SEXP dtTMatrix_as_dgCMatrix(SEXP x) { cholmod_triplet *tx = as_cholmod_triplet(x); cholmod_sparse *cx = cholmod_triplet_to_sparse(tx, tx->nzmax, &c); Free(tx); /* chm_sparse_to_SEXP cholmod_frees cx */ return chm_sparse_to_SEXP(cx, 1, 0, "", GET_SLOT(x, Matrix_DimNamesSym)); }
/* Should generalize this, also for ltT -> lgC -- * along the lines in ./TMatrix_as.c ..... or drop completely : */ SEXP dtTMatrix_as_dgCMatrix(SEXP x) { CHM_TR tx = AS_CHM_TR(x); CHM_SP cx = cholmod_triplet_to_sparse(tx, tx->nzmax, &c); R_CheckStack(); /* FIXME * int Rkind = (tx->xtype == CHOLMOD_REAL) ? Real_kind(x) : 0; */ return chm_sparse_to_SEXP(cx, 1/*do_free*/, 0, /*Rkind*/ 0, "", GET_SLOT(x, Matrix_DimNamesSym)); }
SEXP Tsparse_to_Csparse(SEXP x, SEXP tri) { cholmod_triplet *chxt = as_cholmod_triplet(x); cholmod_sparse *chxs = cholmod_triplet_to_sparse(chxt, chxt->nnz, &c); int uploT = 0; char *diag = ""; Free(chxt); if (asLogical(tri)) { /* triangular sparse matrices */ uploT = (strcmp(CHAR(asChar(GET_SLOT(x, Matrix_uploSym))), "U")) ? -1 : 1; diag = CHAR(asChar(GET_SLOT(x, Matrix_diagSym))); } return chm_sparse_to_SEXP(chxs, 1, uploT, diag, duplicate(GET_SLOT(x, Matrix_DimNamesSym))); }
// doing cholesky decomposition void Algebra::CK_decomp(Matrix &A, cholmod_factor *&L, cholmod_common *cm, size_t &peak_mem, size_t & CK_mem){ // doing factorization first cholmod_triplet * T; size_t n_row = A.get_row(); size_t n_col = A.get_row(); size_t nnz = A.size(); int *Ti; int *Tj; double *Tx; int stype = -1;// lower triangular storage T = cholmod_allocate_triplet(n_row, n_col, nnz, stype, CHOLMOD_REAL, cm); Ti = static_cast<int *>(T->i); Tj = static_cast<int *>(T->j); Tx = static_cast<double *>(T->x); // copy data into T for(size_t k=0;k<nnz;k++){ Ti[k] = A.Ti[k]; Tj[k] = A.Tj[k]; Tx[k] = A.Tx[k]; } T->nnz = nnz; A.Ti.clear(); A.Tj.clear(); A.Tx.clear(); cholmod_sparse * A_cholmod; A_cholmod = cholmod_triplet_to_sparse(T, nnz, cm); // free the triplet pointer cholmod_free_triplet(&T, cm); //cm->supernodal = -1; L = cholmod_analyze(A_cholmod, cm); //L->ordering = CHOLMOD_NATURAL; cholmod_factorize(A_cholmod, L, cm); //cholmod_print_factor(L, "L", cm); //if(peak_mem < cm->memory_usage) //peak_mem = cm->memory_usage; //CK_mem += cm->lnz; cholmod_free_sparse(&A_cholmod, cm); }
/* Computes x'x or x x' -- *also* for Tsparse (triplet = TRUE) see Csparse_Csparse_crossprod above for x'y and x y' */ SEXP Csparse_crossprod(SEXP x, SEXP trans, SEXP triplet) { int trip = asLogical(triplet), tr = asLogical(trans); /* gets reversed because _aat is tcrossprod */ #ifdef AS_CHM_DIAGU2N_FIXED_FINALLY CHM_TR cht = trip ? AS_CHM_TR(x) : (CHM_TR) NULL; #else /* workaround needed:*/ SEXP xx = PROTECT(Tsparse_diagU2N(x)); CHM_TR cht = trip ? AS_CHM_TR__(xx) : (CHM_TR) NULL; #endif CHM_SP chcp, chxt, chx = (trip ? cholmod_triplet_to_sparse(cht, cht->nnz, &c) : AS_CHM_SP(x)); SEXP dn = PROTECT(allocVector(VECSXP, 2)); R_CheckStack(); if (!tr) chxt = cholmod_transpose(chx, chx->xtype, &c); chcp = cholmod_aat((!tr) ? chxt : chx, (int *) NULL, 0, chx->xtype, &c); if(!chcp) { UNPROTECT(1); error(_("Csparse_crossprod(): error return from cholmod_aat()")); } cholmod_band_inplace(0, chcp->ncol, chcp->xtype, chcp, &c); chcp->stype = 1; if (trip) cholmod_free_sparse(&chx, &c); if (!tr) cholmod_free_sparse(&chxt, &c); SET_VECTOR_ELT(dn, 0, /* establish dimnames */ duplicate(VECTOR_ELT(GET_SLOT(x, Matrix_DimNamesSym), (tr) ? 0 : 1))); SET_VECTOR_ELT(dn, 1, duplicate(VECTOR_ELT(dn, 0))); #ifdef AS_CHM_DIAGU2N_FIXED_FINALLY UNPROTECT(1); #else UNPROTECT(2); #endif return chm_sparse_to_SEXP(chcp, 1, 0, 0, "", dn); }
