void ISSKeypoints::ComputeISSKeypoints(){ std::cout<<"computing keypoints of a model with "<<model->points.size()<<std::endl; double model_resolution= static_cast<double>(computeCloudResolution(model)); if(!normals_set){ CalcNormals(); } if(iss_use_multipliers){ iss_salient_radius_ = iss_sal_rad_multiplier_ * model_resolution; iss_border_radius_ = iss_bord_rad_multiplier_ * model_resolution; iss_normal_radius_= iss_norm_rad_multiplier_ * model_resolution; iss_non_max_radius_ = iss_non_max_multiplier_ * model_resolution; } else{ iss_sal_rad_multiplier_ = iss_salient_radius_/model_resolution; iss_bord_rad_multiplier_ = iss_border_radius_/model_resolution; iss_norm_rad_multiplier_ = iss_normal_radius_/model_resolution; iss_non_max_multiplier_ = iss_non_max_radius_/model_resolution; } iss_detector.setSalientRadius (iss_salient_radius_); iss_detector.setNonMaxRadius (iss_non_max_radius_); iss_detector.setNormalRadius (iss_normal_radius_); iss_detector.setBorderRadius (iss_border_radius_); iss_detector.setSearchMethod (tree); iss_detector.setThreshold21 (iss_gamma_21_); iss_detector.setThreshold32 (iss_gamma_32_); iss_detector.setMinNeighbors (iss_min_neighbors_); iss_detector.setNumberOfThreads (iss_threads_); iss_detector.setInputCloud (model); iss_detector.compute (*keypoints); ShowParameters(); }
void ISSKeypoints::ShowParameters(){ std::cout<<std::endl; std::cout<<"Current ISS Keypoints parameters"<<std::endl; std::cout<<"model resolution :"<<computeCloudResolution(model)<<std::endl; std::cout<<"salient Radius : "<<iss_salient_radius_<<" , Resolution Multiplier : "<<iss_sal_rad_multiplier_<<std::endl; std::cout<<"normal Radius : "<<iss_normal_radius_<<" , Resolution Multiplier : "<<iss_norm_rad_multiplier_<<std::endl; std::cout<<"non max suppression radius : "<<iss_non_max_radius_<<" , Resolution Multiplier : "<<iss_non_max_multiplier_<<std::endl; std::cout<<"border Radius : "<<iss_border_radius_<<" , Resolution Multiplier : "<<iss_bord_rad_multiplier_<<std::endl; std::cout<<"number of neighbors for non max supperession "<<iss_min_neighbors_<<std::endl; std::cout<<std::endl; }
void USKeypoints::ComputeUSKeypoints(){ double resolution = static_cast<double> (computeCloudResolution (model)); std::cout<<"model ss before is : "<<us_model_ss_<<std::endl; /*if (resolution != 0.0f) { us_model_ss_ *= resolution; }*/ std::cout<<"the model ss is : "<<us_model_ss_<<"with the cloud resolution being :"<<resolution<<std::endl; pcl::PointCloud<int> sampled_indices; uniform_sampling.setInputCloud (model); uniform_sampling.setRadiusSearch (us_model_ss_); uniform_sampling.compute (sampled_indices); pcl::copyPointCloud (*model, sampled_indices.points, *keypoints); }
void BaseBuilder::SetInputCloud(PointCloud::ConstPtr input) { Input = input; Height_ = Input->height; Width_ = Input->width; std::vector<int> tmp; InputNoNan.reset(new PointCloud); for (int i = 0; i < Input->size(); ++i) { if (! pointHasNan(Input->at(i))) { InputNoNan->push_back(Input->at(i)); } } CalcIndicesInOriginal(); InputKDTree_.reset(new pcl::search::KdTree<PointType>); InputKDTree_->setInputCloud(InputNoNan); Resolution = computeCloudResolution(InputNoNan, *InputKDTree_); }
