Esempio n. 1
0
void do_predict(FILE *input, FILE *output)
{
	Int correct = 0;
	Int total = 0;
	double error = 0;
	double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;

	Int nr_class=get_nr_class(model_);
	double *prob_estimates=NULL;
	Int j, n;
	Int nr_feature=get_nr_feature(model_);
  if(model_->bias>=0)
		n=nr_feature+1;
	else
		n=nr_feature;

	if(flag_predict_probability)
	{
		Int *labels;

		if(!check_probability_model(model_))
		{
			fprintf(stderr, "probability output is only supported for logistic regression\n");
			exit(1);
		}

		labels=(Int *) malloc(nr_class*sizeof(Int));
		get_labels(model_,labels);
		prob_estimates = (double *) malloc(nr_class*sizeof(double));
		fprintf(output,"labels");
		for(j=0;j<nr_class;j++)
			fprintf(output," %d",labels[j]);
		fprintf(output,"\n");
		free(labels);
	}

	max_line_len = 100000000;
	line = (char *)malloc(max_line_len*sizeof(char));
	while(readline(input) != NULL)
	{
		Int i = 0;
		double target_label, predict_label;
		char *idx, *val, *label, *endptr;
		Int inst_max_index = 0; // strtol gives 0 if wrong format

		label = strtok(line," \t\n");
		if(label == NULL) // empty line
			exit_input_error(total+1);

		target_label = strtod(label,&endptr);
		if(endptr == label || *endptr != '\0')
			exit_input_error(total+1);

		while(1)
		{
			if(i>=max_nr_attr-2)	// need one more for index = -1
			{
				max_nr_attr *= 2;
				x = (struct feature_node *) realloc(x,max_nr_attr*sizeof(struct feature_node));
			}

			idx = strtok(NULL,":");
			val = strtok(NULL," \t");

			if(val == NULL)
				break;
			errno = 0;
			x[i].index = (Int) strtol(idx,&endptr,10);
			if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index)
				exit_input_error(total+1);
			else
				inst_max_index = x[i].index;

			errno = 0;
			x[i].value = strtod(val,&endptr);
			if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
				exit_input_error(total+1);

			// feature indices larger than those in training are not used
			if(x[i].index <= nr_feature)
				++i;
		}

		if(model_->bias>=0)
		{
			x[i].index = n;
			x[i].value = model_->bias;
			i++;
		}
		x[i].index = -1;

		if(flag_predict_probability)
		{
			Int j;
			predict_label = predict_probability(model_,x,prob_estimates);
			fprintf(output,"%g",predict_label);
			for(j=0;j<model_->nr_class;j++)
				fprintf(output," %g",prob_estimates[j]);
			fprintf(output,"\n");
		}
		else
		{
			predict_label = predict(model_,x);
			fprintf(output,"%g\n",predict_label);
		}

		if(predict_label == target_label)
			++correct;
		error += (predict_label-target_label)*(predict_label-target_label);
		sump += predict_label;
		sumt += target_label;
		sumpp += predict_label*predict_label;
		sumtt += target_label*target_label;
		sumpt += predict_label*target_label;
		++total;
	}
	if(check_regression_model(model_))
	{
		info("Mean squared error = %g (regression)\n",error/total);
		info("Squared correlation coefficient = %g (regression)\n",
			((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
			((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
			);
	}
	else
		info("Accuracy = %g%% (%d/%d)\n",(double) correct/total*100,correct,total);
	if(flag_predict_probability)
		free(prob_estimates);
}
Esempio n. 2
0
void do_predict(int nlhs, mxArray *plhs[], const mxArray *prhs[], struct model *model_, const int predict_probability_flag)
{
	int label_vector_row_num, label_vector_col_num;
	int feature_number, testing_instance_number;
	int instance_index;
	double *ptr_label, *ptr_predict_label;
	double *ptr_prob_estimates, *ptr_dec_values, *ptr;
	struct feature_node *x;
	mxArray *pplhs[1]; // instance sparse matrix in row format
	mxArray *tplhs[3]; // temporary storage for plhs[]

	int correct = 0;
	int total = 0;
	double error = 0;
	double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;

	int nr_class=get_nr_class(model_);
	int nr_w;
	double *prob_estimates=NULL;

	if(nr_class==2 && model_->param.solver_type!=MCSVM_CS)
		nr_w=1;
	else
		nr_w=nr_class;

