Esempio n. 1
0
/* Subroutine */ int claqr0_(logical *wantt, logical *wantz, integer *n, 
	integer *ilo, integer *ihi, complex *h__, integer *ldh, complex *w, 
	integer *iloz, integer *ihiz, complex *z__, integer *ldz, complex *
	work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
    real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8;
    complex q__1, q__2, q__3, q__4, q__5;

    /* Local variables */
    integer i__, k;
    real s;
    complex aa, bb, cc, dd;
    integer ld, nh, it, ks, kt, ku, kv, ls, ns, nw;
    complex tr2, det;
    integer inf, kdu, nho, nve, kwh, nsr, nwr, kwv, ndec, ndfl, kbot, nmin;
    complex swap;
    integer ktop;
    complex zdum[1]	/* was [1][1] */;
    integer kacc22, itmax, nsmax, nwmax, kwtop;
    integer nibble;
    char jbcmpz[1];
    complex rtdisc;
    integer nwupbd;
    logical sorted;
    integer lwkopt;

/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     November 2006 */

/*     Purpose */
/*     ======= */

/*     CLAQR0 computes the eigenvalues of a Hessenberg matrix H */
/*     and, optionally, the matrices T and Z from the Schur decomposition */
/*     H = Z T Z**H, where T is an upper triangular matrix (the */
/*     Schur form), and Z is the unitary matrix of Schur vectors. */

/*     Optionally Z may be postmultiplied into an input unitary */
/*     matrix Q so that this routine can give the Schur factorization */
/*     of a matrix A which has been reduced to the Hessenberg form H */
/*     by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H. */

/*     Arguments */
/*     ========= */

/*     WANTT   (input) LOGICAL */
/*          = .TRUE. : the full Schur form T is required; */
/*          = .FALSE.: only eigenvalues are required. */

/*     WANTZ   (input) LOGICAL */
/*          = .TRUE. : the matrix of Schur vectors Z is required; */
/*          = .FALSE.: Schur vectors are not required. */

/*     N     (input) INTEGER */
/*           The order of the matrix H.  N .GE. 0. */

/*     ILO   (input) INTEGER */
/*     IHI   (input) INTEGER */
/*           It is assumed that H is already upper triangular in rows */
/*           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1, */
/*           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */
/*           previous call to CGEBAL, and then passed to CGEHRD when the */
/*           matrix output by CGEBAL is reduced to Hessenberg form. */
/*           Otherwise, ILO and IHI should be set to 1 and N, */
/*           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. */
/*           If N = 0, then ILO = 1 and IHI = 0. */

/*     H     (input/output) COMPLEX array, dimension (LDH,N) */
/*           On entry, the upper Hessenberg matrix H. */
/*           On exit, if INFO = 0 and WANTT is .TRUE., then H */
/*           contains the upper triangular matrix T from the Schur */
/*           decomposition (the Schur form). If INFO = 0 and WANT is */
/*           .FALSE., then the contents of H are unspecified on exit. */
/*           (The output value of H when INFO.GT.0 is given under the */
/*           description of INFO below.) */

/*           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and */

/*     LDH   (input) INTEGER */
/*           The leading dimension of the array H. LDH .GE. max(1,N). */

/*     W        (output) COMPLEX array, dimension (N) */
/*           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored */
/*           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are */
/*           stored in the same order as on the diagonal of the Schur */
/*           form returned in H, with W(i) = H(i,i). */

/*     Z     (input/output) COMPLEX array, dimension (LDZ,IHI) */
/*           If WANTZ is .FALSE., then Z is not referenced. */
/*           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */
/*           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */
/*           orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */
/*           (The output value of Z when INFO.GT.0 is given under */
/*           the description of INFO below.) */

/*     LDZ   (input) INTEGER */
/*           The leading dimension of the array Z.  if WANTZ is .TRUE. */
/*           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1. */

/*     WORK  (workspace/output) COMPLEX array, dimension LWORK */
/*           On exit, if LWORK = -1, WORK(1) returns an estimate of */
/*           the optimal value for LWORK. */

/*     LWORK (input) INTEGER */
/*           The dimension of the array WORK.  LWORK .GE. max(1,N) */
/*           is sufficient, but LWORK typically as large as 6*N may */
/*           be required for optimal performance.  A workspace query */
/*           to determine the optimal workspace size is recommended. */

/*           If LWORK = -1, then CLAQR0 does a workspace query. */
/*           In this case, CLAQR0 checks the input parameters and */
/*           estimates the optimal workspace size for the given */
/*           values of N, ILO and IHI.  The estimate is returned */
/*           in WORK(1).  No error message related to LWORK is */
/*           issued by XERBLA.  Neither H nor Z are accessed. */

/*     INFO  (output) INTEGER */
/*             =  0:  successful exit */
/*           .GT. 0:  if INFO = i, CLAQR0 failed to compute all of */
/*                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR */
/*                and WI contain those eigenvalues which have been */
/*                successfully computed.  (Failures are rare.) */

/*                If INFO .GT. 0 and WANT is .FALSE., then on exit, */
/*                the remaining unconverged eigenvalues are the eigen- */
/*                values of the upper Hessenberg matrix rows and */
/*                columns ILO through INFO of the final, output */
/*                value of H. */

/*                If INFO .GT. 0 and WANTT is .TRUE., then on exit */

/*           (*)  (initial value of H)*U  = U*(final value of H) */

/*                where U is a unitary matrix.  The final */
/*                value of  H is upper Hessenberg and triangular in */
/*                rows and columns INFO+1 through IHI. */

/*                If INFO .GT. 0 and WANTZ is .TRUE., then on exit */

/*                  (final value of Z(ILO:IHI,ILOZ:IHIZ) */
/*                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */

/*                where U is the unitary matrix in (*) (regard- */
/*                less of the value of WANTT.) */

/*                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not */
/*                accessed. */

/*     ================================================================ */
/*     Based on contributions by */
/*        Karen Braman and Ralph Byers, Department of Mathematics, */
/*        University of Kansas, USA */

