static void brcmf_sdio_ai_coredisable(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u8 idx; u32 regdata; idx = brcmf_sdio_chip_getinfidx(ci, coreid); /* if core is already in reset, just return */ regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, NULL); if ((regdata & BCMA_RESET_CTL_RESET) != 0) return; brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, 0, NULL); regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, NULL); udelay(10); brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, BCMA_RESET_CTL_RESET, NULL); udelay(1); }
static void brcmf_sdio_chip_buscoresetup(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci) { u32 base = ci->c_inf[0].base; /* get chipcommon rev */ ci->c_inf[0].rev = ci->corerev(sdiodev, ci, ci->c_inf[0].id); /* get chipcommon capabilites */ ci->c_inf[0].caps = brcmf_sdio_regrl(sdiodev, CORE_CC_REG(base, capabilities), NULL); /* get pmu caps & rev */ if (ci->c_inf[0].caps & CC_CAP_PMU) { ci->pmucaps = brcmf_sdio_regrl(sdiodev, CORE_CC_REG(base, pmucapabilities), NULL); ci->pmurev = ci->pmucaps & PCAP_REV_MASK; } ci->c_inf[1].rev = ci->corerev(sdiodev, ci, ci->c_inf[1].id); brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, buscore rev/type=%d/0x%x\n", ci->c_inf[0].rev, ci->pmurev, ci->c_inf[1].rev, ci->c_inf[1].id); /* * Make sure any on-chip ARM is off (in case strapping is wrong), * or downloaded code was already running. */ ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3); }
static void brcmf_sdio_ai_resetcore(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u8 idx; u32 regdata; idx = brcmf_sdio_chip_getinfidx(ci, coreid); /* must disable first to work for arbitrary current core state */ brcmf_sdio_ai_coredisable(sdiodev, ci, coreid); /* now do initialization sequence */ brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, BCMA_IOCTL_FGC | BCMA_IOCTL_CLK, NULL); regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, NULL); brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, 0, NULL); udelay(1); brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, BCMA_IOCTL_CLK, NULL); regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, NULL); udelay(1); }
void brcmf_sdio_chip_drivestrengthinit(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u32 drivestrength) { struct sdiod_drive_str *str_tab = NULL; u32 str_mask = 0; u32 str_shift = 0; char chn[8]; u32 base = ci->c_inf[0].base; if (!(ci->c_inf[0].caps & CC_CAP_PMU)) return; switch (SDIOD_DRVSTR_KEY(ci->chip, ci->pmurev)) { case SDIOD_DRVSTR_KEY(BCM4330_CHIP_ID, 12): str_tab = (struct sdiod_drive_str *)&sdiod_drvstr_tab1_1v8; str_mask = 0x00003800; str_shift = 11; break; default: brcmf_dbg(ERROR, "No SDIO Drive strength init done for chip %s rev %d pmurev %d\n", brcmf_sdio_chip_name(ci->chip, chn, 8), ci->chiprev, ci->pmurev); break; } if (str_tab != NULL) { u32 drivestrength_sel = 0; u32 cc_data_temp; int i; for (i = 0; str_tab[i].strength != 0; i++) { if (drivestrength >= str_tab[i].strength) { drivestrength_sel = str_tab[i].sel; break; } } brcmf_sdio_regwl(sdiodev, CORE_CC_REG(base, chipcontrol_addr), 1, NULL); cc_data_temp = brcmf_sdio_regrl(sdiodev, CORE_CC_REG(base, chipcontrol_addr), NULL); cc_data_temp &= ~str_mask; drivestrength_sel <<= str_shift; cc_data_temp |= drivestrength_sel; brcmf_sdio_regwl(sdiodev, CORE_CC_REG(base, chipcontrol_addr), cc_data_temp, NULL); brcmf_dbg(INFO, "SDIO: %dmA drive strength selected, set to 0x%08x\n", drivestrength, cc_data_temp); } }
static bool brcmf_sdio_ai_iscoreup(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata; u8 idx; bool ret; idx = brcmf_sdio_chip_getinfidx(ci, coreid); regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, NULL); ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK; regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, NULL); ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0); return ret; }
static u32 brcmf_sdio_sb_corerev(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata; u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbidhigh), NULL); return SBCOREREV(regdata); }
static bool brcmf_sdio_sb_iscoreup(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata; u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), NULL); regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT | SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK); return (SSB_TMSLOW_CLOCK == regdata); }
static int brcmf_sdioh_get_cisaddr(struct brcmf_sdio_dev *sdiodev, u32 regaddr) { /* read 24 bits and return valid 17 bit addr */ int i, ret; u32 scratch, regdata; __le32 scratch_le; u8 *ptr = (u8 *)&scratch_le; for (i = 0; i < 3; i++) { regdata = brcmf_sdio_regrl(sdiodev, regaddr, &ret); if (ret != 0) brcmf_err("Can't read!\n"); *ptr++ = (u8) regdata; regaddr++; } /* Only the lower 17-bits are valid */ scratch = le32_to_cpu(scratch_le); scratch &= 0x0001FFFF; return scratch; }
