Esempio n. 1
0
/** Connect node to closest edge
 * @param n node to connect to closest node
 */
void
NavGraph::connect_node_to_closest_edge(const NavGraphNode &n)
{
  NavGraphEdge closest = closest_edge(n.x(), n.y());
  cart_coord_2d_t p = closest.closest_point_on_edge(n.x(), n.y());

  NavGraphNode closest_conn = closest_node(p.x, p.y);
  NavGraphNode cn;
  if (almost_equal(closest_conn.distance(p.x, p.y), 0.f, 2)) {
    cn = closest_conn;
  } else {
    cn = NavGraphNode(NavGraph::format_name("C-%s", n.name().c_str()), p.x, p.y);
  }

  if (closest.from() == cn.name() || closest.to() == cn.name()) {
    // we actually want to connect to one of the end nodes of the edge,
    // simply add the new edge and we are done
    NavGraphEdge new_edge(cn.name(), n.name());
    new_edge.set_property("generated", true);
    new_edge.set_property("created-for", cn.name() + "--" + n.name());
    add_edge(new_edge);
  } else {
    // we are inserting a new point into the edge
    remove_edge(closest);
    NavGraphEdge new_edge_1(closest.from(), cn.name());
    NavGraphEdge new_edge_2(closest.to(), cn.name());
    NavGraphEdge new_edge_3(cn.name(), n.name());
    new_edge_1.set_properties(closest.properties());
    new_edge_2.set_properties(closest.properties());
    new_edge_3.set_property("created-for", cn.name() + "--" + n.name());
    new_edge_3.set_property("generated", true);

    if (! node_exists(cn))  add_node(cn);
    add_edge(new_edge_1);
    add_edge(new_edge_2);
    add_edge(new_edge_3);
  }
}
Esempio n. 2
0
void
CrackFrontDefinition::calculateRThetaToCrackFront(const Point qp, const unsigned int node_index, Real & r, Real & theta) const
{
  unsigned int num_nodes(_ordered_crack_front_nodes.size());
  Point p = qp;
  Point closest_node(0.0);
  RealVectorValue closest_node_to_p;

  Node & crack_tip_node = _mesh.node(_ordered_crack_front_nodes[node_index]);
  RealVectorValue crack_tip_node_rot = rotateToCrackFrontCoords(crack_tip_node,node_index);

  RealVectorValue crack_front_edge = rotateToCrackFrontCoords(_tangent_directions[node_index],node_index);

  Point p_rot = rotateToCrackFrontCoords(p,node_index);
  p_rot = p_rot - crack_tip_node_rot;

  if (_treat_as_2d)
  {
    closest_node = crack_tip_node_rot;
    closest_node_to_p = p_rot;

    //Find r, the distance between the qp and the crack front
    RealVectorValue r_vec = p_rot;
    r = r_vec.size();

  }
  else
  {
    // Loop over crack front nodes to find the one closest to the point qp
    Real min_dist = std::numeric_limits<Real>::max();
    for (unsigned int nit = 0; nit != num_nodes; ++nit)
    {
      Node & crack_front_node = _mesh.node(_ordered_crack_front_nodes[nit]);
      RealVectorValue crack_node_to_current_node = p - crack_front_node;
      Real dist = crack_node_to_current_node.size();

      if (dist < min_dist)
      {
        min_dist = dist;
        closest_node = crack_front_node;
      }
    }

    //Rotate coordinates to crack front coordinate system
    closest_node = rotateToCrackFrontCoords(closest_node,node_index);
    closest_node = closest_node - crack_tip_node_rot;

    //Find r, the distance between the qp and the crack front
    Real edge_length_sq = crack_front_edge.size_sq();
    closest_node_to_p = p_rot - closest_node;
    Real perp = crack_front_edge * closest_node_to_p;
    Real dist_along_edge = perp / edge_length_sq;
    RealVectorValue point_on_edge = closest_node + crack_front_edge * dist_along_edge;
    RealVectorValue r_vec = p_rot - point_on_edge;
    r = r_vec.size();