/*     ================================================================ */
/*     References: */
/*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
/*       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
/*       Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
/*       929--947, 2002. */

/*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
/*       Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
/*       of Matrix Analysis, volume 23, pages 948--973, 2002. */

/*     ================================================================ */

/*     ==== Matrices of order NTINY or smaller must be processed by */
/*     .    CLAHQR because of insufficient subdiagonal scratch space. */
/*     .    (This is a hard limit.) ==== */

/*     ==== Exceptional deflation windows:  try to cure rare */
/*     .    slow convergence by varying the size of the */
/*     .    deflation window after KEXNW iterations. ==== */

/*     ==== Exceptional shifts: try to cure rare slow convergence */
/*     .    with ad-hoc exceptional shifts every KEXSH iterations. */
/*     .    ==== */

/*     ==== The constant WILK1 is used to form the exceptional */
/*     .    shifts. ==== */
    /* Parameter adjustments */
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    *info = 0;

/*     ==== Quick return for N = 0: nothing to do. ==== */

    if (*n == 0) {
	work[1].r = 1.f, work[1].i = 0.f;
	return 0;
    }

    if (*n <= 11) {

/*        ==== Tiny matrices must use CLAHQR. ==== */

	lwkopt = 1;
	if (*lwork != -1) {
	    clahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1], 
		    iloz, ihiz, &z__[z_offset], ldz, info);
	}
    } else {

/*        ==== Use small bulge multi-shift QR with aggressive early */
/*        .    deflation on larger-than-tiny matrices. ==== */

/*        ==== Hope for the best. ==== */

	*info = 0;

/*        ==== Set up job flags for ILAENV. ==== */

	if (*wantt) {
	    *(unsigned char *)jbcmpz = 'S';
	} else {
	    *(unsigned char *)jbcmpz = 'E';
	}
	if (*wantz) {
	    *(unsigned char *)&jbcmpz[1] = 'V';
	} else {
	    *(unsigned char *)&jbcmpz[1] = 'N';
	}

/*        ==== NWR = recommended deflation window size.  At this */
/*        .    point,  N .GT. NTINY = 11, so there is enough */
/*        .    subdiagonal workspace for NWR.GE.2 as required. */
/*        .    (In fact, there is enough subdiagonal space for */
/*        .    NWR.GE.3.) ==== */

	nwr = ilaenv_(&c__13, "CLAQR0", jbcmpz, n, ilo, ihi, lwork);
	nwr = max(2,nwr);
/* Computing MIN */
	i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = min(i__1,i__2);
	nwr = min(i__1,nwr);

/*        ==== NSR = recommended number of simultaneous shifts. */
/*        .    At this point N .GT. NTINY = 11, so there is at */
/*        .    enough subdiagonal workspace for NSR to be even */
/*        .    and greater than or equal to two as required. ==== */

	nsr = ilaenv_(&c__15, "CLAQR0", jbcmpz, n, ilo, ihi, lwork);
/* Computing MIN */
	i__1 = nsr, i__2 = (*n + 6) / 9, i__1 = min(i__1,i__2), i__2 = *ihi - 
		*ilo;
	nsr = min(i__1,i__2);
/* Computing MAX */
	i__1 = 2, i__2 = nsr - nsr % 2;
	nsr = max(i__1,i__2);

/*        ==== Estimate optimal workspace ==== */

/*        ==== Workspace query call to CLAQR3 ==== */

	i__1 = nwr + 1;
	claqr3_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz, 
		ihiz, &z__[z_offset], ldz, &ls, &ld, &w[1], &h__[h_offset], 
		ldh, n, &h__[h_offset], ldh, n, &h__[h_offset], ldh, &work[1], 
		 &c_n1);

/*        ==== Optimal workspace = MAX(CLAQR5, CLAQR3) ==== */

/* Computing MAX */
	i__1 = nsr * 3 / 2, i__2 = (integer) work[1].r;
	lwkopt = max(i__1,i__2);

/*        ==== Quick return in case of workspace query. ==== */

	if (*lwork == -1) {
	    r__1 = (real) lwkopt;
	    q__1.r = r__1, q__1.i = 0.f;
	    work[1].r = q__1.r, work[1].i = q__1.i;
	    return 0;
	}

/*        ==== CLAHQR/CLAQR0 crossover point ==== */

	nmin = ilaenv_(&c__12, "CLAQR0", jbcmpz, n, ilo, ihi, lwork);
	nmin = max(11,nmin);

/*        ==== Nibble crossover point ==== */

	nibble = ilaenv_(&c__14, "CLAQR0", jbcmpz, n, ilo, ihi, lwork);
	nibble = max(0,nibble);

/*        ==== Accumulate reflections during ttswp?  Use block */
/*        .    2-by-2 structure during matrix-matrix multiply? ==== */

	kacc22 = ilaenv_(&c__16, "CLAQR0", jbcmpz, n, ilo, ihi, lwork);
	kacc22 = max(0,kacc22);
	kacc22 = min(2,kacc22);

/*        ==== NWMAX = the largest possible deflation window for */
/*        .    which there is sufficient workspace. ==== */

/* Computing MIN */
	i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
	nwmax = min(i__1,i__2);
	nw = nwmax;

/*        ==== NSMAX = the Largest number of simultaneous shifts */
/*        .    for which there is sufficient workspace. ==== */

/* Computing MIN */
	i__1 = (*n + 6) / 9, i__2 = (*lwork << 1) / 3;
	nsmax = min(i__1,i__2);
	nsmax -= nsmax % 2;

/*        ==== NDFL: an iteration count restarted at deflation. ==== */

	ndfl = 1;

/*        ==== ITMAX = iteration limit ==== */

/* Computing MAX */
	i__1 = 10, i__2 = *ihi - *ilo + 1;
	itmax = max(i__1,i__2) * 30;

/*        ==== Last row and column in the active block ==== */

	kbot = *ihi;

