Esempio n. 1
0
void
MPU9250::measure()
{
	if (hrt_absolute_time() < _reset_wait) {
		// we're waiting for a reset to complete
		return;
	}

	struct MPUReport mpu_report;

	struct Report {
		int16_t		accel_x;
		int16_t		accel_y;
		int16_t		accel_z;
		int16_t		temp;
		int16_t		gyro_x;
		int16_t		gyro_y;
		int16_t		gyro_z;
	} report;

	/* start measuring */
	perf_begin(_sample_perf);

	/*
	 * Fetch the full set of measurements from the MPU9250 in one pass.
	 */
	if (OK != _interface->read(MPU9250_SET_SPEED(MPUREG_INT_STATUS, MPU9250_HIGH_BUS_SPEED),
				   (uint8_t *)&mpu_report,
				   sizeof(mpu_report))) {
		return;
	}

	check_registers();

	if (check_duplicate(&mpu_report.accel_x[0])) {
		return;
	}

#ifdef USE_I2C

	if (_mag->is_passthrough()) {
#endif
		_mag->_measure(mpu_report.mag);
#ifdef USE_I2C

	} else {
		_mag->measure();
	}

#endif

	/*
	 * Convert from big to little endian
	 */
	report.accel_x = int16_t_from_bytes(mpu_report.accel_x);
	report.accel_y = int16_t_from_bytes(mpu_report.accel_y);
	report.accel_z = int16_t_from_bytes(mpu_report.accel_z);
	report.temp    = int16_t_from_bytes(mpu_report.temp);
	report.gyro_x  = int16_t_from_bytes(mpu_report.gyro_x);
	report.gyro_y  = int16_t_from_bytes(mpu_report.gyro_y);
	report.gyro_z  = int16_t_from_bytes(mpu_report.gyro_z);

	if (check_null_data((uint32_t *)&report, sizeof(report) / 4)) {
		return;
	}

	if (_register_wait != 0) {
		// we are waiting for some good transfers before using the sensor again
		// We still increment _good_transfers, but don't return any data yet
		_register_wait--;
		return;
	}

	/*
	 * Swap axes and negate y
	 */
	int16_t accel_xt = report.accel_y;
	int16_t accel_yt = ((report.accel_x == -32768) ? 32767 : -report.accel_x);

	int16_t gyro_xt = report.gyro_y;
	int16_t gyro_yt = ((report.gyro_x == -32768) ? 32767 : -report.gyro_x);

	/*
	 * Apply the swap
	 */
	report.accel_x = accel_xt;
	report.accel_y = accel_yt;
	report.gyro_x = gyro_xt;
	report.gyro_y = gyro_yt;

	/*
	 * Report buffers.
	 */
	accel_report		arb;
	gyro_report		grb;

	/*
	 * Adjust and scale results to m/s^2.
	 */
	grb.timestamp = arb.timestamp = hrt_absolute_time();

	// report the error count as the sum of the number of bad
	// transfers and bad register reads. This allows the higher
	// level code to decide if it should use this sensor based on
	// whether it has had failures
	grb.error_count = arb.error_count = perf_event_count(_bad_transfers) + perf_event_count(_bad_registers);

	/*
	 * 1) Scale raw value to SI units using scaling from datasheet.
	 * 2) Subtract static offset (in SI units)
	 * 3) Scale the statically calibrated values with a linear
	 *    dynamically obtained factor
	 *
	 * Note: the static sensor offset is the number the sensor outputs
	 * 	 at a nominally 'zero' input. Therefore the offset has to
	 * 	 be subtracted.
	 *
	 *	 Example: A gyro outputs a value of 74 at zero angular rate
	 *	 	  the offset is 74 from the origin and subtracting
	 *		  74 from all measurements centers them around zero.
	 */

	/* NOTE: Axes have been swapped to match the board a few lines above. */

	arb.x_raw = report.accel_x;
	arb.y_raw = report.accel_y;
	arb.z_raw = report.accel_z;

	float xraw_f = report.accel_x;
	float yraw_f = report.accel_y;
	float zraw_f = report.accel_z;

