// move_yaw
void AP_MotorsHeli_Single::move_yaw(float yaw_out)
{
    // sanity check yaw_out
    if (yaw_out < -1.0f) {
        yaw_out = -1.0f;
        limit.yaw = true;
    }
    if (yaw_out > 1.0f) {
        yaw_out = 1.0f;
        limit.yaw = true;
    }

    if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH){
        if (_main_rotor.get_desired_speed() > 0.0f && hal.util->get_soft_armed()) {
            // constrain output so that motor never fully stops
            yaw_out = constrain_float(yaw_out, -0.9f, 1.0f);
            // output yaw servo to tail rsc
            rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(yaw_out, _yaw_servo));
        } else {
            // output zero speed to tail rsc
            rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(-1.0f, _yaw_servo));
        }
    } else {
        rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(yaw_out, _yaw_servo));
    }
    if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
        // output gain to exernal gyro
        if (_acro_tail && _ext_gyro_gain_acro > 0) {
            write_aux(_ext_gyro_gain_acro/1000.0f);
        } else {
            write_aux(_ext_gyro_gain_std/1000.0f);
        }
    }
}
// move_yaw
void AP_MotorsHeli_Single::move_yaw(float yaw_out)
{
    // sanity check yaw_out
    if (yaw_out < -1.0f) {
        yaw_out = -1.0f;
        limit.yaw = true;
    }
    if (yaw_out > 1.0f) {
        yaw_out = 1.0f;
        limit.yaw = true;
    }

    rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(yaw_out, _yaw_servo));

    if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
        // output gain to exernal gyro
        if (_acro_tail && _ext_gyro_gain_acro > 0) {
            write_aux(_ext_gyro_gain_acro/1000.0f);
        } else {
            write_aux(_ext_gyro_gain_std/1000.0f);
        }
    } else if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH && _main_rotor.get_desired_speed() > 0.0f) {
        // output yaw servo to tail rsc
        // To-Do: fix this messy calculation
        write_aux(yaw_out*0.5f+1.0f);
    }
}
//
// move_actuators - moves swash plate and tail rotor
//                 - expected ranges:
//                       roll : -1 ~ +1
//                       pitch: -1 ~ +1
//                       collective: 0 ~ 1
//                       yaw:   -1 ~ +1
//
void AP_MotorsHeli_Single::move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out)
{
    float yaw_offset = 0.0f;

    // initialize limits flag
    limit.roll_pitch = false;
    limit.yaw = false;
    limit.throttle_lower = false;
    limit.throttle_upper = false;

    if (_heliflags.inverted_flight) {
        coll_in = 1 - coll_in;
    }
        
    // rescale roll_out and pitch_out into the min and max ranges to provide linear motion
    // across the input range instead of stopping when the input hits the constrain value
    // these calculations are based on an assumption of the user specified cyclic_max
    // coming into this equation at 4500 or less
    float total_out = norm(pitch_out, roll_out);

    if (total_out > (_cyclic_max/4500.0f)) {
        float ratio = (float)(_cyclic_max/4500.0f) / total_out;
        roll_out *= ratio;
        pitch_out *= ratio;
        limit.roll_pitch = true;
    }

    // constrain collective input
    float collective_out = coll_in;
    if (collective_out <= 0.0f) {
        collective_out = 0.0f;
        limit.throttle_lower = true;
    }
    if (collective_out >= 1.0f) {
        collective_out = 1.0f;
        limit.throttle_upper = true;
    }

    // ensure not below landed/landing collective
    if (_heliflags.landing_collective && collective_out < (_land_collective_min/1000.0f)) {
        collective_out = (_land_collective_min/1000.0f);
        limit.throttle_lower = true;
    }