/*        ==== Main Loop ==== */

	i__1 = itmax;
	for (it = 1; it <= i__1; ++it) {

/*           ==== Done when KBOT falls below ILO ==== */

	    if (kbot < *ilo) {
		goto L80;
	    }

/*           ==== Locate active block ==== */

	    i__2 = *ilo + 1;
	    for (k = kbot; k >= i__2; --k) {
		i__3 = k + (k - 1) * h_dim1;
		if (h__[i__3].r == 0.f && h__[i__3].i == 0.f) {
		    goto L20;
		}
	    }
	    k = *ilo;
L20:
	    ktop = k;

/*           ==== Select deflation window size: */
/*           .    Typical Case: */
/*           .      If possible and advisable, nibble the entire */
/*           .      active block.  If not, use size MIN(NWR,NWMAX) */
/*           .      or MIN(NWR+1,NWMAX) depending upon which has */
/*           .      the smaller corresponding subdiagonal entry */
/*           .      (a heuristic). */
/*           . */
/*           .    Exceptional Case: */
/*           .      If there have been no deflations in KEXNW or */
/*           .      more iterations, then vary the deflation window */
/*           .      size.   At first, because, larger windows are, */
/*           .      in general, more powerful than smaller ones, */
/*           .      rapidly increase the window to the maximum possible. */
/*           .      Then, gradually reduce the window size. ==== */

	    nh = kbot - ktop + 1;
	    nwupbd = min(nh,nwmax);
	    if (ndfl < 5) {
		nw = min(nwupbd,nwr);
	    } else {
/* Computing MIN */
		i__2 = nwupbd, i__3 = nw << 1;
		nw = min(i__2,i__3);
	    }
	    if (nw < nwmax) {
		if (nw >= nh - 1) {
		    nw = nh;
		} else {
		    kwtop = kbot - nw + 1;
		    i__2 = kwtop + (kwtop - 1) * h_dim1;
		    i__3 = kwtop - 1 + (kwtop - 2) * h_dim1;
		    if ((r__1 = h__[i__2].r, dabs(r__1)) + (r__2 = r_imag(&
			    h__[kwtop + (kwtop - 1) * h_dim1]), dabs(r__2)) > 
			    (r__3 = h__[i__3].r, dabs(r__3)) + (r__4 = r_imag(
			    &h__[kwtop - 1 + (kwtop - 2) * h_dim1]), dabs(
			    r__4))) {
			++nw;
		    }
		}
	    }
	    if (ndfl < 5) {
		ndec = -1;
	    } else if (ndec >= 0 || nw >= nwupbd) {
		++ndec;
		if (nw - ndec < 2) {
		    ndec = 0;
		}
		nw -= ndec;
	    }

/*           ==== Aggressive early deflation: */
/*           .    split workspace under the subdiagonal into */
/*           .      - an nw-by-nw work array V in the lower */
/*           .        left-hand-corner, */
/*           .      - an NW-by-at-least-NW-but-more-is-better */
/*           .        (NW-by-NHO) horizontal work array along */
/*           .        the bottom edge, */
/*           .      - an at-least-NW-but-more-is-better (NHV-by-NW) */
/*           .        vertical work array along the left-hand-edge. */
/*           .        ==== */

	    kv = *n - nw + 1;
	    kt = nw + 1;
	    nho = *n - nw - 1 - kt + 1;
	    kwv = nw + 2;
	    nve = *n - nw - kwv + 1;

/*           ==== Aggressive early deflation ==== */

	    claqr3_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh, 
		    iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &w[1], &h__[kv 
		    + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1], ldh, &nve, &
		    h__[kwv + h_dim1], ldh, &work[1], lwork);

/*           ==== Adjust KBOT accounting for new deflations. ==== */

	    kbot -= ld;

/*           ==== KS points to the shifts. ==== */

	    ks = kbot - ls + 1;

/*           ==== Skip an expensive QR sweep if there is a (partly */
/*           .    heuristic) reason to expect that many eigenvalues */
/*           .    will deflate without it.  Here, the QR sweep is */
/*           .    skipped if many eigenvalues have just been deflated */
/*           .    or if the remaining active block is small. */

	    if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > min(
		    nmin,nwmax)) {

/*              ==== NS = nominal number of simultaneous shifts. */
/*              .    This may be lowered (slightly) if CLAQR3 */
/*              .    did not provide that many shifts. ==== */

/* Computing MIN */
/* Computing MAX */
		i__4 = 2, i__5 = kbot - ktop;
		i__2 = min(nsmax,nsr), i__3 = max(i__4,i__5);
		ns = min(i__2,i__3);
		ns -= ns % 2;

/*              ==== If there have been no deflations */
/*              .    in a multiple of KEXSH iterations, */
/*              .    then try exceptional shifts. */
/*              .    Otherwise use shifts provided by */
/*              .    CLAQR3 above or from the eigenvalues */
/*              .    of a trailing principal submatrix. ==== */

		if (ndfl % 6 == 0) {
		    ks = kbot - ns + 1;
		    i__2 = ks + 1;
		    for (i__ = kbot; i__ >= i__2; i__ += -2) {
			i__3 = i__;
			i__4 = i__ + i__ * h_dim1;
			i__5 = i__ + (i__ - 1) * h_dim1;
			r__3 = ((r__1 = h__[i__5].r, dabs(r__1)) + (r__2 = 
				r_imag(&h__[i__ + (i__ - 1) * h_dim1]), dabs(
				r__2))) * .75f;
			q__1.r = h__[i__4].r + r__3, q__1.i = h__[i__4].i;
			w[i__3].r = q__1.r, w[i__3].i = q__1.i;
			i__3 = i__ - 1;
			i__4 = i__;
			w[i__3].r = w[i__4].r, w[i__3].i = w[i__4].i;
		    }
		} else {