  }

  //Find theta, the angle between r and the crack front plane
  RealVectorValue crack_plane_normal = rotateToCrackFrontCoords(_crack_plane_normal,node_index);
  Real p_to_plane_dist = std::abs(closest_node_to_p*crack_plane_normal);

  //Determine if p is above or below the crack plane
  Real y_local = p_rot(1) - closest_node(1);

  //Determine if p is in front of or behind the crack front
  RealVectorValue p2(p_rot);
  p2(1) = 0;
  RealVectorValue p2_vec = p2 - closest_node;
  Real ahead = crack_front_edge(2) * p2_vec(0) - crack_front_edge(0) * p2_vec(2);

  Real x_local(0);
  if (ahead >= 0)
    x_local = 1;
  else
    x_local = -1;

  //Calculate theta based on in which quadrant in the crack front coordinate
  //system the qp is located
  if (x_local >= 0 && y_local >= 0)
    theta = std::asin(p_to_plane_dist/r);

  else if (x_local < 0 && y_local >= 0)
    theta = libMesh::pi - std::asin(p_to_plane_dist/r);

  else if (x_local < 0 && y_local < 0)
    theta = -(libMesh::pi - std::asin(p_to_plane_dist/r));

  else if (x_local >= 0 && y_local < 0)
    theta = -std::asin(p_to_plane_dist/r);
}
Esempio n. 3
0
/** Get node closest to a specified point with a certain property.
 * This search does *NOT* consider unconnected nodes.
 * @param pos_x X coordinate in global (map) frame
 * @param pos_y X coordinate in global (map) frame
 * @param property property the node must have to be considered,
 * empty string to not check for any property
 * @return node closest to the given point in the global frame, or an
 * invalid node if such a node cannot be found
 */
NavGraphNode
NavGraph::closest_node(float pos_x, float pos_y, const std::string &property) const
{
  return closest_node(pos_x, pos_y, false, property);
}
Esempio n. 4
0
/** Get node closest to a specified point with a certain property.
 * This search *does* consider unconnected nodes.
 * @param pos_x X coordinate in global (map) frame
 * @param pos_y X coordinate in global (map) frame
 * @param property property the node must have to be considered,
 * empty string to not check for any property
 * @return node closest to the given point in the global frame, or an
 * invalid node if such a node cannot be found
 */
NavGraphNode
NavGraph::closest_node_with_unconnected(float pos_x, float pos_y,
					const std::string &property) const
{
  return closest_node(pos_x, pos_y, true, property);
}
Esempio n. 5
0
void
NavGraph::edge_add_split_intersection(const NavGraphEdge &edge)
{
  std::list<std::pair<cart_coord_2d_t, NavGraphEdge>> intersections;
  const NavGraphNode &n1 = node(edge.from());
  const NavGraphNode &n2 = node(edge.to());

  try {

    for (const NavGraphEdge &e : edges_) {
      cart_coord_2d_t ip;
      if (e.intersection(n1.x(), n1.y(), n2.x(), n2.y(), ip)) {
	// we need to split the edge at the given intersection point,
	// and the new line segments as well
	intersections.push_back(std::make_pair(ip, e));
      }
    }

    std::list<std::list<std::pair<cart_coord_2d_t, NavGraphEdge> >::iterator> deletions;

    for (auto i1 = intersections.begin(); i1 != intersections.end(); ++i1) {
      const std::pair<cart_coord_2d_t, NavGraphEdge> &p1 = *i1;
      const cart_coord_2d_t &c1 = p1.first;
      const NavGraphEdge    &e1 = p1.second;

      const NavGraphNode    &n1_from = node(e1.from());
      const NavGraphNode    &n1_to   = node(e1.to());

      for (auto i2 = std::next(i1); i2 != intersections.end(); ++i2) {
	const std::pair<cart_coord_2d_t, NavGraphEdge> &p2 = *i2;
	const cart_coord_2d_t &c2 = p2.first;
	const NavGraphEdge    &e2 = p2.second;