	// apply user specified rotation
	rotate_3f(_rotation, xraw_f, yraw_f, zraw_f);

	float x_in_new = ((xraw_f * _accel_range_scale) - _accel_scale.x_offset) * _accel_scale.x_scale;
	float y_in_new = ((yraw_f * _accel_range_scale) - _accel_scale.y_offset) * _accel_scale.y_scale;
	float z_in_new = ((zraw_f * _accel_range_scale) - _accel_scale.z_offset) * _accel_scale.z_scale;

	arb.x = _accel_filter_x.apply(x_in_new);
	arb.y = _accel_filter_y.apply(y_in_new);
	arb.z = _accel_filter_z.apply(z_in_new);

	math::Vector<3> aval(x_in_new, y_in_new, z_in_new);
	math::Vector<3> aval_integrated;

	bool accel_notify = _accel_int.put(arb.timestamp, aval, aval_integrated, arb.integral_dt);
	arb.x_integral = aval_integrated(0);
	arb.y_integral = aval_integrated(1);
	arb.z_integral = aval_integrated(2);

	arb.scaling = _accel_range_scale;
	arb.range_m_s2 = _accel_range_m_s2;

	_last_temperature = (report.temp) / 361.0f + 35.0f;

	arb.temperature_raw = report.temp;
	arb.temperature = _last_temperature;

	grb.x_raw = report.gyro_x;
	grb.y_raw = report.gyro_y;
	grb.z_raw = report.gyro_z;

	xraw_f = report.gyro_x;
	yraw_f = report.gyro_y;
	zraw_f = report.gyro_z;

	// apply user specified rotation
	rotate_3f(_rotation, xraw_f, yraw_f, zraw_f);

	float x_gyro_in_new = ((xraw_f * _gyro_range_scale) - _gyro_scale.x_offset) * _gyro_scale.x_scale;
	float y_gyro_in_new = ((yraw_f * _gyro_range_scale) - _gyro_scale.y_offset) * _gyro_scale.y_scale;
	float z_gyro_in_new = ((zraw_f * _gyro_range_scale) - _gyro_scale.z_offset) * _gyro_scale.z_scale;

	grb.x = _gyro_filter_x.apply(x_gyro_in_new);
	grb.y = _gyro_filter_y.apply(y_gyro_in_new);
	grb.z = _gyro_filter_z.apply(z_gyro_in_new);

	math::Vector<3> gval(x_gyro_in_new, y_gyro_in_new, z_gyro_in_new);
	math::Vector<3> gval_integrated;

	bool gyro_notify = _gyro_int.put(arb.timestamp, gval, gval_integrated, grb.integral_dt);
	grb.x_integral = gval_integrated(0);
	grb.y_integral = gval_integrated(1);
	grb.z_integral = gval_integrated(2);

	grb.scaling = _gyro_range_scale;
	grb.range_rad_s = _gyro_range_rad_s;

	grb.temperature_raw = report.temp;
	grb.temperature = _last_temperature;

	_accel_reports->force(&arb);
	_gyro_reports->force(&grb);

	/* notify anyone waiting for data */
	if (accel_notify) {
		poll_notify(POLLIN);
	}

	if (gyro_notify) {
		_gyro->parent_poll_notify();
	}

	if (accel_notify && !(_pub_blocked)) {
		/* log the time of this report */
		perf_begin(_controller_latency_perf);
		/* publish it */
		orb_publish(ORB_ID(sensor_accel), _accel_topic, &arb);
	}

	if (gyro_notify && !(_pub_blocked)) {
		/* publish it */
		orb_publish(ORB_ID(sensor_gyro), _gyro->_gyro_topic, &grb);
	}

	/* stop measuring */
	perf_end(_sample_perf);
}
Esempio n. 2
0
void
MPU9250::measure()
{

	if (hrt_absolute_time() < _reset_wait) {
		// we're waiting for a reset to complete
		return;
	}

	struct MPUReport mpu_report;

	struct ICMReport icm_report;

	struct Report {
		int16_t		accel_x;
		int16_t		accel_y;
		int16_t		accel_z;
		int16_t		temp;
		int16_t		gyro_x;
		int16_t		gyro_y;
		int16_t		gyro_z;
	} report;

	/* start measuring */
	perf_begin(_sample_perf);

	/*
	 * Fetch the full set of measurements from the MPU9250 in one pass
	 */

	if ((!_magnetometer_only || _mag->is_passthrough()) && _register_wait == 0) {
		if (_whoami == MPU_WHOAMI_9250 || _whoami == MPU_WHOAMI_6500) {
			if (OK != read_reg_range(MPUREG_INT_STATUS, MPU9250_HIGH_BUS_SPEED, (uint8_t *)&mpu_report, sizeof(mpu_report))) {
				perf_end(_sample_perf);
				return;
			}