/*                 ==== Got NS/2 or fewer shifts? Use CLAQR4 or */
/*                 .    CLAHQR on a trailing principal submatrix to */
/*                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9, */
/*                 .    there is enough space below the subdiagonal */
/*                 .    to fit an NS-by-NS scratch array.) ==== */

		    if (kbot - ks + 1 <= ns / 2) {
			ks = kbot - ns + 1;
			kt = *n - ns + 1;
			clacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
				h__[kt + h_dim1], ldh);
			if (ns > nmin) {
			    claqr4_(&c_false, &c_false, &ns, &c__1, &ns, &h__[
				    kt + h_dim1], ldh, &w[ks], &c__1, &c__1, 
				    zdum, &c__1, &work[1], lwork, &inf);
			} else {
			    clahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[
				    kt + h_dim1], ldh, &w[ks], &c__1, &c__1, 
				    zdum, &c__1, &inf);
			}
			ks += inf;

/*                    ==== In case of a rare QR failure use */
/*                    .    eigenvalues of the trailing 2-by-2 */
/*                    .    principal submatrix.  Scale to avoid */
/*                    .    overflows, underflows and subnormals. */
/*                    .    (The scale factor S can not be zero, */
/*                    .    because H(KBOT,KBOT-1) is nonzero.) ==== */

			if (ks >= kbot) {
			    i__2 = kbot - 1 + (kbot - 1) * h_dim1;
			    i__3 = kbot + (kbot - 1) * h_dim1;
			    i__4 = kbot - 1 + kbot * h_dim1;
			    i__5 = kbot + kbot * h_dim1;
			    s = (r__1 = h__[i__2].r, dabs(r__1)) + (r__2 = 
				    r_imag(&h__[kbot - 1 + (kbot - 1) * 
				    h_dim1]), dabs(r__2)) + ((r__3 = h__[i__3]
				    .r, dabs(r__3)) + (r__4 = r_imag(&h__[
				    kbot + (kbot - 1) * h_dim1]), dabs(r__4)))
				     + ((r__5 = h__[i__4].r, dabs(r__5)) + (
				    r__6 = r_imag(&h__[kbot - 1 + kbot * 
				    h_dim1]), dabs(r__6))) + ((r__7 = h__[
				    i__5].r, dabs(r__7)) + (r__8 = r_imag(&
				    h__[kbot + kbot * h_dim1]), dabs(r__8)));
			    i__2 = kbot - 1 + (kbot - 1) * h_dim1;
			    q__1.r = h__[i__2].r / s, q__1.i = h__[i__2].i / 
				    s;
			    aa.r = q__1.r, aa.i = q__1.i;
			    i__2 = kbot + (kbot - 1) * h_dim1;
			    q__1.r = h__[i__2].r / s, q__1.i = h__[i__2].i / 
				    s;
			    cc.r = q__1.r, cc.i = q__1.i;
			    i__2 = kbot - 1 + kbot * h_dim1;
			    q__1.r = h__[i__2].r / s, q__1.i = h__[i__2].i / 
				    s;
			    bb.r = q__1.r, bb.i = q__1.i;
			    i__2 = kbot + kbot * h_dim1;
			    q__1.r = h__[i__2].r / s, q__1.i = h__[i__2].i / 
				    s;
			    dd.r = q__1.r, dd.i = q__1.i;
			    q__2.r = aa.r + dd.r, q__2.i = aa.i + dd.i;
			    q__1.r = q__2.r / 2.f, q__1.i = q__2.i / 2.f;
			    tr2.r = q__1.r, tr2.i = q__1.i;
			    q__3.r = aa.r - tr2.r, q__3.i = aa.i - tr2.i;
			    q__4.r = dd.r - tr2.r, q__4.i = dd.i - tr2.i;
			    q__2.r = q__3.r * q__4.r - q__3.i * q__4.i, 
				    q__2.i = q__3.r * q__4.i + q__3.i * 
				    q__4.r;
			    q__5.r = bb.r * cc.r - bb.i * cc.i, q__5.i = bb.r 
				    * cc.i + bb.i * cc.r;
			    q__1.r = q__2.r - q__5.r, q__1.i = q__2.i - 
				    q__5.i;
			    det.r = q__1.r, det.i = q__1.i;
			    q__2.r = -det.r, q__2.i = -det.i;
			    c_sqrt(&q__1, &q__2);
			    rtdisc.r = q__1.r, rtdisc.i = q__1.i;
			    i__2 = kbot - 1;
			    q__2.r = tr2.r + rtdisc.r, q__2.i = tr2.i + 
				    rtdisc.i;
			    q__1.r = s * q__2.r, q__1.i = s * q__2.i;
			    w[i__2].r = q__1.r, w[i__2].i = q__1.i;
			    i__2 = kbot;
			    q__2.r = tr2.r - rtdisc.r, q__2.i = tr2.i - 
				    rtdisc.i;
			    q__1.r = s * q__2.r, q__1.i = s * q__2.i;
			    w[i__2].r = q__1.r, w[i__2].i = q__1.i;

			    ks = kbot - 1;
			}
		    }

		    if (kbot - ks + 1 > ns) {

/*                    ==== Sort the shifts (Helps a little) ==== */

			sorted = FALSE_;
			i__2 = ks + 1;
			for (k = kbot; k >= i__2; --k) {
			    if (sorted) {
				goto L60;
			    }
			    sorted = TRUE_;
			    i__3 = k - 1;
			    for (i__ = ks; i__ <= i__3; ++i__) {
				i__4 = i__;
				i__5 = i__ + 1;
				if ((r__1 = w[i__4].r, dabs(r__1)) + (r__2 = 
					r_imag(&w[i__]), dabs(r__2)) < (r__3 =
					 w[i__5].r, dabs(r__3)) + (r__4 = 
					r_imag(&w[i__ + 1]), dabs(r__4))) {
				    sorted = FALSE_;
				    i__4 = i__;
				    swap.r = w[i__4].r, swap.i = w[i__4].i;
				    i__4 = i__;
				    i__5 = i__ + 1;
				    w[i__4].r = w[i__5].r, w[i__4].i = w[i__5]
					    .i;
				    i__4 = i__ + 1;
				    w[i__4].r = swap.r, w[i__4].i = swap.i;
				}
			    }
			}
L60:
			;
		    }
		}