	if (points_different(c1.x, c1.y, c2.x, c2.y))  continue;

	float d = 1.;
	if (e1.from() == e2.from() || e1.from() == e2.to()) {
	  d = point_dist(n1_from.x(), n1_from.y(), c1.x, c1.y);
	} else if (e1.to() == e2.to() || e1.to() == e2.from()) {
	  d = point_dist(n1_to.x(), n1_to.y(), c1.x, c1.y);
	}
	if (d < 1e-4) {
	  // the intersection point is the same as a common end
	  // point of the two edges, only keep it once
	  deletions.push_back(i1);
	  break;
	}
      }
    }
    for (auto d = deletions.rbegin(); d != deletions.rend(); ++d) {
      intersections.erase(*d);
    }

    if (intersections.empty()) {
      NavGraphEdge e(edge);
      e.set_property("created-for", edge.from() + "--" + edge.to());
      add_edge(e, EDGE_FORCE);
    } else {
      Eigen::Vector2f e_origin(n1.x(), n1.y());
      Eigen::Vector2f e_target(n2.x(), n2.y());
      Eigen::Vector2f e_dir = (e_target - e_origin).normalized();

      intersections.sort([&e_origin, &e_dir](const std::pair<cart_coord_2d_t, NavGraphEdge> &p1,
					     const std::pair<cart_coord_2d_t, NavGraphEdge> &p2)
			 {
			   const Eigen::Vector2f p1p(p1.first.x, p1.first.y);
			   const Eigen::Vector2f p2p(p2.first.x, p2.first.y);
			   const float k1 = e_dir.dot(p1p - e_origin);
			   const float k2 = e_dir.dot(p2p - e_origin);
			   return k1 < k2;
			 });

      std::string     en_from = edge.from();
      cart_coord_2d_t ec_from(n1.x(), n1.y());
      std::string     prev_to;
      for (const auto &i : intersections) {
	const cart_coord_2d_t &c = i.first;
	const NavGraphEdge    &e = i.second;

	// add intersection point (if necessary)
	NavGraphNode ip = closest_node(c.x, c.y);
	if (! ip || points_different(c.x, c.y, ip.x(), ip.y())) {
	  ip = NavGraphNode(gen_unique_name(), c.x, c.y);
	  add_node(ip);
	}

	// if neither edge end node is the intersection point, split the edge
	if (ip.name() != e.from() && ip.name() != e.to()) {
	  NavGraphEdge e1(e.from(), ip.name(), e.is_directed());
	  NavGraphEdge e2(ip.name(), e.to(), e.is_directed());
	  remove_edge(e);
	  e1.set_properties(e.properties());
	  e2.set_properties(e.properties());
	  add_edge(e1, EDGE_FORCE, /* allow existing */ true);
	  add_edge(e2, EDGE_FORCE, /* allow existing */ true);

	  // this is a special case: we might intersect an edge
	  // which has the same end node and thus the new edge
	  // from the intersection node to the end node would
	  // be added twice
	  prev_to = e.to();
	}
      
	// add segment edge
	if (en_from != ip.name() && prev_to != ip.name()) {
	  NavGraphEdge e3(en_from, ip.name(), edge.is_directed());
	  e3.set_property("created-for", en_from + "--" + ip.name());
	  add_edge(e3, EDGE_FORCE, /* allow existing */ true);

	}

	en_from = ip.name();
	ec_from = c;
      }

      if (en_from != edge.to()) {
	NavGraphEdge e3(en_from, edge.to(), edge.is_directed());
	e3.set_property("created-for", en_from + "--" + edge.to());
	add_edge(e3, EDGE_FORCE, /* allow existing */ true);
      }
    }
    
  } catch (Exception &ex) {
    throw Exception("Failed to add edge %s-%s%s: %s",
		    edge.from().c_str(), edge.is_directed() ? ">" : "-", edge.to().c_str(),
		    ex.what_no_backtrace());
  }
}