Esempio n. 1
0
void enkf_tui_run_exp(void * enkf_main) {
  const int ens_size          = enkf_main_get_ensemble_size( enkf_main );
  bool_vector_type * iactive  = bool_vector_alloc(0,false);

  state_enum init_state    = ANALYZED; 
  int start_report         = 0;
  int init_step_parameters = 0;
  
  {

    char * prompt = util_alloc_sprintf("Which realizations to simulate (Ex: 1,3-5) <Enter for all> [M to return to menu] : " , ens_size);
    char * select_string;
      
    util_printf_prompt(prompt , PROMPT_LEN , '=' , "=> ");
    select_string = util_alloc_stdin_line();
    enkf_tui_util_sscanf_active_list( iactive , select_string , ens_size);

    util_safe_free( select_string );
    free( prompt );
  }
  if (bool_vector_count_equal(iactive , true))
    enkf_main_run_exp(enkf_main , iactive , true , init_step_parameters , start_report , init_state, true);
  
  bool_vector_free(iactive);
}
Esempio n. 2
0
matrix_type * matrix_alloc_column_compressed_copy(const matrix_type * src, const bool_vector_type * mask) {
  if (bool_vector_size( mask ) != matrix_get_columns( src ))
    util_abort("%s: size mismatch. Src matrix has %d rows  mask has:%d elements\n", __func__ , matrix_get_rows( src ) , bool_vector_size( mask ));
  {
    int target_columns = bool_vector_count_equal( mask , true );
    matrix_type * target = matrix_alloc( matrix_get_rows( src ) , target_columns );

    matrix_column_compressed_memcpy( target , src , mask );
    return target;
  }
}
Esempio n. 3
0
void rml_enkf_common_recover_state( const matrix_type * state , matrix_type * A , const bool_vector_type * ens_mask ) { 
  const int ens_size = bool_vector_size( ens_mask );
  const int active_size = bool_vector_count_equal( ens_mask , true );
  const int rows = matrix_get_rows( state );
  
  matrix_resize( A , rows , active_size , false );
  {
    int active_index = 0;
    for (int iens = 0; iens < ens_size; iens++) {
      if (bool_vector_iget( ens_mask , iens ))
        matrix_copy_column( A , state , active_index , iens );
    }
  }
}
Esempio n. 4
0
void matrix_column_compressed_memcpy(matrix_type * target, const matrix_type * src, const bool_vector_type * mask) {
  if (bool_vector_count_equal( mask , true ) != matrix_get_columns( target ))
    util_abort("%s: size mismatch. \n",__func__);

  if (bool_vector_size( mask ) != matrix_get_columns( src))
    util_abort("%s: size mismatch. \n",__func__);

  {
    int target_col = 0;
    int src_col;
    for (src_col = 0; src_col < bool_vector_size( mask ); src_col++) {
      if (bool_vector_iget( mask , src_col)) {
        matrix_copy_column( target , src , target_col , src_col);
        target_col++;
      }
    }
  }
}
void test_index_list() {
  int_vector_type * index_list = int_vector_alloc( 0 , 0 );
  int_vector_append( index_list , 10 );
  int_vector_append( index_list , 20 );
  int_vector_append( index_list , 30 );
  {
    bool_vector_type * mask = int_vector_alloc_mask( index_list );
    
    test_assert_false( bool_vector_get_default( mask ));
    test_assert_int_equal( 31 , bool_vector_size( mask ));
    test_assert_true( bool_vector_iget( mask , 10 ));
    test_assert_true( bool_vector_iget( mask , 20 ));
    test_assert_true( bool_vector_iget( mask , 30 ));
    test_assert_int_equal( 3 , bool_vector_count_equal( mask , true ));

    bool_vector_free( mask );
  }
  int_vector_free( index_list );
}
Esempio n. 6
0
File: stepwise.c Progetto: jokva/ert
int stepwise_get_n_active( stepwise_type * stepwise ) {
    return bool_vector_count_equal( stepwise->active_set , true);
}
Esempio n. 7
0
File: stepwise.c Progetto: jokva/ert
static double stepwise_estimate__( stepwise_type * stepwise , bool_vector_type * active_rows) {
    matrix_type * X;
    matrix_type * E;
    matrix_type * Y;

    double y_mean    = 0;
    int nvar         = matrix_get_columns( stepwise->X0 );
    int nsample      = matrix_get_rows( stepwise->X0 );

    nsample = bool_vector_count_equal( active_rows , true );
    nvar = bool_vector_count_equal( stepwise->active_set , true );


    matrix_set( stepwise->beta , 0 ); // It is essential to make sure that old finite values in the beta0 vector do not hang around.