/*              ==== If there are only two shifts, then use */
/*              .    only one.  ==== */

		if (kbot - ks + 1 == 2) {
		    i__2 = kbot;
		    i__3 = kbot + kbot * h_dim1;
		    q__2.r = w[i__2].r - h__[i__3].r, q__2.i = w[i__2].i - 
			    h__[i__3].i;
		    q__1.r = q__2.r, q__1.i = q__2.i;
		    i__4 = kbot - 1;
		    i__5 = kbot + kbot * h_dim1;
		    q__4.r = w[i__4].r - h__[i__5].r, q__4.i = w[i__4].i - 
			    h__[i__5].i;
		    q__3.r = q__4.r, q__3.i = q__4.i;
		    if ((r__1 = q__1.r, dabs(r__1)) + (r__2 = r_imag(&q__1), 
			    dabs(r__2)) < (r__3 = q__3.r, dabs(r__3)) + (r__4 
			    = r_imag(&q__3), dabs(r__4))) {
			i__2 = kbot - 1;
			i__3 = kbot;
			w[i__2].r = w[i__3].r, w[i__2].i = w[i__3].i;
		    } else {
			i__2 = kbot;
			i__3 = kbot - 1;
			w[i__2].r = w[i__3].r, w[i__2].i = w[i__3].i;
		    }
		}

/*              ==== Use up to NS of the the smallest magnatiude */
/*              .    shifts.  If there aren't NS shifts available, */
/*              .    then use them all, possibly dropping one to */
/*              .    make the number of shifts even. ==== */

/* Computing MIN */
		i__2 = ns, i__3 = kbot - ks + 1;
		ns = min(i__2,i__3);
		ns -= ns % 2;
		ks = kbot - ns + 1;

/*              ==== Small-bulge multi-shift QR sweep: */
/*              .    split workspace under the subdiagonal into */
/*              .    - a KDU-by-KDU work array U in the lower */
/*              .      left-hand-corner, */
/*              .    - a KDU-by-at-least-KDU-but-more-is-better */
/*              .      (KDU-by-NHo) horizontal work array WH along */
/*              .      the bottom edge, */
/*              .    - and an at-least-KDU-but-more-is-better-by-KDU */
/*              .      (NVE-by-KDU) vertical work WV arrow along */
/*              .      the left-hand-edge. ==== */

		kdu = ns * 3 - 3;
		ku = *n - kdu + 1;
		kwh = kdu + 1;
		nho = *n - kdu - 3 - (kdu + 1) + 1;
		kwv = kdu + 4;
		nve = *n - kdu - kwv + 1;

/*              ==== Small-bulge multi-shift QR sweep ==== */

		claqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &w[ks], &
			h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &
			work[1], &c__3, &h__[ku + h_dim1], ldh, &nve, &h__[
			kwv + h_dim1], ldh, &nho, &h__[ku + kwh * h_dim1], 
			ldh);
	    }

/*           ==== Note progress (or the lack of it). ==== */

	    if (ld > 0) {
		ndfl = 1;
	    } else {
		++ndfl;
	    }

/*           ==== End of main loop ==== */
	}

/*        ==== Iteration limit exceeded.  Set INFO to show where */
/*        .    the problem occurred and exit. ==== */

	*info = kbot;
L80:
	;
    }

/*     ==== Return the optimal value of LWORK. ==== */

    r__1 = (real) lwkopt;
    q__1.r = r__1, q__1.i = 0.f;
    work[1].r = q__1.r, work[1].i = q__1.i;

/*     ==== End of CLAQR0 ==== */

    return 0;
} /* claqr0_ */
Esempio n. 2
0
 int claqr3_(int *wantt, int *wantz, int *n, 
	int *ktop, int *kbot, int *nw, complex *h__, int *ldh, 
	 int *iloz, int *ihiz, complex *z__, int *ldz, int *
	ns, int *nd, complex *sh, complex *v, int *ldv, int *nh, 
	complex *t, int *ldt, int *nv, complex *wv, int *ldwv, 
	complex *work, int *lwork)
{
    /* System generated locals */
    int h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1, 
	    wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
    float r__1, r__2, r__3, r__4, r__5, r__6;
    complex q__1, q__2;

    /* Builtin functions */
    double r_imag(complex *);
    void r_cnjg(complex *, complex *);

    /* Local variables */
    int i__, j;
    complex s;
    int jw;
    float foo;
    int kln;
    complex tau;
    int knt;
    float ulp;
    int lwk1, lwk2, lwk3;
    complex beta;
    int kcol, info, nmin, ifst, ilst, ltop, krow;
    extern  int clarf_(char *, int *, int *, complex *
, int *, complex *, complex *, int *, complex *), 
	    cgemm_(char *, char *, int *, int *, int *, complex *, 
	     complex *, int *, complex *, int *, complex *, complex *, 
	     int *), ccopy_(int *, complex *, int 
	    *, complex *, int *);
    int infqr, kwtop;
    extern  int claqr4_(int *, int *, int *, 
	    int *, int *, complex *, int *, complex *, int *, 
	    int *, complex *, int *, complex *, int *, int *),
	     slabad_(float *, float *), cgehrd_(int *, int *, int *, 
	     complex *, int *, complex *, complex *, int *, int *)
	    , clarfg_(int *, complex *, complex *, int *, complex *);
    extern double slamch_(char *);
    extern  int clahqr_(int *, int *, int *, 
	    int *, int *, complex *, int *, complex *, int *, 
	    int *, complex *, int *, int *), clacpy_(char *, 
	    int *, int *, complex *, int *, complex *, int *), claset_(char *, int *, int *, complex *, complex 
	    *, complex *, int *);
    float safmin;
    extern int ilaenv_(int *, char *, char *, int *, int *, 
	    int *, int *);
    float safmax;
    extern  int ctrexc_(char *, int *, complex *, int 
	    *, complex *, int *, int *, int *, int *),
	     cunmhr_(char *, char *, int *, int *, int *, int 
	    *, complex *, int *, complex *, complex *, int *, complex 
	    *, int *, int *);
    float smlnum;
    int lwkopt;


