Esempio n. 1
0
/* Fill double vector with random numbers over a range. */
void      vecran(double *vec, int beg, int end)
{
    int       i;
    double   *pntr;
    double    ch_normalize(double *vec, int beg, int end);
    double    drandom(void);

    pntr = vec + beg;
    for (i = end - beg + 1; i; i--) {
	(*pntr++) = drandom();
    }
    ch_normalize(vec, beg, end);
}
Esempio n. 2
0
void 
coarsen (
/* Coarsen until nvtxs <= vmax, compute and uncoarsen. */
    struct vtx_data **graph,	/* array of vtx data for graph */
    int nvtxs,		/* number of vertices in graph */
    int nedges,		/* number of edges in graph */
    int using_vwgts,		/* are vertices weights being used? */
    int using_ewgts,		/* are edge weights being used? */
    float *term_wgts[],		/* terminal weights */
    int igeom,		/* dimension for geometric information */
    float **coords,		/* coordinates for vertices */
    double **yvecs,		/* eigenvectors returned */
    int ndims,		/* number of eigenvectors to calculate */
    int solver_flag,		/* which eigensolver to use */
    int vmax,			/* largest subgraph to stop coarsening */
    double eigtol,		/* tolerence in eigen calculation */
    int nstep,		/* number of coarsenings between RQI steps */
    int step,			/* current step number */
    int give_up		/* has coarsening bogged down? */
)
{
    extern FILE *Output_File;	/* output file or null */
    extern int DEBUG_COARSEN;	/* debug flag for coarsening */
    extern int PERTURB;		/* was matrix perturbed in Lanczos? */
    extern double COARSEN_RATIO_MIN;	/* min vtx reduction for coarsening */
    extern int COARSEN_VWGTS;	/* use vertex weights while coarsening? */
    extern int COARSEN_EWGTS;	/* use edge weights while coarsening? */
    extern double refine_time;	/* time for RQI/Symmlq iterative refinement */
    struct vtx_data **cgraph;	/* array of vtx data for coarsened graph */
    struct orthlink *orthlist;	/* list of lower evecs to suppress */
    struct orthlink *newlink;	/* lower evec to suppress */
    double   *cyvecs[MAXDIMS + 1];	/* eigenvectors for subgraph */
    double    evals[MAXDIMS + 1];	/* eigenvalues returned */
    double    goal[MAXSETS];	/* needed for convergence mode = 1 */
    double   *r1, *r2, *work;	/* space needed by symmlq/RQI */
    double   *v, *w, *x, *y;	/* space needed by symmlq/RQI */
    double   *gvec;		/* rhs vector in extended eigenproblem */
    double    evalest;		/* eigenvalue estimate returned by RQI */
    double    maxdeg;		/* maximum weighted degree of a vertex */
    float   **ccoords;		/* coordinates for coarsened graph */
    float    *cterm_wgts[MAXSETS];	/* coarse graph terminal weights */
    float    *new_term_wgts[MAXSETS];	/* terminal weights for Bui's method*/
    float   **real_term_wgts;	/* one of the above */
    float    *twptr;		/* loops through term_wgts */
    float    *twptr_save;	/* copy of twptr */
    float    *ctwptr;		/* loops through cterm_wgts */
    double   *vwsqrt = NULL;	/* square root of vertex weights */
    double    norm, alpha;	/* values used for orthogonalization */
    double    initshift;	/* initial shift for RQI */
    double    total_vwgt;	/* sum of all the vertex weights */
    double    w1, w2;		/* weights of two sets */
    double    sigma;		/* norm of rhs in extended eigenproblem */
    double    term_tot;		/* sum of all terminal weights */
    int    *space;		/* room for assignment in Lanczos */
    int      *morespace;	/* room for assignment in Lanczos */
    int      *v2cv;		/* mapping from vertices to coarse vtxs */
    int       vwgt_max;		/* largest vertex weight */
    int       oldperturb;	/* saves PERTURB value */
    int       cnvtxs;		/* number of vertices in coarsened graph */
    int       cnedges;		/* number of edges in coarsened graph */
    int       nextstep;		/* next step in RQI test */
    int       nsets;		/* number of sets being created */
    int       i, j;		/* loop counters */
    double    time;		/* time marker */

