':
						hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false);
						break;

					case 'C':
					case 'c':
						hardfault_rearm("boot");
						hardfault_increment_reboot("boot", true);
						break;

					case 'B':
					case 'b':
						dbgContinue = true;
						break;

					default:
						break;
					} // Inner Switch

					message("\nEnter B - Continue booting\n" \
						"Enter C - Clear the fault log\n" \
						"Enter D - Dump fault log\n\n?>");
					fflush(stdout);

					if (!dbgContinue) {
						c = getchar();
					}

					break;

				} // outer switch
			} // for

		} // inner if
	} // outer if

#endif // CONFIG_STM32_SAVE_CRASHDUMP
#endif // CONFIG_STM32_BBSRAM

	/* initial LED state */
	drv_led_start();
	led_off(LED_RED);
	led_off(LED_GREEN);
	led_off(LED_BLUE);

	/* Configure SPI-based devices */

	spi1 = stm32_spibus_initialize(1);

	if (!spi1) {
		message("[boot] FAILED to initialize SPI port 1\n");
		board_autoled_on(LED_RED);
		return -ENODEV;
	}

	/* Default SPI1 to 1MHz and de-assert the known chip selects. */
	SPI_SETFREQUENCY(spi1, 10000000);
	SPI_SETBITS(spi1, 8);
	SPI_SETMODE(spi1, SPIDEV_MODE3);
	SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false);
	SPI_SELECT(spi1, PX4_SPIDEV_HMC, false);
	SPI_SELECT(spi1, PX4_SPIDEV_MPU, false);
	up_udelay(20);

	/* Get the SPI port for the FRAM */

	spi2 = stm32_spibus_initialize(2);

	if (!spi2) {
		message("[boot] FAILED to initialize SPI port 2\n");
		board_autoled_on(LED_RED);
		return -ENODEV;
	}

	/* Default SPI2 to 12MHz and de-assert the known chip selects.
	 * MS5611 has max SPI clock speed of 20MHz
	 */

	// XXX start with 10.4 MHz and go up to 20 once validated
	SPI_SETFREQUENCY(spi2, 20 * 1000 * 1000);
	SPI_SETBITS(spi2, 8);
	SPI_SETMODE(spi2, SPIDEV_MODE3);
	SPI_SELECT(spi2, SPIDEV_FLASH, false);
	SPI_SELECT(spi2, PX4_SPIDEV_BARO, false);

#ifdef CONFIG_MMCSD
	/* First, get an instance of the SDIO interface */

	sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO);

	if (!sdio) {
		message("[boot] Failed to initialize SDIO slot %d\n",
			CONFIG_NSH_MMCSDSLOTNO);
		return -ENODEV;
	}

	/* Now bind the SDIO interface to the MMC/SD driver */
	int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio);

	if (ret != OK) {
		message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret);
		return ret;
	}

	/* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */
	sdio_mediachange(sdio, true);

#endif

	return OK;
}
Esempio n. 30
0
void up_initialize(void)
{
  /* Colorize the interrupt stack */

  up_color_intstack();

  /* Add any extra memory fragments to the memory manager */

  up_addregion();

  /* Initialize the interrupt subsystem */

  up_irqinitialize();

  /* Initialize the system timer interrupt */

#if !defined(CONFIG_SUPPRESS_INTERRUPTS) && !defined(CONFIG_SUPPRESS_TIMER_INTS) && \
    !defined(CONFIG_SYSTEMTICK_EXTCLK)
  riscv_timer_initialize();
#endif

#ifdef CONFIG_MM_IOB
  /* Initialize IO buffering */

  iob_initialize();
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0
  /* Register devices */

#if defined(CONFIG_DEV_NULL)
  devnull_register();   /* Standard /dev/null */
#endif

#if defined(CONFIG_DEV_ZERO)
  devzero_register();   /* Standard /dev/zero */
#endif

#endif /* CONFIG_NFILE_DESCRIPTORS */

  /* Initialize the serial device driver */

#ifdef USE_SERIALDRIVER
  up_serialinit();
#endif

  /* Initialize the console device driver (if it is other than the standard
   * serial driver).
   */

#if defined(CONFIG_DEV_LOWCONSOLE)
  lowconsole_init();
#elif defined(CONFIG_SYSLOG_CONSOLE)
  syslog_console_init();
#elif defined(CONFIG_RAMLOG_CONSOLE)
  ramlog_consoleinit();
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0 && defined(CONFIG_PSEUDOTERM_SUSV1)
  /* Register the master pseudo-terminal multiplexor device */

  (void)ptmx_register();
#endif

  /* Early initialization of the system logging device.  Some SYSLOG channel
   * can be initialized early in the initialization sequence because they
   * depend on only minimal OS initialization.
   */

  syslog_initialize(SYSLOG_INIT_EARLY);

#ifdef CONFIG_RAMLOG_SYSLOG
  ramlog_sysloginit();
#endif

  board_autoled_on(LED_IRQSENABLED);
}