/*  -- LAPACK auxiliary routine (version 3.2.1)                        -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. */
/*  -- April 2009                                                      -- */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*     ****************************************************************** */
/*     Aggressive early deflation: */

/*     This subroutine accepts as input an upper Hessenberg matrix */
/*     H and performs an unitary similarity transformation */
/*     designed to detect and deflate fully converged eigenvalues from */
/*     a trailing principal submatrix.  On output H has been over- */
/*     written by a new Hessenberg matrix that is a perturbation of */
/*     an unitary similarity transformation of H.  It is to be */
/*     hoped that the final version of H has many zero subdiagonal */
/*     entries. */

/*     ****************************************************************** */
/*     WANTT   (input) LOGICAL */
/*          If .TRUE., then the Hessenberg matrix H is fully updated */
/*          so that the triangular Schur factor may be */
/*          computed (in cooperation with the calling subroutine). */
/*          If .FALSE., then only enough of H is updated to preserve */
/*          the eigenvalues. */

/*     WANTZ   (input) LOGICAL */
/*          If .TRUE., then the unitary matrix Z is updated so */
/*          so that the unitary Schur factor may be computed */
/*          (in cooperation with the calling subroutine). */
/*          If .FALSE., then Z is not referenced. */

/*     N       (input) INTEGER */
/*          The order of the matrix H and (if WANTZ is .TRUE.) the */
/*          order of the unitary matrix Z. */

/*     KTOP    (input) INTEGER */
/*          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
/*          KBOT and KTOP together determine an isolated block */
/*          along the diagonal of the Hessenberg matrix. */

/*     KBOT    (input) INTEGER */
/*          It is assumed without a check that either */
/*          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together */
/*          determine an isolated block along the diagonal of the */
/*          Hessenberg matrix. */

/*     NW      (input) INTEGER */
/*          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1). */

/*     H       (input/output) COMPLEX array, dimension (LDH,N) */
/*          On input the initial N-by-N section of H stores the */
/*          Hessenberg matrix undergoing aggressive early deflation. */
/*          On output H has been transformed by a unitary */
/*          similarity transformation, perturbed, and the returned */
/*          to Hessenberg form that (it is to be hoped) has some */
/*          zero subdiagonal entries. */

/*     LDH     (input) int */
/*          Leading dimension of H just as declared in the calling */
/*          subroutine.  N .LE. LDH */

/*     ILOZ    (input) INTEGER */
/*     IHIZ    (input) INTEGER */
/*          Specify the rows of Z to which transformations must be */
/*          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N. */

/*     Z       (input/output) COMPLEX array, dimension (LDZ,N) */
/*          IF WANTZ is .TRUE., then on output, the unitary */
/*          similarity transformation mentioned above has been */
/*          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right. */
/*          If WANTZ is .FALSE., then Z is unreferenced. */

/*     LDZ     (input) int */
/*          The leading dimension of Z just as declared in the */
/*          calling subroutine.  1 .LE. LDZ. */

/*     NS      (output) int */
/*          The number of unconverged (ie approximate) eigenvalues */
/*          returned in SR and SI that may be used as shifts by the */
/*          calling subroutine. */

/*     ND      (output) int */
/*          The number of converged eigenvalues uncovered by this */
/*          subroutine. */

/*     SH      (output) COMPLEX array, dimension KBOT */
/*          On output, approximate eigenvalues that may */
/*          be used for shifts are stored in SH(KBOT-ND-NS+1) */
/*          through SR(KBOT-ND).  Converged eigenvalues are */
/*          stored in SH(KBOT-ND+1) through SH(KBOT). */

/*     V       (workspace) COMPLEX array, dimension (LDV,NW) */
/*          An NW-by-NW work array. */

/*     LDV     (input) int scalar */
/*          The leading dimension of V just as declared in the */
/*          calling subroutine.  NW .LE. LDV */

/*     NH      (input) int scalar */
/*          The number of columns of T.  NH.GE.NW. */

/*     T       (workspace) COMPLEX array, dimension (LDT,NW) */

/*     LDT     (input) int */
/*          The leading dimension of T just as declared in the */
/*          calling subroutine.  NW .LE. LDT */

/*     NV      (input) int */
/*          The number of rows of work array WV available for */
/*          workspace.  NV.GE.NW. */

/*     WV      (workspace) COMPLEX array, dimension (LDWV,NW) */

/*     LDWV    (input) int */
/*          The leading dimension of W just as declared in the */
/*          calling subroutine.  NW .LE. LDV */

/*     WORK    (workspace) COMPLEX array, dimension LWORK. */
/*          On exit, WORK(1) is set to an estimate of the optimal value */
/*          of LWORK for the given values of N, NW, KTOP and KBOT. */

/*     LWORK   (input) int */
/*          The dimension of the work array WORK.  LWORK = 2*NW */
/*          suffices, but greater efficiency may result from larger */
/*          values of LWORK. */

/*          If LWORK = -1, then a workspace query is assumed; CLAQR3 */
/*          only estimates the optimal workspace size for the given */
/*          values of N, NW, KTOP and KBOT.  The estimate is returned */
/*          in WORK(1).  No error message related to LWORK is issued */
/*          by XERBLA.  Neither H nor Z are accessed. */

/*     ================================================================ */
/*     Based on contributions by */
/*        Karen Braman and Ralph Byers, Department of Mathematics, */
/*        University of Kansas, USA */

/*     ================================================================ */
/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function definitions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     ==== Estimate optimal workspace. ==== */

    /* Parameter adjustments */
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --sh;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    wv_dim1 = *ldwv;
    wv_offset = 1 + wv_dim1;
    wv -= wv_offset;
    --work;

    /* Function Body */
/* Computing MIN */
    i__1 = *nw, i__2 = *kbot - *ktop + 1;
    jw = MIN(i__1,i__2);
    if (jw <= 2) {
	lwkopt = 1;
    } else {