    double   dot(), ch_normalize(), find_maxdeg(), seconds();
    struct orthlink *makeorthlnk();
    void      makevwsqrt(), eigensolve(), coarsen1(), orthogvec(), rqi_ext();
    void      ch_interpolate(), orthog1(), rqi(), scadd(), free_graph();

    if (DEBUG_COARSEN > 0) {
	printf("<Entering coarsen, step=%d, nvtxs=%d, nedges=%d, vmax=%d>\n",
	       step, nvtxs, nedges, vmax);
    }

    nsets = 1 << ndims;

    /* Is problem small enough to solve? */
    if (nvtxs <= vmax || give_up) {
	if (using_vwgts) {
	    vwsqrt = smalloc((nvtxs + 1) * sizeof(double));
	    makevwsqrt(vwsqrt, graph, nvtxs);
	}
	else
	    vwsqrt = NULL;
	maxdeg = find_maxdeg(graph, nvtxs, using_ewgts, (float *) NULL);

	if (using_vwgts) {
	    vwgt_max = 0;
	    total_vwgt = 0;
	    for (i = 1; i <= nvtxs; i++) {
		if (graph[i]->vwgt > vwgt_max)
		    vwgt_max = graph[i]->vwgt;
		total_vwgt += graph[i]->vwgt;
	    }
	}
	else {
	    vwgt_max = 1;
	    total_vwgt = nvtxs;
	}
	for (i = 0; i < nsets; i++)
	    goal[i] = total_vwgt / nsets;

	space = smalloc((nvtxs + 1) * sizeof(int));

	/* If not coarsening ewgts, then need care with term_wgts. */
	if (!using_ewgts && term_wgts[1] != NULL && step != 0) {
	    twptr = smalloc((nvtxs + 1) * (nsets - 1) * sizeof(float));
	    twptr_save = twptr;
	    for (j = 1; j < nsets; j++) {
	        new_term_wgts[j] = twptr;
	        twptr += nvtxs + 1;
	    }

	    for (j = 1; j < nsets; j++) {
	        twptr = term_wgts[j];
	        ctwptr = new_term_wgts[j];
	        for (i = 1; i <= nvtxs; i++) {
		    if (twptr[i] > .5) ctwptr[i] = 1;
		    else if (twptr[i] < -.5) ctwptr[i] = -1;
		    else ctwptr[i] = 0;
		}
	    }
	    real_term_wgts = new_term_wgts;
	}
	else {
	    real_term_wgts = term_wgts;
	    new_term_wgts[1] = NULL;
	}

	eigensolve(graph, nvtxs, nedges, maxdeg, vwgt_max, vwsqrt,
		   using_vwgts, using_ewgts, real_term_wgts, igeom, coords,
		   yvecs, evals, 0, space, goal,
		   solver_flag, FALSE, 0, ndims, 3, eigtol);

	if (real_term_wgts != term_wgts && new_term_wgts[1] != NULL) {
	    sfree(real_term_wgts[1]);
	}
	sfree(space);
	if (vwsqrt != NULL)
	    sfree(vwsqrt);
	return;
    }

    /* Otherwise I have to coarsen. */

    if (coords != NULL) {
	ccoords = smalloc(igeom * sizeof(float *));
    }
    else {
	ccoords = NULL;
    }
    coarsen1(graph, nvtxs, nedges, &cgraph, &cnvtxs, &cnedges,
	     &v2cv, igeom, coords, ccoords, using_ewgts);

    /* If coarsening isn't working very well, give up and partition. */
    give_up = FALSE;
    if (nvtxs * COARSEN_RATIO_MIN < cnvtxs && cnvtxs > vmax ) {
	printf("WARNING: Coarsening not making enough progress, nvtxs = %d, cnvtxs = %d.\n",
	    nvtxs, cnvtxs);
	printf("         Recursive coarsening being stopped prematurely.\n");
	if (Output_File != NULL) {
	    fprintf(Output_File,
		"WARNING: Coarsening not making enough progress, nvtxs = %d, cnvtxs = %d.\n",
	        nvtxs, cnvtxs);
	    fprintf(Output_File,
		"         Recursive coarsening being stopped prematurely.\n");
	}
	give_up = TRUE;
    }