int main (int argc, char *argv[]) { parseCommandLine (argc, argv); pcl::PointCloud<PointType>::Ptr model (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr model_keypoints (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr scene (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr scene_keypoints (new pcl::PointCloud<PointType> ()); pcl::PointCloud<NormalType>::Ptr model_normals (new pcl::PointCloud<NormalType> ()); pcl::PointCloud<NormalType>::Ptr scene_normals (new pcl::PointCloud<NormalType> ()); pcl::PointCloud<DescriptorType>::Ptr model_descriptors (new pcl::PointCloud<DescriptorType> ()); pcl::PointCloud<DescriptorType>::Ptr scene_descriptors (new pcl::PointCloud<DescriptorType> ()); // // Load clouds // if (pcl::io::loadPCDFile (model_filename_, *model) < 0) { std::cout << "Error loading model cloud." << std::endl; showHelp (argv[0]); return (-1); } if (pcl::io::loadPCDFile (scene_filename_, *scene) < 0) { std::cout << "Error loading scene cloud." << std::endl; showHelp (argv[0]); return (-1); } // // Set up resolution invariance // if (use_cloud_resolution_) { float resolution = static_cast<float> (computeCloudResolution (model)); if (resolution != 0.0f) { model_ss_ *= resolution; scene_ss_ *= resolution; rf_rad_ *= resolution; descr_rad_ *= resolution; cg_size_ *= resolution; } std::cout << "Model resolution: " << resolution << std::endl; std::cout << "Model sampling size: " << model_ss_ << std::endl; std::cout << "Scene sampling size: " << scene_ss_ << std::endl; std::cout << "LRF support radius: " << rf_rad_ << std::endl; std::cout << "SHOT descriptor radius: " << descr_rad_ << std::endl; std::cout << "Clustering bin size: " << cg_size_ << std::endl << std::endl; } // // Compute Normals // pcl::NormalEstimationOMP<PointType, NormalType> norm_est; norm_est.setKSearch (10); norm_est.setInputCloud (model); norm_est.compute (*model_normals); norm_est.setInputCloud (scene); norm_est.compute (*scene_normals); // // Downsample Clouds to Extract keypoints // /* pcl::UniformSampling<PointType> uniform_sampling; uniform_sampling.setInputCloud (model); uniform_sampling.setRadiusSearch (model_ss_); uniform_sampling.filter (*model_keypoints); std::cout << "Model total points: " << model->size () << "; Selected Keypoints: " << model_keypoints->size () << std::endl; uniform_sampling.setInputCloud (scene); uniform_sampling.setRadiusSearch (scene_ss_); uniform_sampling.filter (*scene_keypoints); std::cout << "Scene total points: " << scene->size () << "; Selected Keypoints: " << scene_keypoints->size () << std::endl; */ pcl::UniformSampling<PointType> uniform_sampling; uniform_sampling.setInputCloud (model); uniform_sampling.setRadiusSearch (model_ss_); //uniform_sampling.filter (*model_keypoints); pcl::PointCloud<int> keypointIndices1; uniform_sampling.compute(keypointIndices1); pcl::copyPointCloud(*model, keypointIndices1.points, *model_keypoints); std::cout << "Model total points: " << model->size () << "; Selected Keypoints: " << model_keypoints->size () << std::endl; uniform_sampling.setInputCloud (scene); uniform_sampling.setRadiusSearch (scene_ss_); //uniform_sampling.filter (*scene_keypoints); pcl::PointCloud<int> keypointIndices2; uniform_sampling.compute(keypointIndices2); pcl::copyPointCloud(*scene, keypointIndices2.points, *scene_keypoints); std::cout << "Scene total points: " << scene->size () << "; Selected Keypoints: " << scene_keypoints->size () << std::endl; // // Compute Descriptor for keypoints // pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est; descr_est.setRadiusSearch (descr_rad_); descr_est.setInputCloud (model_keypoints); descr_est.setInputNormals (model_normals); descr_est.setSearchSurface (model); descr_est.compute (*model_descriptors); descr_est.setInputCloud (scene_keypoints); descr_est.setInputNormals (scene_normals); descr_est.setSearchSurface (scene); descr_est.compute (*scene_descriptors); // // Find Model-Scene Correspondences with KdTree // pcl::CorrespondencesPtr model_scene_corrs (new pcl::Correspondences ()); pcl::KdTreeFLANN<DescriptorType> match_search; match_search.setInputCloud (model_descriptors); // For each scene keypoint descriptor, find nearest neighbor into the model