bool SparseOptimizerIncremental::updateInitialization(HyperGraph::VertexSet& vset, HyperGraph::EdgeSet& eset) { if (batchStep) { return SparseOptimizerOnline::updateInitialization(vset, eset); } for (HyperGraph::VertexSet::iterator it = vset.begin(); it != vset.end(); ++it) { OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*it); v->clearQuadraticForm(); // be sure that b is zero for this vertex } // get the touched vertices _touchedVertices.clear(); for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) { OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it); OptimizableGraph::Vertex* v1 = static_cast<OptimizableGraph::Vertex*>(e->vertices()[0]); OptimizableGraph::Vertex* v2 = static_cast<OptimizableGraph::Vertex*>(e->vertices()[1]); if (! v1->fixed()) _touchedVertices.insert(v1); if (! v2->fixed()) _touchedVertices.insert(v2); } //cerr << PVAR(_touchedVertices.size()) << endl; // updating the internal structures std::vector<HyperGraph::Vertex*> newVertices; newVertices.reserve(vset.size()); _activeVertices.reserve(_activeVertices.size() + vset.size()); _activeEdges.reserve(_activeEdges.size() + eset.size()); for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) _activeEdges.push_back(static_cast<OptimizableGraph::Edge*>(*it)); //cerr << "updating internal done." << endl; // update the index mapping size_t next = _ivMap.size(); for (HyperGraph::VertexSet::iterator it = vset.begin(); it != vset.end(); ++it) { OptimizableGraph::Vertex* v=static_cast<OptimizableGraph::Vertex*>(*it); if (! v->fixed()){ if (! v->marginalized()){ v->setHessianIndex(next); _ivMap.push_back(v); newVertices.push_back(v); _activeVertices.push_back(v); next++; } else // not supported right now abort(); } else { v->setHessianIndex(-1); } } //cerr << "updating index mapping done." << endl; // backup the tempindex and prepare sorting structure VertexBackup backupIdx[_touchedVertices.size()]; memset(backupIdx, 0, sizeof(VertexBackup) * _touchedVertices.size()); int idx = 0; for (HyperGraph::VertexSet::iterator it = _touchedVertices.begin(); it != _touchedVertices.end(); ++it) { OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*it); backupIdx[idx].hessianIndex = v->hessianIndex(); backupIdx[idx].vertex = v; backupIdx[idx].hessianData = v->hessianData(); ++idx; } sort(backupIdx, backupIdx + _touchedVertices.size()); // sort according to the hessianIndex which is the same order as used later by the optimizer for (int i = 0; i < idx; ++i) { backupIdx[i].vertex->setHessianIndex(i); } //cerr << "backup tempindex done." << endl; // building the structure of the update _updateMat.clear(true); // get rid of the old matrix structure _updateMat.rowBlockIndices().clear(); _updateMat.colBlockIndices().clear(); _updateMat.blockCols().clear(); // placing the current stuff in _updateMat MatrixXd* lastBlock = 0; int sizePoses = 0; for (int i = 0; i < idx; ++i) { OptimizableGraph::Vertex* v = backupIdx[i].vertex; int dim = v->dimension(); sizePoses+=dim; _updateMat.rowBlockIndices().push_back(sizePoses); _updateMat.colBlockIndices().push_back(sizePoses); _updateMat.blockCols().push_back(SparseBlockMatrix<MatrixXd>::IntBlockMap()); int ind = v->hessianIndex(); //cerr << PVAR(ind) << endl; if (ind >= 0) { MatrixXd* m = _updateMat.block(ind, ind, true); v->mapHessianMemory(m->data()); lastBlock = m; } } lastBlock->diagonal().array() += 1e-6; // HACK to get Eigen value > 0 for (HyperGraph::EdgeSet::const_iterator