    /* Create space for subgraph yvecs. */
    for (i = 1; i <= ndims; i++) {
	cyvecs[i] = smalloc((cnvtxs + 1) * sizeof(double));
    }

    /* Make coarse version of terminal weights. */
    if (term_wgts[1] != NULL) {
	twptr = smalloc((cnvtxs + 1) * (nsets - 1) * sizeof(float));
	twptr_save = twptr;
	for (i = (cnvtxs + 1) * (nsets - 1); i ; i--) {
	    *twptr++ = 0;
	}
	twptr = twptr_save;
	for (j = 1; j < nsets; j++) {
	    cterm_wgts[j] = twptr;
	    twptr += cnvtxs + 1;
	}
	for (j = 1; j < nsets; j++) {
	    ctwptr = cterm_wgts[j];
	    twptr = term_wgts[j];
	    for (i = 1; i < nvtxs; i++){
	        ctwptr[v2cv[i]] += twptr[i];
	    }
	}
    }
    else {
	cterm_wgts[1] = NULL;
    }

    /* Now recurse on coarse subgraph. */
    nextstep = step + 1;
    coarsen(cgraph, cnvtxs, cnedges, COARSEN_VWGTS, COARSEN_EWGTS, cterm_wgts,
	    igeom, ccoords, cyvecs, ndims, solver_flag, vmax, eigtol,
	    nstep, nextstep, give_up);

    ch_interpolate(yvecs, cyvecs, ndims, graph, nvtxs, v2cv, using_ewgts);

    sfree(cterm_wgts[1]);
    sfree(v2cv);

    /* I need to do Rayleigh Quotient Iteration each nstep stages. */
    time = seconds();
    if (!(step % nstep)) {
	oldperturb = PERTURB;
	PERTURB = FALSE;
	/* Should I do some orthogonalization here against vwsqrt? */
	if (using_vwgts) {
	    vwsqrt = smalloc((nvtxs + 1) * sizeof(double));
	    makevwsqrt(vwsqrt, graph, nvtxs);

	    for (i = 1; i <= ndims; i++)
		orthogvec(yvecs[i], 1, nvtxs, vwsqrt);
	}
	else
	    for (i = 1; i <= ndims; i++)
		orthog1(yvecs[i], 1, nvtxs);

	/* Allocate space that will be needed in RQI. */
	r1 = smalloc(7 * (nvtxs + 1) * sizeof(double));
	r2 = &r1[nvtxs + 1];
	v = &r1[2 * (nvtxs + 1)];
	w = &r1[3 * (nvtxs + 1)];
	x = &r1[4 * (nvtxs + 1)];
	y = &r1[5 * (nvtxs + 1)];
	work = &r1[6 * (nvtxs + 1)];

	if (using_vwgts) {
	    vwgt_max = 0;
	    total_vwgt = 0;
	    for (i = 1; i <= nvtxs; i++) {
		if (graph[i]->vwgt > vwgt_max)
		    vwgt_max = graph[i]->vwgt;
		total_vwgt += graph[i]->vwgt;
	    }
	}
	else {
	    vwgt_max = 1;
	    total_vwgt = nvtxs;
	}
	for (i = 0; i < nsets; i++)
	    goal[i] = total_vwgt / nsets;

	space = smalloc((nvtxs + 1) * sizeof(int));
	morespace = smalloc((nvtxs) * sizeof(int));

	initshift = 0;
	orthlist = NULL;
	for (i = 1; i < ndims; i++) {
	    ch_normalize(yvecs[i], 1, nvtxs);
	    rqi(graph, yvecs, i, nvtxs, r1, r2, v, w, x, y, work,
		eigtol, initshift, &evalest, vwsqrt, orthlist,
		0, nsets, space, morespace, 3, goal, vwgt_max, ndims);