    /*
      Extracting the data used for regression, and storing them in the
      temporary local matrices X and Y. Selecting data is based both on
      which varibles are active (stepwise->active_set) and which rows
      should be used for regression, versus which should be used for
      validation (@active_rows).
    */
    if ((nsample < matrix_get_rows( stepwise->X0 )) || (nvar < matrix_get_columns( stepwise->X0 ))) {
        X = matrix_alloc( nsample , nvar );
        E = matrix_alloc( nsample , nvar );
        Y = matrix_alloc( nsample , 1);

        {
            int icol,irow;   // Running over all values.
            int arow,acol;   // Running over active values.
            arow = 0;
            for (irow = 0; irow < matrix_get_rows( stepwise->X0 ); irow++) {
                if (bool_vector_iget( active_rows , irow )) {
                    acol = 0;
                    for (icol = 0; icol < matrix_get_columns( stepwise->X0 ); icol++) {
                        if (bool_vector_iget( stepwise->active_set , icol )) {
                            matrix_iset( X , arow , acol , matrix_iget( stepwise->X0 , irow , icol ));
                            matrix_iset( E , arow , acol , matrix_iget( stepwise->E0 , irow , icol ));
                            acol++;
                        }
                    }

                    matrix_iset( Y , arow , 0 , matrix_iget( stepwise->Y0 , irow , 0 ));
                    arow++;
                }
            }
        }
    } else {
        X = matrix_alloc_copy( stepwise->X0 );
        E = matrix_alloc_copy( stepwise->E0 );
        Y = matrix_alloc_copy( stepwise->Y0 );
    }


    {

        if (stepwise->X_mean != NULL)
            matrix_free( stepwise->X_mean);

        stepwise->X_mean = matrix_alloc( 1 , nvar );

        if (stepwise->X_norm != NULL)
            matrix_free( stepwise->X_norm);

        stepwise->X_norm = matrix_alloc( 1 , nvar );

        matrix_type * beta     = matrix_alloc( nvar , 1);           /* This is the beta vector as estimated from the OLS estimator. */

        regression_augmented_OLS( X , Y , E, beta );


        /*
           In this code block the beta/tmp_beta vector which is dense with
           fewer elements than the full model is scattered into the beta0
           vector which has full size and @nvar elements.
        */
        {
            int ivar,avar;
            avar = 0;
            for (ivar = 0; ivar < matrix_get_columns( stepwise->X0 ); ivar++) {
                if (bool_vector_iget( stepwise->active_set , ivar )) {
                    matrix_iset( stepwise->beta , ivar , 0 , matrix_iget( beta , avar , 0));
                    avar++;
                }
            }
        }


        matrix_free( beta );
    }

    matrix_free( X );
    matrix_free( E );
    matrix_free( Y );
    return y_mean;
}
Esempio n. 8
0
File: stepwise.c Progetto: jokva/ert
void stepwise_estimate( stepwise_type * stepwise , double deltaR2_limit , int CV_blocks) {
    int nvar          = matrix_get_columns( stepwise->X0 );
    int nsample       = matrix_get_rows( stepwise->X0 );
    double currentR2 = -1;
    bool_vector_type * active_rows = bool_vector_alloc( nsample , true );


    /*Reset beta*/
    for (int i = 0; i < nvar; i++) {
        matrix_iset(stepwise->beta, i , 0 , 0.0);
    }



    bool_vector_set_all( stepwise->active_set , false );

    double MSE_min = 10000000;
    double Prev_MSE_min = MSE_min;
    double minR2    = -1;

    while (true) {
        int    best_var = 0;
        Prev_MSE_min = MSE_min;