    // if servo output not in manual mode, process pre-compensation factors
    if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) {
        // rudder feed forward based on collective
        // the feed-forward is not required when the motor is stopped or at idle, and thus not creating torque
        // also not required if we are using external gyro
        if ((_main_rotor.get_control_output() > _main_rotor.get_idle_output()) && _tail_type != AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
            // sanity check collective_yaw_effect
            _collective_yaw_effect = constrain_float(_collective_yaw_effect, -AP_MOTORS_HELI_SINGLE_COLYAW_RANGE, AP_MOTORS_HELI_SINGLE_COLYAW_RANGE);
            // the 4.5 scaling factor is to bring the values in line with previous releases
            yaw_offset = _collective_yaw_effect * fabsf(collective_out - _collective_mid_pct) / 4.5f;
        }
    } else {
        yaw_offset = 0.0f;
    }

    // feed power estimate into main rotor controller
    // ToDo: include tail rotor power?
    // ToDo: add main rotor cyclic power?
    if (collective_out > _collective_mid_pct) {
        // +ve motor load for +ve collective
        _main_rotor.set_motor_load((collective_out - _collective_mid_pct) / (1.0f - _collective_mid_pct));
    } else {
        // -ve motor load for -ve collective
        _main_rotor.set_motor_load((collective_out - _collective_mid_pct) / _collective_mid_pct);
    }

    // swashplate servos
    float collective_scalar = ((float)(_collective_max-_collective_min))/1000.0f;
    float coll_out_scaled = collective_out * collective_scalar + (_collective_min - 1000)/1000.0f;
    float servo1_out = ((_rollFactor[CH_1] * roll_out) + (_pitchFactor[CH_1] * pitch_out))*0.45f + _collectiveFactor[CH_1] * coll_out_scaled;
    float servo2_out = ((_rollFactor[CH_2] * roll_out) + (_pitchFactor[CH_2] * pitch_out))*0.45f + _collectiveFactor[CH_2] * coll_out_scaled;
    if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_H1) {
        servo1_out += 0.5f;
        servo2_out += 0.5f;
    }
    float servo3_out = ((_rollFactor[CH_3] * roll_out) + (_pitchFactor[CH_3] * pitch_out))*0.45f + _collectiveFactor[CH_3] * coll_out_scaled;

    // rescale from -1..1, so we can use the pwm calc that includes trim
    servo1_out = 2*servo1_out - 1;
    servo2_out = 2*servo2_out - 1;
    servo3_out = 2*servo3_out - 1;
    
    // actually move the servos
    rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(servo1_out, _swash_servo_1));
    rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(servo2_out, _swash_servo_2));
    rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(servo3_out, _swash_servo_3));