	// prhs[1] = testing instance matrix
	feature_number = get_nr_feature(model_);
	testing_instance_number = (int) mxGetM(prhs[1]);
	if(col_format_flag)
	{
		feature_number = (int) mxGetM(prhs[1]);
		testing_instance_number = (int) mxGetN(prhs[1]);
	}

	label_vector_row_num = (int) mxGetM(prhs[0]);
	label_vector_col_num = (int) mxGetN(prhs[0]);

	if(label_vector_row_num!=testing_instance_number)
	{
		mexPrintf("Length of label vector does not match # of instances.\n");
		fake_answer(nlhs, plhs);
		return;
	}
	if(label_vector_col_num!=1)
	{
		mexPrintf("label (1st argument) should be a vector (# of column is 1).\n");
		fake_answer(nlhs, plhs);
		return;
	}

	ptr_label    = mxGetPr(prhs[0]);

	// transpose instance matrix
	if(col_format_flag)
		pplhs[0] = (mxArray *)prhs[1];
	else
	{
		mxArray *pprhs[1];
		pprhs[0] = mxDuplicateArray(prhs[1]);
		if(mexCallMATLAB(1, pplhs, 1, pprhs, "transpose"))
		{
			mexPrintf("Error: cannot transpose testing instance matrix\n");
			fake_answer(nlhs, plhs);
			return;
		}
	}


	prob_estimates = Malloc(double, nr_class);

	tplhs[0] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL);
	if(predict_probability_flag)
		tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class, mxREAL);
	else
		tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_w, mxREAL);

	ptr_predict_label = mxGetPr(tplhs[0]);
	ptr_prob_estimates = mxGetPr(tplhs[2]);
	ptr_dec_values = mxGetPr(tplhs[2]);
	x = Malloc(struct feature_node, feature_number+2);
	for(instance_index=0;instance_index<testing_instance_number;instance_index++)
	{
		int i;
		double target_label, predict_label;

		target_label = ptr_label[instance_index];

		// prhs[1] and prhs[1]^T are sparse
		read_sparse_instance(pplhs[0], instance_index, x, feature_number, model_->bias);

		if(predict_probability_flag)
		{
			predict_label = predict_probability(model_, x, prob_estimates);
			ptr_predict_label[instance_index] = predict_label;
			for(i=0;i<nr_class;i++)
				ptr_prob_estimates[instance_index + i * testing_instance_number] = prob_estimates[i];
		}
		else
		{
			double *dec_values = Malloc(double, nr_class);
			predict_label = predict_values(model_, x, dec_values);
			ptr_predict_label[instance_index] = predict_label;

			for(i=0;i<nr_w;i++)
				ptr_dec_values[instance_index + i * testing_instance_number] = dec_values[i];
			free(dec_values);
		}

		if(predict_label == target_label)
			++correct;
		error += (predict_label-target_label)*(predict_label-target_label);
		sump += predict_label;
		sumt += target_label;
		sumpp += predict_label*predict_label;
		sumtt += target_label*target_label;
		sumpt += predict_label*target_label;

		++total;
	}

	if(check_regression_model(model_))
	{
		info("Mean squared error = %g (regression)\n",error/total);
		info("Squared correlation coefficient = %g (regression)\n",
			((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
			((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
			);
	}
	else
		info("Accuracy = %g%% (%d/%d)\n", (double) correct/total*100,correct,total);

	// return accuracy, mean squared error, squared correlation coefficient
	tplhs[1] = mxCreateDoubleMatrix(3, 1, mxREAL);
	ptr = mxGetPr(tplhs[1]);
	ptr[0] = (double)correct/total*100;
	ptr[1] = error/total;
	ptr[2] = ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
				((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt));

	free(x);
	if(prob_estimates != NULL)
		free(prob_estimates);

	switch(nlhs)
	{
		case 3:
			plhs[2] = tplhs[2];
			plhs[1] = tplhs[1];
		case 1:
		case 0:
			plhs[0] = tplhs[0];
	}
}