        /*
          Go through all the inactive variables, and calculate the
          resulting prediction error IF this particular variable is added;
          keep track of the variable which gives the lowest prediction error.
        */
        for (int ivar = 0; ivar < nvar; ivar++) {
            if (!bool_vector_iget( stepwise->active_set , ivar)) {
                double newR2 = stepwise_test_var(stepwise , ivar , CV_blocks);
                if ((minR2 < 0) || (newR2 < minR2)) {
                    minR2 = newR2;
                    best_var = ivar;
                }
            }
        }

        /*
          If the best relative improvement in prediction error is better
          than @deltaR2_limit, the corresponding variable is added to the
          active set, and we return to repeat the loop one more
          time. Otherwise we just exit.
        */

        {
            MSE_min = minR2;
            double deltaR2 = MSE_min / Prev_MSE_min;

            if (( currentR2 < 0) || deltaR2 < deltaR2_limit) {
                bool_vector_iset( stepwise->active_set , best_var , true );
                currentR2 = minR2;
                bool_vector_set_all(active_rows, true);
                stepwise_estimate__( stepwise , active_rows );
            } else {
                /* The gain in prediction error is so small that we just leave the building. */
                /* NB! Need one final compuation of beta (since the test_var function does not reset the last tested beta value !) */
                bool_vector_set_all(active_rows, true);
                stepwise_estimate__( stepwise , active_rows );
                break;
            }

            if (bool_vector_count_equal( stepwise->active_set , true) == matrix_get_columns( stepwise->X0 )) {
                stepwise_estimate__( stepwise , active_rows );
                break;   /* All variables are active. */
            }
        }
    }

    stepwise_set_R2(stepwise, currentR2);
    bool_vector_free( active_rows );
}
Esempio n. 9
0
void enkf_tui_run_manual_load__( void * arg ) {
  enkf_main_type * enkf_main                   = enkf_main_safe_cast( arg );
  enkf_fs_type * fs                            = enkf_main_get_fs( enkf_main ); 
  const int last_report                        = -1;
  const int ens_size                           = enkf_main_get_ensemble_size( enkf_main );
  int step1,step2;
  bool_vector_type * iactive = bool_vector_alloc( 0 , false );
  run_mode_type run_mode = ENSEMBLE_EXPERIMENT; 
  
  enkf_main_init_run(enkf_main , run_mode);     /* This is ugly */
  
  step1 = 0;
  step2 = last_report;  /** Observe that for the summary data it will load all the available data anyway. */
  {
    char * prompt = util_alloc_sprintf("Which realizations to load  (Ex: 1,3-5) <Enter for all> [M to return to menu] : [ensemble size:%d] : " , ens_size);
    char * select_string;
    util_printf_prompt(prompt , PROMPT_LEN , '=' , "=> ");
    select_string = util_alloc_stdin_line();

    enkf_tui_util_sscanf_active_list( iactive , select_string , ens_size );
    util_safe_free( select_string );
    
    free( prompt );
  }



  if (bool_vector_count_equal( iactive , true )) {
    int iens;
    arg_pack_type ** arg_list = util_calloc( ens_size , sizeof * arg_list );
    thread_pool_type * tp = thread_pool_alloc( 4 , true );  /* num_cpu - HARD coded. */

    for (iens = 0; iens < ens_size; iens++) {
      arg_pack_type * arg_pack = arg_pack_alloc();
      arg_list[iens] = arg_pack;
      
      if (bool_vector_iget(iactive , iens)) {
        enkf_state_type * enkf_state = enkf_main_iget_state( enkf_main , iens );

        arg_pack_append_ptr( arg_pack , enkf_state);                                        /* 0: */
        arg_pack_append_ptr( arg_pack , fs );                                               /* 1: */
        arg_pack_append_int( arg_pack , step1 );                                            /* 2: This will be the load start parameter for the run_info struct. */
        arg_pack_append_int( arg_pack , step1 );                                            /* 3: Step1 */ 
        arg_pack_append_int( arg_pack , step2 );                                            /* 4: Step2 For summary data it will load the whole goddamn thing anyway.*/
        arg_pack_append_bool( arg_pack , true );                                            /* 5: Interactive */                  
        arg_pack_append_owned_ptr( arg_pack , stringlist_alloc_new() , stringlist_free__);  /* 6: List of interactive mode messages. */
        thread_pool_add_job( tp , enkf_state_load_from_forward_model_mt , arg_pack);
        