    // update the yaw rate using the tail rotor/servo
    move_yaw(yaw_out + yaw_offset);
}
Esempio n. 4
0
void AP_MotorsSingle::output_to_motors()
{
    switch (_multicopter_flags.spool_mode) {
        case SHUT_DOWN:
            // sends minimum values out to the motors
            hal.rcout->cork();
            rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_roll_radio_passthrough+_yaw_radio_passthrough, _servo1));
            rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_pitch_radio_passthrough+_yaw_radio_passthrough, _servo2));
            rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(-_roll_radio_passthrough+_yaw_radio_passthrough, _servo3));
            rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(-_pitch_radio_passthrough+_yaw_radio_passthrough, _servo4));
            rc_write(AP_MOTORS_MOT_5, _throttle_radio_min);
            rc_write(AP_MOTORS_MOT_6, _throttle_radio_min);
            hal.rcout->push();
            break;
        case SPIN_WHEN_ARMED:
            // sends output to motors when armed but not flying
            hal.rcout->cork();
            rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_throttle_low_end_pct * _actuator_out[0], _servo1));
            rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_throttle_low_end_pct * _actuator_out[1], _servo2));
            rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_throttle_low_end_pct * _actuator_out[2], _servo3));
            rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_throttle_low_end_pct * _actuator_out[3], _servo4));
            rc_write(AP_MOTORS_MOT_5, constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle));
            rc_write(AP_MOTORS_MOT_6, constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle));
            hal.rcout->push();
            break;
        case SPOOL_UP:
        case THROTTLE_UNLIMITED:
        case SPOOL_DOWN:
            // set motor output based on thrust requests
            hal.rcout->cork();
            rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_actuator_out[0], _servo1));
            rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_actuator_out[1], _servo2));
            rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_actuator_out[2], _servo3));
            rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_actuator_out[3], _servo4));
            rc_write(AP_MOTORS_MOT_5, calc_thrust_to_pwm(_thrust_out));
            rc_write(AP_MOTORS_MOT_6, calc_thrust_to_pwm(_thrust_out));
            hal.rcout->push();
            break;
    }
}
Esempio n. 5
0
void AP_MotorsSingle::output_to_motors()
{
    switch (_spool_mode) {
        case SHUT_DOWN:
            // sends minimum values out to the motors
            hal.rcout->cork();
            rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_roll_radio_passthrough - _yaw_radio_passthrough, _servo1));
            rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_pitch_radio_passthrough - _yaw_radio_passthrough, _servo2));
            rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(-_roll_radio_passthrough - _yaw_radio_passthrough, _servo3));
            rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(-_pitch_radio_passthrough - _yaw_radio_passthrough, _servo4));
            rc_write(AP_MOTORS_MOT_5, get_pwm_output_min());
            rc_write(AP_MOTORS_MOT_6, get_pwm_output_min());
            hal.rcout->push();
            break;
        case SPIN_WHEN_ARMED:
            // sends output to motors when armed but not flying
            hal.rcout->cork();
            rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[0], _servo1));
            rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[1], _servo2));
            rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[2], _servo3));
            rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[3], _servo4));
            rc_write(AP_MOTORS_MOT_5, calc_spin_up_to_pwm());
            rc_write(AP_MOTORS_MOT_6, calc_spin_up_to_pwm());
            hal.rcout->push();
            break;
        case SPOOL_UP:
        case THROTTLE_UNLIMITED:
        case SPOOL_DOWN:
            // set motor output based on thrust requests
            hal.rcout->cork();
            rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_actuator_out[0], _servo1));
            rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_actuator_out[1], _servo2));
            rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_actuator_out[2], _servo3));
            rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_actuator_out[3], _servo4));
            rc_write(AP_MOTORS_MOT_5, calc_thrust_to_pwm(_thrust_out));
            rc_write(AP_MOTORS_MOT_6, calc_thrust_to_pwm(_thrust_out));
            hal.rcout->push();
            break;
    }
}
Esempio n. 6
0
//
// move_actuators - moves swash plate to attitude of parameters passed in
//                - expected ranges:
//                       roll : -1 ~ +1
//                       pitch: -1 ~ +1
//                       collective: 0 ~ 1
//                       yaw:   -1 ~ +1
//
void AP_MotorsHeli_Dual::move_actuators(float roll_out, float pitch_out, float collective_in, float yaw_out)
{
    // initialize limits flag
    limit.roll_pitch = false;
    limit.yaw = false;
    limit.throttle_lower = false;
    limit.throttle_upper = false;

    if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) {
        if (pitch_out < -_cyclic_max/4500.0f) {
            pitch_out = -_cyclic_max/4500.0f;
            limit.roll_pitch = true;
        }

        if (pitch_out > _cyclic_max/4500.0f) {
            pitch_out = _cyclic_max/4500.0f;
            limit.roll_pitch = true;
        }
    } else {
        if (roll_out < -_cyclic_max/4500.0f) {
            roll_out = -_cyclic_max/4500.0f;
            limit.roll_pitch = true;
        }

        if (roll_out > _cyclic_max/4500.0f) {
            roll_out = _cyclic_max/4500.0f;
            limit.roll_pitch = true;
        }
    }


    float yaw_compensation = 0.0f;

    // if servo output not in manual mode, process pre-compensation factors
    if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) {
        // add differential collective pitch yaw compensation
        if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) {
            yaw_compensation = _dcp_yaw_effect * roll_out;
        } else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM
            yaw_compensation = _dcp_yaw_effect * pitch_out;
        }
        yaw_out = yaw_out + yaw_compensation;
    }