it = eset.begin(); it != eset.end(); ++it) { OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it); OptimizableGraph::Vertex* v1 = (OptimizableGraph::Vertex*) e->vertices()[0]; OptimizableGraph::Vertex* v2 = (OptimizableGraph::Vertex*) e->vertices()[1]; int ind1 = v1->hessianIndex(); if (ind1 == -1) continue; int ind2 = v2->hessianIndex(); if (ind2 == -1) continue; bool transposedBlock = ind1 > ind2; if (transposedBlock) // make sure, we allocate the upper triangular block swap(ind1, ind2); MatrixXd* m = _updateMat.block(ind1, ind2, true); e->mapHessianMemory(m->data(), 0, 1, transposedBlock); } // build the system into _updateMat for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) { OptimizableGraph::Edge * e = static_cast<OptimizableGraph::Edge*>(*it); e->computeError(); } for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) { OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it); e->linearizeOplus(); } for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) { OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it); e->constructQuadraticForm(); } // restore the original data for the vertex for (int i = 0; i < idx; ++i) { backupIdx[i].vertex->setHessianIndex(backupIdx[i].hessianIndex); if (backupIdx[i].hessianData) backupIdx[i].vertex->mapHessianMemory(backupIdx[i].hessianData); } // update the structure of the real block matrix bool solverStatus = _algorithm->updateStructure(newVertices, eset); bool updateStatus = computeCholeskyUpdate(); if (! updateStatus) { cerr << "Error while computing update" << endl; } cholmod_sparse* updateAsSparseFactor = cholmod_factor_to_sparse(_cholmodFactor, &_cholmodCommon); // convert CCS update by permuting back to the permutation of L if (updateAsSparseFactor->nzmax > _permutedUpdate->nzmax) { //cerr << "realloc _permutedUpdate" << endl; cholmod_reallocate_triplet(updateAsSparseFactor->nzmax, _permutedUpdate, &_cholmodCommon); } _permutedUpdate->nnz = 0; _permutedUpdate->nrow = _permutedUpdate->ncol = _L->n; { int* Ap = (int*)updateAsSparseFactor->p; int* Ai = (int*)updateAsSparseFactor->i; double* Ax = (double*)updateAsSparseFactor->x; int* Bj = (int*)_permutedUpdate->j; int* Bi = (int*)_permutedUpdate->i; double* Bx = (double*)_permutedUpdate->x; for (size_t c = 0; c < updateAsSparseFactor->ncol; ++c) { const int& rbeg = Ap[c]; const int& rend = Ap[c+1]; int cc = c / slamDimension; int coff = c % slamDimension; const int& cbase = backupIdx[cc].vertex->colInHessian(); const int& ccol = _perm(cbase + coff); for (int j = rbeg; j < rend; j++) { const int& r = Ai[j]; const double& val = Ax[j]; int rr = r / slamDimension; int roff = r % slamDimension; const int& rbase = backupIdx[rr].vertex->colInHessian(); int row = _perm(rbase + roff); int col = ccol; if (col > row) // lower triangular entry swap(col, row); Bi[_permutedUpdate->nnz] = row; Bj[_permutedUpdate->nnz] = col; Bx[_permutedUpdate->nnz] = val; ++_permutedUpdate->nnz; } } } cholmod_free_sparse(&updateAsSparseFactor, &_cholmodCommon); #if 0 cholmod_sparse* updatePermuted = cholmod_triplet_to_sparse(_permutedUpdate, _permutedUpdate->nnz, &_cholmodCommon); //writeCCSMatrix("update-permuted.txt", updatePermuted->nrow, updatePermuted->ncol, (int*)updatePermuted->p, (int*)updatePermuted->i, (double*)updatePermuted->x, false); _solverInterface->choleskyUpdate(updatePermuted); cholmod_free_sparse(&updatePermuted, &_cholmodCommon); #else convertTripletUpdateToSparse(); _solverInterface->choleskyUpdate(_permutedUpdateAsSparse); #endif return solverStatus; }