      }
    }
    
    thread_pool_join( tp );
    thread_pool_free( tp );
    printf("\n");

    {
      qc_module_type * qc_module = enkf_main_get_qc_module( enkf_main );
      runpath_list_type * runpath_list = qc_module_get_runpath_list( qc_module );

      for (iens = 0; iens < ens_size; iens++) {
        if (bool_vector_iget(iactive , iens)) {
          const enkf_state_type * state = enkf_main_iget_state( enkf_main , iens );
          runpath_list_add( runpath_list , iens , enkf_state_get_run_path( state ) , enkf_state_get_eclbase( state ));
        }
      }

      qc_module_export_runpath_list( qc_module );
    }

    for (iens = 0; iens < ens_size; iens++) {
      if (bool_vector_iget(iactive , iens)) {
        stringlist_type * msg_list = arg_pack_iget_ptr( arg_list[iens] , 6 );
        if (stringlist_get_size( msg_list ))
          enkf_tui_display_load_msg( iens , msg_list );
      }
    }
    
    
    for (iens = 0; iens < ens_size; iens++) 
      arg_pack_free( arg_list[iens]);
    free( arg_list );      
  }
  bool_vector_free( iactive );
}
Esempio n. 10
0
void enkf_tui_run_manual_load__( void * arg ) {
  enkf_main_type * enkf_main = enkf_main_safe_cast( arg );
  const int ens_size         = enkf_main_get_ensemble_size( enkf_main );
  bool_vector_type * iactive = bool_vector_alloc( 0 , false );
  run_mode_type run_mode     = ENSEMBLE_EXPERIMENT;
  int iter = 0;
  
  enkf_main_init_run(enkf_main , iactive , run_mode , INIT_NONE);  /* This is ugly */

  {
    char * prompt = util_alloc_sprintf("Which realizations to load  (Ex: 1,3-5) <Enter for all> [M to return to menu] : [ensemble size:%d] : " , ens_size);
    char * select_string;
    util_printf_prompt(prompt , PROMPT_LEN , '=' , "=> ");
    select_string = util_alloc_stdin_line();

    enkf_tui_util_sscanf_active_list( iactive , select_string , ens_size );
    util_safe_free( select_string );
    
    free( prompt );
  }

  {
    const model_config_type * model_config = enkf_main_get_model_config( enkf_main );
    if (model_config_runpath_requires_iter( model_config )) {
      const char * prompt = "Which iteration to load from [0...?) : ";
      char * input;
      bool OK;
      util_printf_prompt(prompt , PROMPT_LEN , '=' , "=> ");

      input = util_alloc_stdin_line();
      if (input == NULL) 
        return;

      OK = util_sscanf_int( input , &iter ); 

      free( input );
      if (!OK)
        return;
    }
  }
  

  if (bool_vector_count_equal( iactive , true )) {
    stringlist_type ** realizations_msg_list = util_calloc( ens_size , sizeof * realizations_msg_list );
    int iens = 0;
    for (; iens < ens_size; ++iens) {
      realizations_msg_list[iens] = stringlist_alloc_new();
    }

    enkf_main_load_from_forward_model(enkf_main, iter , iactive, realizations_msg_list);

    {
      qc_module_type * qc_module = enkf_main_get_qc_module( enkf_main );
      runpath_list_type * runpath_list = qc_module_get_runpath_list( qc_module );

      for (iens = 0; iens < ens_size; ++iens) {
        if (bool_vector_iget(iactive , iens)) {
          const enkf_state_type * state = enkf_main_iget_state( enkf_main , iens );
          runpath_list_add( runpath_list , iens , enkf_state_get_run_path( state ) , enkf_state_get_eclbase( state ));
        }
      }
      qc_module_export_runpath_list( qc_module );
    }

    for (iens = 0; iens < ens_size; ++iens) {
      stringlist_type * msg_list = realizations_msg_list[iens];
      if (bool_vector_iget(iactive, iens)) {
        if (stringlist_get_size( msg_list )) {
          enkf_tui_display_load_msg( iens , msg_list );
        }
      }
      stringlist_free(msg_list);
    }
    free(realizations_msg_list);
  }

  bool_vector_free( iactive );
}