		} else {    // ICM20948
			select_register_bank(REG_BANK(ICMREG_20948_ACCEL_XOUT_H));

			if (OK != read_reg_range(ICMREG_20948_ACCEL_XOUT_H, MPU9250_HIGH_BUS_SPEED, (uint8_t *)&icm_report,
						 sizeof(icm_report))) {
				perf_end(_sample_perf);
				return;
			}
		}

		check_registers();

		if (check_duplicate(MPU_OR_ICM(&mpu_report.accel_x[0], &icm_report.accel_x[0]))) {
			return;
		}
	}

	/*
	 * In case of a mag passthrough read, hand the magnetometer data over to _mag. Else,
	 * try to read a magnetometer report.
	 */

#   ifdef USE_I2C

	if (_mag->is_passthrough()) {
#   endif

		_mag->_measure(mpu_report.mag);

#   ifdef USE_I2C

	} else {
		_mag->measure();
	}

#   endif

	/*
	 * Continue evaluating gyro and accelerometer results
	 */
	if (!_magnetometer_only && _register_wait == 0) {

		/*
		 * Convert from big to little endian
		 */
		if (_whoami == ICM_WHOAMI_20948) {
			report.accel_x = int16_t_from_bytes(icm_report.accel_x);
			report.accel_y = int16_t_from_bytes(icm_report.accel_y);
			report.accel_z = int16_t_from_bytes(icm_report.accel_z);
			report.temp    = int16_t_from_bytes(icm_report.temp);
			report.gyro_x  = int16_t_from_bytes(icm_report.gyro_x);
			report.gyro_y  = int16_t_from_bytes(icm_report.gyro_y);
			report.gyro_z  = int16_t_from_bytes(icm_report.gyro_z);

		} else { // MPU9250/MPU6500
			report.accel_x = int16_t_from_bytes(mpu_report.accel_x);
			report.accel_y = int16_t_from_bytes(mpu_report.accel_y);
			report.accel_z = int16_t_from_bytes(mpu_report.accel_z);
			report.temp    = int16_t_from_bytes(mpu_report.temp);
			report.gyro_x  = int16_t_from_bytes(mpu_report.gyro_x);
			report.gyro_y  = int16_t_from_bytes(mpu_report.gyro_y);
			report.gyro_z  = int16_t_from_bytes(mpu_report.gyro_z);
		}

		if (check_null_data((uint16_t *)&report, sizeof(report) / 2)) {
			return;
		}
	}

	if (_register_wait != 0) {
		/*
		 * We are waiting for some good transfers before using the sensor again.
		 * We still increment _good_transfers, but don't return any data yet.
		 *
		*/
		_register_wait--;
		return;
	}

	/*
	 * Get sensor temperature
	 */
	_last_temperature = (report.temp) / 333.87f + 21.0f;


	/*
	 * Convert and publish accelerometer and gyrometer data.
	 */

	if (!_magnetometer_only) {

		/*
		 * Keeping the axes as they are for ICM20948 so orientation will match the actual chip orientation
		 */
		if (_whoami != ICM_WHOAMI_20948) {
			/*
			 * Swap axes and negate y
			 */

			int16_t accel_xt = report.accel_y;
			int16_t accel_yt = ((report.accel_x == -32768) ? 32767 : -report.accel_x);

			int16_t gyro_xt = report.gyro_y;
			int16_t gyro_yt = ((report.gyro_x == -32768) ? 32767 : -report.gyro_x);

			/*
			 * Apply the swap
			 */
			report.accel_x = accel_xt;
			report.accel_y = accel_yt;
			report.gyro_x = gyro_xt;
			report.gyro_y = gyro_yt;
		}

		/*
		 * Report buffers.
		 */
		sensor_accel_s		arb;
		sensor_gyro_s			grb;

		/*
		 * Adjust and scale results to m/s^2.
		 */
		grb.timestamp = arb.timestamp = hrt_absolute_time();

		// report the error count as the sum of the number of bad
		// transfers and bad register reads. This allows the higher
		// level code to decide if it should use this sensor based on
		// whether it has had failures
		grb.error_count = arb.error_count = perf_event_count(_bad_transfers) + perf_event_count(_bad_registers);