/*        ==== Workspace query call to CGEHRD ==== */

	i__1 = jw - 1;
	cgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
		c_n1, &info);
	lwk1 = (int) work[1].r;

/*        ==== Workspace query call to CUNMHR ==== */

	i__1 = jw - 1;
	cunmhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], 
		 &v[v_offset], ldv, &work[1], &c_n1, &info);
	lwk2 = (int) work[1].r;

/*        ==== Workspace query call to CLAQR4 ==== */

	claqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[1], 
		&c__1, &jw, &v[v_offset], ldv, &work[1], &c_n1, &infqr);
	lwk3 = (int) work[1].r;

/*        ==== Optimal workspace ==== */

/* Computing MAX */
	i__1 = jw + MAX(lwk1,lwk2);
	lwkopt = MAX(i__1,lwk3);
    }

/*     ==== Quick return in case of workspace query. ==== */

    if (*lwork == -1) {
	r__1 = (float) lwkopt;
	q__1.r = r__1, q__1.i = 0.f;
	work[1].r = q__1.r, work[1].i = q__1.i;
	return 0;
    }

/*     ==== Nothing to do ... */
/*     ... for an empty active block ... ==== */
    *ns = 0;
    *nd = 0;
    work[1].r = 1.f, work[1].i = 0.f;
    if (*ktop > *kbot) {
	return 0;
    }
/*     ... nor for an empty deflation window. ==== */
    if (*nw < 1) {
	return 0;
    }

/*     ==== Machine constants ==== */

    safmin = slamch_("SAFE MINIMUM");
    safmax = 1.f / safmin;
    slabad_(&safmin, &safmax);
    ulp = slamch_("PRECISION");
    smlnum = safmin * ((float) (*n) / ulp);

/*     ==== Setup deflation window ==== */

/* Computing MIN */
    i__1 = *nw, i__2 = *kbot - *ktop + 1;
    jw = MIN(i__1,i__2);
    kwtop = *kbot - jw + 1;
    if (kwtop == *ktop) {
	s.r = 0.f, s.i = 0.f;
    } else {
	i__1 = kwtop + (kwtop - 1) * h_dim1;
	s.r = h__[i__1].r, s.i = h__[i__1].i;
    }

    if (*kbot == kwtop) {

/*        ==== 1-by-1 deflation window: not much to do ==== */

	i__1 = kwtop;
	i__2 = kwtop + kwtop * h_dim1;
	sh[i__1].r = h__[i__2].r, sh[i__1].i = h__[i__2].i;
	*ns = 1;
	*nd = 0;
/* Computing MAX */
	i__1 = kwtop + kwtop * h_dim1;
	r__5 = smlnum, r__6 = ulp * ((r__1 = h__[i__1].r, ABS(r__1)) + (r__2 
		= r_imag(&h__[kwtop + kwtop * h_dim1]), ABS(r__2)));
	if ((r__3 = s.r, ABS(r__3)) + (r__4 = r_imag(&s), ABS(r__4)) <= 
		MAX(r__5,r__6)) {
	    *ns = 0;
	    *nd = 1;
	    if (kwtop > *ktop) {
		i__1 = kwtop + (kwtop - 1) * h_dim1;
		h__[i__1].r = 0.f, h__[i__1].i = 0.f;
	    }
	}
	work[1].r = 1.f, work[1].i = 0.f;
	return 0;
    }

/*     ==== Convert to spike-triangular form.  (In case of a */
/*     .    rare QR failure, this routine continues to do */
/*     .    aggressive early deflation using that part of */
/*     .    the deflation window that converged using INFQR */
/*     .    here and there to keep track.) ==== */

    clacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset], 
	    ldt);
    i__1 = jw - 1;
    i__2 = *ldh + 1;
    i__3 = *ldt + 1;
    ccopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
	    i__3);

    claset_("A", &jw, &jw, &c_b1, &c_b2, &v[v_offset], ldv);
    nmin = ilaenv_(&c__12, "CLAQR3", "SV", &jw, &c__1, &jw, lwork);
    if (jw > nmin) {
	claqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[
		kwtop], &c__1, &jw, &v[v_offset], ldv, &work[1], lwork, &
		infqr);
    } else {
	clahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[
		kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
    }

/*     ==== Deflation detection loop ==== */

    *ns = jw;
    ilst = infqr + 1;
    i__1 = jw;
    for (knt = infqr + 1; knt <= i__1; ++knt) {

/*        ==== Small spike tip deflation test ==== */

	i__2 = *ns + *ns * t_dim1;
	foo = (r__1 = t[i__2].r, ABS(r__1)) + (r__2 = r_imag(&t[*ns + *ns * 
		t_dim1]), ABS(r__2));
	if (foo == 0.f) {
	    foo = (r__1 = s.r, ABS(r__1)) + (r__2 = r_imag(&s), ABS(r__2));
	}
	i__2 = *ns * v_dim1 + 1;
/* Computing MAX */
	r__5 = smlnum, r__6 = ulp * foo;
	if (((r__1 = s.r, ABS(r__1)) + (r__2 = r_imag(&s), ABS(r__2))) * ((
		r__3 = v[i__2].r, ABS(r__3)) + (r__4 = r_imag(&v[*ns * 
		v_dim1 + 1]), ABS(r__4))) <= MAX(r__5,r__6)) {

/*           ==== One more converged eigenvalue ==== */

	    --(*ns);
	} else {

/*           ==== One undeflatable eigenvalue.  Move it up out of the */
/*           .    way.   (CTREXC can not fail in this case.) ==== */

	    ifst = *ns;
	    ctrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &
		    ilst, &info);
	    ++ilst;
	}
/* L10: */
    }