	    /* Now orthogonalize higher yvecs against this one. */
	    norm = dot(yvecs[i], 1, nvtxs, yvecs[i]);
	    for (j = i + 1; j <= ndims; j++) {
		alpha = -dot(yvecs[j], 1, nvtxs, yvecs[i]) / norm;
		scadd(yvecs[j], 1, nvtxs, alpha, yvecs[i]);
	    }

	    /* Now prepare for next pass through loop. */
	    initshift = evalest;
	    newlink = makeorthlnk();
	    newlink->vec = yvecs[i];
	    newlink->pntr = orthlist;
	    orthlist = newlink;

	}
	ch_normalize(yvecs[ndims], 1, nvtxs);

	if (term_wgts[1] != NULL && ndims == 1) {
	    /* Solve extended eigen problem */

	    /* If not coarsening ewgts, then need care with term_wgts. */
	    if (!using_ewgts && term_wgts[1] != NULL && step != 0) {
	        twptr = smalloc((nvtxs + 1) * (nsets - 1) * sizeof(float));
	        twptr_save = twptr;
	        for (j = 1; j < nsets; j++) {
	            new_term_wgts[j] = twptr;
	            twptr += nvtxs + 1;
	        }

	        for (j = 1; j < nsets; j++) {
	            twptr = term_wgts[j];
	            ctwptr = new_term_wgts[j];
	            for (i = 1; i <= nvtxs; i++) {
		        if (twptr[i] > .5) ctwptr[i] = 1;
		        else if (twptr[i] < -.5) ctwptr[i] = -1;
		        else ctwptr[i] = 0;
		    }
	        }
	        real_term_wgts = new_term_wgts;
	    }
	    else {
	        real_term_wgts = term_wgts;
	        new_term_wgts[1] = NULL;
	    }

	    /* Following only works for bisection. */
	    w1 = goal[0];
	    w2 = goal[1];
	    sigma = sqrt(4*w1*w2/(w1+w2));
	    gvec = smalloc((nvtxs+1)*sizeof(double));
	    term_tot = sigma;	/* Avoids lint warning for now. */
	    term_tot = 0;
	    for (j=1; j<=nvtxs; j++) term_tot += (real_term_wgts[1])[j];
	    term_tot /= (w1+w2);
	    if (using_vwgts) {
	        for (j=1; j<=nvtxs; j++) {
		    gvec[j] = (real_term_wgts[1])[j]/graph[j]->vwgt - term_tot;
		}
	    }
	    else {
	        for (j=1; j<=nvtxs; j++) {
		    gvec[j] = (real_term_wgts[1])[j] - term_tot;
		}
	    }

	    rqi_ext();

	    sfree(gvec);
	    if (real_term_wgts != term_wgts && new_term_wgts[1] != NULL) {
		sfree(new_term_wgts[1]);
	    }
	}
	else {
	    rqi(graph, yvecs, ndims, nvtxs, r1, r2, v, w, x, y, work,
	        eigtol, initshift, &evalest, vwsqrt, orthlist,
	        0, nsets, space, morespace, 3, goal, vwgt_max, ndims);
	}
	refine_time += seconds() - time;

	/* Free the space allocated for RQI. */
	sfree(morespace);
	sfree(space);
	while (orthlist != NULL) {
	    newlink = orthlist->pntr;
	    sfree(orthlist);
	    orthlist = newlink;
	}
	sfree(r1);
	if (vwsqrt != NULL)
	    sfree(vwsqrt);
	PERTURB = oldperturb;
    }
    if (DEBUG_COARSEN > 0) {
	printf(" Leaving coarsen, step=%d\n", step);
    }

    /* Free the space that was allocated. */
    if (ccoords != NULL) {
	for (i = 0; i < igeom; i++)
	    sfree(ccoords[i]);
	sfree(ccoords);
    }
    for (i = ndims; i > 0; i--)
	sfree(cyvecs[i]);
    free_graph(cgraph);
}