static int brcmf_sdio_chip_recognition(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u32 regs) { u32 regdata; /* * Get CC core rev * Chipid is assume to be at offset 0 from regs arg * For different chiptypes or old sdio hosts w/o chipcommon, * other ways of recognition should be added here. */ ci->c_inf[0].id = BCMA_CORE_CHIPCOMMON; ci->c_inf[0].base = regs; regdata = brcmf_sdio_regrl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, chipid), NULL); ci->chip = regdata & CID_ID_MASK; ci->chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT; ci->socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT; brcmf_dbg(INFO, "chipid=0x%x chiprev=%d\n", ci->chip, ci->chiprev); /* Address of cores for new chips should be added here */ switch (ci->chip) { case BCM4329_CHIP_ID: ci->c_inf[1].id = BCMA_CORE_SDIO_DEV; ci->c_inf[1].base = BCM4329_CORE_BUS_BASE; ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM; ci->c_inf[2].base = BCM4329_CORE_SOCRAM_BASE; ci->c_inf[3].id = BCMA_CORE_ARM_CM3; ci->c_inf[3].base = BCM4329_CORE_ARM_BASE; ci->ramsize = BCM4329_RAMSIZE; break; case BCM4330_CHIP_ID: ci->c_inf[0].wrapbase = 0x18100000; ci->c_inf[0].cib = 0x27004211; ci->c_inf[1].id = BCMA_CORE_SDIO_DEV; ci->c_inf[1].base = 0x18002000; ci->c_inf[1].wrapbase = 0x18102000; ci->c_inf[1].cib = 0x07004211; ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM; ci->c_inf[2].base = 0x18004000; ci->c_inf[2].wrapbase = 0x18104000; ci->c_inf[2].cib = 0x0d080401; ci->c_inf[3].id = BCMA_CORE_ARM_CM3; ci->c_inf[3].base = 0x18003000; ci->c_inf[3].wrapbase = 0x18103000; ci->c_inf[3].cib = 0x03004211; ci->ramsize = 0x48000; break; case BCM4334_CHIP_ID: ci->c_inf[0].wrapbase = 0x18100000; ci->c_inf[0].cib = 0x29004211; ci->c_inf[1].id = BCMA_CORE_SDIO_DEV; ci->c_inf[1].base = 0x18002000; ci->c_inf[1].wrapbase = 0x18102000; ci->c_inf[1].cib = 0x0d004211; ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM; ci->c_inf[2].base = 0x18004000; ci->c_inf[2].wrapbase = 0x18104000; ci->c_inf[2].cib = 0x13080401; ci->c_inf[3].id = BCMA_CORE_ARM_CM3; ci->c_inf[3].base = 0x18003000; ci->c_inf[3].wrapbase = 0x18103000; ci->c_inf[3].cib = 0x07004211; ci->ramsize = 0x80000; break; default: brcmf_dbg(ERROR, "chipid 0x%x is not supported\n", ci->chip); return -ENODEV; } switch (ci->socitype) { case SOCI_SB: ci->iscoreup = brcmf_sdio_sb_iscoreup; ci->corerev = brcmf_sdio_sb_corerev; ci->coredisable = brcmf_sdio_sb_coredisable; ci->resetcore = brcmf_sdio_sb_resetcore; break; case SOCI_AI: ci->iscoreup = brcmf_sdio_ai_iscoreup; ci->corerev = brcmf_sdio_ai_corerev; ci->coredisable = brcmf_sdio_ai_coredisable; ci->resetcore = brcmf_sdio_ai_resetcore; break; default: brcmf_dbg(ERROR, "socitype %u not supported\n", ci->socitype); return -ENODEV; } return 0; }
static void brcmf_sdio_sb_resetcore(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata; u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); /* * Must do the disable sequence first to work for * arbitrary current core state. */ brcmf_sdio_sb_coredisable(sdiodev, ci, coreid); /* * Now do the initialization sequence. * set reset while enabling the clock and * forcing them on throughout the core */ brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), NULL); udelay(1); /* clear any serror */ regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatehigh), NULL); if (regdata & SSB_TMSHIGH_SERR) brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatehigh), 0, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbimstate), NULL); if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbimstate), regdata & ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO), NULL); /* clear reset and allow it to propagate throughout the core */ brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), NULL); udelay(1); /* leave clock enabled */ brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), SSB_TMSLOW_CLOCK, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), NULL); udelay(1); }
static void brcmf_sdio_sb_coredisable(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata, base; u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); base = ci->c_inf[idx].base; regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL); if (regdata & SSB_TMSLOW_RESET) return; regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL); if ((regdata & SSB_TMSLOW_CLOCK) != 0) { /* * set target reject and spin until busy is clear * (preserve core-specific bits) */ regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL); brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow), regdata | SSB_TMSLOW_REJECT, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL); udelay(1); SPINWAIT((brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatehigh), NULL) & SSB_TMSHIGH_BUSY), 100000); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatehigh), NULL); if (regdata & SSB_TMSHIGH_BUSY) brcmf_dbg(ERROR, "core state still busy\n"); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow), NULL); if (regdata & SSB_IDLOW_INITIATOR) { regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbimstate), NULL); regdata |= SSB_IMSTATE_REJECT; brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate), regdata, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbimstate), NULL); udelay(1); SPINWAIT((brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbimstate), NULL) & SSB_IMSTATE_BUSY), 100000); } /* set reset and reject while enabling the clocks */ regdata = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET; brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow), regdata, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL); udelay(10); /* clear the initiator reject bit */ regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow), NULL); if (regdata & SSB_IDLOW_INITIATOR) { regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbimstate), NULL); regdata &= ~SSB_IMSTATE_REJECT; brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate), regdata, NULL); } } /* leave reset and reject asserted */ brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow), (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET), NULL); udelay(1); }