/*        ==== Return to Hessenberg form ==== */

    if (*ns == 0) {
	s.r = 0.f, s.i = 0.f;
    }

    if (*ns < jw) {

/*        ==== sorting the diagonal of T improves accuracy for */
/*        .    graded matrices.  ==== */

	i__1 = *ns;
	for (i__ = infqr + 1; i__ <= i__1; ++i__) {
	    ifst = i__;
	    i__2 = *ns;
	    for (j = i__ + 1; j <= i__2; ++j) {
		i__3 = j + j * t_dim1;
		i__4 = ifst + ifst * t_dim1;
		if ((r__1 = t[i__3].r, ABS(r__1)) + (r__2 = r_imag(&t[j + j *
			 t_dim1]), ABS(r__2)) > (r__3 = t[i__4].r, ABS(r__3)
			) + (r__4 = r_imag(&t[ifst + ifst * t_dim1]), ABS(
			r__4))) {
		    ifst = j;
		}
/* L20: */
	    }
	    ilst = i__;
	    if (ifst != ilst) {
		ctrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, 
			 &ilst, &info);
	    }
/* L30: */
	}
    }

/*     ==== Restore shift/eigenvalue array from T ==== */

    i__1 = jw;
    for (i__ = infqr + 1; i__ <= i__1; ++i__) {
	i__2 = kwtop + i__ - 1;
	i__3 = i__ + i__ * t_dim1;
	sh[i__2].r = t[i__3].r, sh[i__2].i = t[i__3].i;
/* L40: */
    }


    if (*ns < jw || s.r == 0.f && s.i == 0.f) {
	if (*ns > 1 && (s.r != 0.f || s.i != 0.f)) {

/*           ==== Reflect spike back into lower triangle ==== */

	    ccopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
	    i__1 = *ns;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		i__2 = i__;
		r_cnjg(&q__1, &work[i__]);
		work[i__2].r = q__1.r, work[i__2].i = q__1.i;
/* L50: */
	    }
	    beta.r = work[1].r, beta.i = work[1].i;
	    clarfg_(ns, &beta, &work[2], &c__1, &tau);
	    work[1].r = 1.f, work[1].i = 0.f;

	    i__1 = jw - 2;
	    i__2 = jw - 2;
	    claset_("L", &i__1, &i__2, &c_b1, &c_b1, &t[t_dim1 + 3], ldt);

	    r_cnjg(&q__1, &tau);
	    clarf_("L", ns, &jw, &work[1], &c__1, &q__1, &t[t_offset], ldt, &
		    work[jw + 1]);
	    clarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
		    work[jw + 1]);
	    clarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
		    work[jw + 1]);

	    i__1 = *lwork - jw;
	    cgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
, &i__1, &info);
	}

/*        ==== Copy updated reduced window into place ==== */

	if (kwtop > 1) {
	    i__1 = kwtop + (kwtop - 1) * h_dim1;
	    r_cnjg(&q__2, &v[v_dim1 + 1]);
	    q__1.r = s.r * q__2.r - s.i * q__2.i, q__1.i = s.r * q__2.i + s.i 
		    * q__2.r;
	    h__[i__1].r = q__1.r, h__[i__1].i = q__1.i;
	}
	clacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
, ldh);
	i__1 = jw - 1;
	i__2 = *ldt + 1;
	i__3 = *ldh + 1;
	ccopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1], 
		 &i__3);

/*        ==== Accumulate orthogonal matrix in order update */
/*        .    H and Z, if requested.  ==== */

	if (*ns > 1 && (s.r != 0.f || s.i != 0.f)) {
	    i__1 = *lwork - jw;
	    cunmhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1], 
		     &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
	}

/*        ==== Update vertical slab in H ==== */

	if (*wantt) {
	    ltop = 1;
	} else {
	    ltop = *ktop;
	}
	i__1 = kwtop - 1;
	i__2 = *nv;
	for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow += 
		i__2) {
/* Computing MIN */
	    i__3 = *nv, i__4 = kwtop - krow;
	    kln = MIN(i__3,i__4);
	    cgemm_("N", "N", &kln, &jw, &jw, &c_b2, &h__[krow + kwtop * 
		    h_dim1], ldh, &v[v_offset], ldv, &c_b1, &wv[wv_offset], 
		    ldwv);
	    clacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop * 
		    h_dim1], ldh);
/* L60: */
	}

/*        ==== Update horizontal slab in H ==== */

	if (*wantt) {
	    i__2 = *n;
	    i__1 = *nh;
	    for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2; 
		    kcol += i__1) {
/* Computing MIN */
		i__3 = *nh, i__4 = *n - kcol + 1;
		kln = MIN(i__3,i__4);
		cgemm_("C", "N", &jw, &kln, &jw, &c_b2, &v[v_offset], ldv, &
			h__[kwtop + kcol * h_dim1], ldh, &c_b1, &t[t_offset], 
			ldt);
		clacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
			 h_dim1], ldh);
/* L70: */
	    }
	}

/*        ==== Update vertical slab in Z ==== */

	if (*wantz) {
	    i__1 = *ihiz;
	    i__2 = *nv;
	    for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
		     i__2) {
/* Computing MIN */
		i__3 = *nv, i__4 = *ihiz - krow + 1;
		kln = MIN(i__3,i__4);
		cgemm_("N", "N", &kln, &jw, &jw, &c_b2, &z__[krow + kwtop * 
			z_dim1], ldz, &v[v_offset], ldv, &c_b1, &wv[wv_offset]
, ldwv);
		clacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow + 
			kwtop * z_dim1], ldz);
/* L80: */
	    }
	}
    }

/*     ==== Return the number of deflations ... ==== */

    *nd = jw - *ns;

/*     ==== ... and the number of shifts. (Subtracting */
/*     .    INFQR from the spike length takes care */
/*     .    of the case of a rare QR failure while */
/*     .    calculating eigenvalues of the deflation */
/*     .    window.)  ==== */

    *ns -= infqr;

/*      ==== Return optimal workspace. ==== */

    r__1 = (float) lwkopt;
    q__1.r = r__1, q__1.i = 0.f;
    work[1].r = q__1.r, work[1].i = q__1.i;

/*     ==== End of CLAQR3 ==== */

    return 0;
} /* claqr3_ */