		/*
		 * 1) Scale raw value to SI units using scaling from datasheet.
		 * 2) Subtract static offset (in SI units)
		 * 3) Scale the statically calibrated values with a linear
		 *    dynamically obtained factor
		 *
		 * Note: the static sensor offset is the number the sensor outputs
		 * 	 at a nominally 'zero' input. Therefore the offset has to
		 * 	 be subtracted.
		 *
		 *	 Example: A gyro outputs a value of 74 at zero angular rate
		 *	 	  the offset is 74 from the origin and subtracting
		 *		  74 from all measurements centers them around zero.
		 */

		/* NOTE: Axes have been swapped to match the board a few lines above. */

		arb.x_raw = report.accel_x;
		arb.y_raw = report.accel_y;
		arb.z_raw = report.accel_z;

		float xraw_f = report.accel_x;
		float yraw_f = report.accel_y;
		float zraw_f = report.accel_z;

		// apply user specified rotation
		rotate_3f(_rotation, xraw_f, yraw_f, zraw_f);

		float x_in_new = ((xraw_f * _accel_range_scale) - _accel_scale.x_offset) * _accel_scale.x_scale;
		float y_in_new = ((yraw_f * _accel_range_scale) - _accel_scale.y_offset) * _accel_scale.y_scale;
		float z_in_new = ((zraw_f * _accel_range_scale) - _accel_scale.z_offset) * _accel_scale.z_scale;

		arb.x = _accel_filter_x.apply(x_in_new);
		arb.y = _accel_filter_y.apply(y_in_new);
		arb.z = _accel_filter_z.apply(z_in_new);

		matrix::Vector3f aval(x_in_new, y_in_new, z_in_new);
		matrix::Vector3f aval_integrated;

		bool accel_notify = _accel_int.put(arb.timestamp, aval, aval_integrated, arb.integral_dt);
		arb.x_integral = aval_integrated(0);
		arb.y_integral = aval_integrated(1);
		arb.z_integral = aval_integrated(2);

		arb.scaling = _accel_range_scale;

		arb.temperature = _last_temperature;

		/* return device ID */
		arb.device_id = _accel->_device_id.devid;

		grb.x_raw = report.gyro_x;
		grb.y_raw = report.gyro_y;
		grb.z_raw = report.gyro_z;

		xraw_f = report.gyro_x;
		yraw_f = report.gyro_y;
		zraw_f = report.gyro_z;

		// apply user specified rotation
		rotate_3f(_rotation, xraw_f, yraw_f, zraw_f);

		float x_gyro_in_new = ((xraw_f * _gyro_range_scale) - _gyro_scale.x_offset) * _gyro_scale.x_scale;
		float y_gyro_in_new = ((yraw_f * _gyro_range_scale) - _gyro_scale.y_offset) * _gyro_scale.y_scale;
		float z_gyro_in_new = ((zraw_f * _gyro_range_scale) - _gyro_scale.z_offset) * _gyro_scale.z_scale;

		grb.x = _gyro_filter_x.apply(x_gyro_in_new);
		grb.y = _gyro_filter_y.apply(y_gyro_in_new);
		grb.z = _gyro_filter_z.apply(z_gyro_in_new);

		matrix::Vector3f gval(x_gyro_in_new, y_gyro_in_new, z_gyro_in_new);
		matrix::Vector3f gval_integrated;

		bool gyro_notify = _gyro_int.put(arb.timestamp, gval, gval_integrated, grb.integral_dt);
		grb.x_integral = gval_integrated(0);
		grb.y_integral = gval_integrated(1);
		grb.z_integral = gval_integrated(2);

		grb.scaling = _gyro_range_scale;

		grb.temperature = _last_temperature;

		/* return device ID */
		grb.device_id = _gyro->_device_id.devid;

		_accel_reports->force(&arb);
		_gyro_reports->force(&grb);

		/* notify anyone waiting for data */
		if (accel_notify) {
			_accel->poll_notify(POLLIN);
		}

		if (gyro_notify) {
			_gyro->parent_poll_notify();
		}

		if (accel_notify && !(_accel->_pub_blocked)) {
			/* publish it */
			orb_publish(ORB_ID(sensor_accel), _accel_topic, &arb);
		}

		if (gyro_notify && !(_gyro->_pub_blocked)) {
			/* publish it */
			orb_publish(ORB_ID(sensor_gyro), _gyro->_gyro_topic, &grb);
		}
	}

	/* stop measuring */
	perf_end(_sample_perf);
}