    // scale yaw and update limits
    if (yaw_out < -_cyclic_max/4500.0f) {
        yaw_out = -_cyclic_max/4500.0f;
        limit.yaw = true;
    }
    if (yaw_out > _cyclic_max/4500.0f) {
        yaw_out = _cyclic_max/4500.0f;
        limit.yaw = true;
    }

    // constrain collective input
    float collective_out = collective_in;
    if (collective_out <= 0.0f) {
        collective_out = 0.0f;
        limit.throttle_lower = true;
    }
    if (collective_out >= 1.0f) {
        collective_out = 1.0f;
        limit.throttle_upper = true;
    }

    // Set rear collective to midpoint if required
    float collective2_out = collective_out;
    if (_servo_mode == SERVO_CONTROL_MODE_MANUAL_CENTER) {
        collective2_out = _collective2_mid_pct;
    }


    // ensure not below landed/landing collective
    if (_heliflags.landing_collective && collective_out < (_land_collective_min/1000.0f)) {
        collective_out = _land_collective_min/1000.0f;
        limit.throttle_lower = true;
    }

    // scale collective pitch for front swashplate (servos 1,2,3)
    float collective_scaler = ((float)(_collective_max-_collective_min))/1000.0f;
    float collective_out_scaled = collective_out * collective_scaler + (_collective_min - 1000)/1000.0f;

    // scale collective pitch for rear swashplate (servos 4,5,6)
    float collective2_scaler = ((float)(_collective2_max-_collective2_min))/1000.0f;
    float collective2_out_scaled = collective2_out * collective2_scaler + (_collective2_min - 1000)/1000.0f;

    // feed power estimate into main rotor controller
    // ToDo: add main rotor cyclic power?
    _rotor.set_motor_load(fabsf(collective_out - _collective_mid_pct));

    // swashplate servos
    float servo1_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out + _yawFactor[CH_1] * yaw_out)/0.45f + _collectiveFactor[CH_1] * collective_out_scaled;
    float servo2_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out + _yawFactor[CH_2] * yaw_out)/0.45f + _collectiveFactor[CH_2] * collective_out_scaled;
    float servo3_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out + _yawFactor[CH_3] * yaw_out)/0.45f + _collectiveFactor[CH_3] * collective_out_scaled;
    float servo4_out = (_rollFactor[CH_4] * roll_out + _pitchFactor[CH_4] * pitch_out + _yawFactor[CH_4] * yaw_out)/0.45f + _collectiveFactor[CH_4] * collective2_out_scaled;
    float servo5_out = (_rollFactor[CH_5] * roll_out + _pitchFactor[CH_5] * pitch_out + _yawFactor[CH_5] * yaw_out)/0.45f + _collectiveFactor[CH_5] * collective2_out_scaled;
    float servo6_out = (_rollFactor[CH_6] * roll_out + _pitchFactor[CH_6] * pitch_out + _yawFactor[CH_6] * yaw_out)/0.45f + _collectiveFactor[CH_6] * collective2_out_scaled;

    // rescale from -1..1, so we can use the pwm calc that includes trim
    servo1_out = 2*servo1_out - 1;
    servo2_out = 2*servo2_out - 1;
    servo3_out = 2*servo3_out - 1;
    servo4_out = 2*servo4_out - 1;
    servo5_out = 2*servo5_out - 1;
    servo6_out = 2*servo6_out - 1;

    // actually move the servos
    rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(servo1_out, _swash_servo_1));
    rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(servo2_out, _swash_servo_2));
    rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(servo3_out, _swash_servo_3));
    rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(servo4_out, _swash_servo_4));
    rc_write(AP_MOTORS_MOT_5, calc_pwm_output_1to1(servo5_out, _swash_servo_5));
    rc_write(AP_MOTORS_MOT_6, calc_pwm_output_1to1(servo6_out, _swash_servo_6));
}