keypoints descriptor cloud and add it to the correspondences vector. for (size_t i = 0; i < scene_descriptors->size (); ++i) { std::vector<int> neigh_indices (1); std::vector<float> neigh_sqr_dists (1); if (!pcl_isfinite (scene_descriptors->at (i).descriptor[0])) //skipping NaNs { continue; } int found_neighs = match_search.nearestKSearch (scene_descriptors->at (i), 1, neigh_indices, neigh_sqr_dists); if(found_neighs == 1 && neigh_sqr_dists[0] < 0.25f) // add match only if the squared descriptor distance is less than 0.25 (SHOT descriptor distances are between 0 and 1 by design) { pcl::Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]); model_scene_corrs->push_back (corr); } } std::cout << "Correspondences found: " << model_scene_corrs->size () << std::endl; // // Actual Clustering // std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations; std::vector<pcl::Correspondences> clustered_corrs; // Using Hough3D if (use_hough_) { // // Compute (Keypoints) Reference Frames only for Hough // pcl::PointCloud<RFType>::Ptr model_rf (new pcl::PointCloud<RFType> ()); pcl::PointCloud<RFType>::Ptr scene_rf (new pcl::PointCloud<RFType> ()); pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est; rf_est.setFindHoles (true); rf_est.setRadiusSearch (rf_rad_); rf_est.setInputCloud (model_keypoints); rf_est.setInputNormals (model_normals); rf_est.setSearchSurface (model); rf_est.compute (*model_rf); rf_est.setInputCloud (scene_keypoints); rf_est.setInputNormals (scene_normals); rf_est.setSearchSurface (scene); rf_est.compute (*scene_rf); // Clustering pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer; clusterer.setHoughBinSize (cg_size_); clusterer.setHoughThreshold (cg_thresh_); clusterer.setUseInterpolation (true); clusterer.setUseDistanceWeight (false); clusterer.setInputCloud (model_keypoints); clusterer.setInputRf (model_rf); clusterer.setSceneCloud (scene_keypoints); clusterer.setSceneRf (scene_rf); clusterer.setModelSceneCorrespondences (model_scene_corrs); //clusterer.cluster (clustered_corrs); clusterer.recognize (rototranslations, clustered_corrs); } else // Using GeometricConsistency { pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer; gc_clusterer.setGCSize (cg_size_); gc_clusterer.setGCThreshold (cg_thresh_); gc_clusterer.setInputCloud (model_keypoints); gc_clusterer.setSceneCloud (scene_keypoints); gc_clusterer.setModelSceneCorrespondences (model_scene_corrs); //gc_clusterer.cluster (clustered_corrs); gc_clusterer.recognize (rototranslations, clustered_corrs); } // // Output results // std::cout << "Model instances found: " << rototranslations.size () << std::endl; for (size_t i = 0; i < rototranslations.size (); ++i) { std::cout << "\n Instance " << i + 1 << ":" << std::endl; std::cout << " Correspondences belonging to this instance: " << clustered_corrs[i].size () << std::endl; // Print the rotation matrix and translation vector Eigen::Matrix3f rotation = rototranslations[i].block<3,3>(0, 0); Eigen::Vector3f translation = rototranslations[i].block<3,1>(0, 3); printf ("\n"); printf (" | %6.3f %6.3f %6.3f | \n", rotation (0,0), rotation (0,1), rotation (0,2)); printf (" R = | %6.3f %6.3f %6.3f | \n", rotation (1,0), rotation (1,1), rotation (1,2)); printf (" | %6.3f %6.3f %6.3f | \n", rotation (2,0), rotation (2,1), rotation (2,2)); printf ("\n"); printf (" t = < %0.3f, %0.3f, %0.3f >\n", translation (0), translation (1), translation (2)); } // // Visualization // pcl::visualization::PCLVisualizer viewer ("Correspondence Grouping"); viewer.addPointCloud (scene, "scene_cloud"); pcl::PointCloud<PointType>::Ptr off_scene_model (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr off_scene_model_keypoints (new pcl::PointCloud<PointType> ()); if (show_correspondences_ || show_keypoints_) { // We are translating the model so that it doesn't end in the middle of the scene representation pcl::transformPointCloud (*model, *off_scene_model, Eigen::Vector3f (-1,0,0), Eigen::Quaternionf (1, 0, 0, 0)); pcl::transformPointCloud (*model_keypoints, *off_scene_model_keypoints, Eigen::Vector3f (-1,0,0), Eigen::Quaternionf (1, 0, 0, 0)); pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_color_handler (off_scene_model, 255, 255, 128); viewer.addPointCloud (off_scene_model, off_scene_model_color_handler, "off_scene_model"); } if (show_keypoints_) { pcl::visualization::PointCloudColorHandlerCustom<PointType> scene_keypoints_color_handler (scene_keypoints, 0, 0, 255); viewer.addPointCloud (scene_keypoints, scene_keypoints_color_handler, "scene_keypoints"); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "scene_keypoints"); pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_keypoints_color_handler (off_scene_model_keypoints, 0, 0, 255); viewer.addPointCloud (off_scene_model_keypoints, off_scene_model_keypoints_color_handler, "off_scene_model_keypoints"); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "off_scene_model_keypoints"); } for (size_t i = 0; i < rototranslations.size (); ++i) { pcl::PointCloud<PointType>::Ptr rotated_model (new pcl::PointCloud<PointType> ()); pcl::transformPointCloud (*model, *rotated_model, rototranslations[i]); std::stringstream ss_cloud; ss_cloud << "instance" << i; pcl::visualization::PointCloudColorHandlerCustom<PointType> rotated_model_color_handler (rotated_model, 255, 0, 0); viewer.addPointCloud (rotated_model, rotated_model_color_handler, ss_cloud.str ()); if (show_correspondences_) { for (size_t j = 0; j < clustered_corrs[i].size (); ++j) { std::stringstream ss_line; ss_line << "correspondence_line" << i << "_" << j; PointType& model_point = off_scene_model_keypoints->at (clustered_corrs[i][j].index_query); PointType& scene_point = scene_keypoints->at (clustered_corrs[i][j].index_match); // We are drawing a line for each pair of clustered correspondences found between the model and the scene viewer.addLine<PointType, PointType> (model_point, scene_point, 0, 255, 0, ss_line.str ()); } } } while (!viewer.wasStopped ()) { viewer.spinOnce (); } return (0); }
int correspondenceGroup () { // Load clouds loadCloud (); // Compute Cloud Resolution computeCloudResolution(model); // Compute Normals pcl::NormalEstimationOMP<PointType, NormalType> norm_est; norm_est.setKSearch (10); norm_est.setInputCloud (model); norm_est.compute (*model_normals); norm_est.setInputCloud (scene); norm_est.compute (*scene_normals); // Downsample Clouds to Extract keypoints pcl::PointCloud<int> sampled_indices; pcl::UniformSampling<PointType> uniform_sampling; uniform_sampling.setInputCloud (model); uniform_sampling.setRadiusSearch (model_ss_); uniform_sampling.compute (sampled_indices); pcl::copyPointCloud (*model, sampled_indices.points, *model_keypoints); std::cout << "Model total points: " << model->size () << "; Selected Keypoints: " << model_keypoints->size () << std::endl; uniform_sampling.setInputCloud (scene); uniform_sampling.setRadiusSearch (scene_ss_); uniform_sampling.compute (sampled_indices); pcl::copyPointCloud (*scene, sampled_indices.points, *scene_keypoints); std::cout << "Scene total points: " << scene->size () << "; Selected Keypoints: " << scene_keypoints->size () << std::endl; // Compute Descriptor for keypoints pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est; descr_est.setRadiusSearch (descr_rad_); descr_est.setInputCloud (model_keypoints); descr_est.setInputNormals (model_normals); descr_est.setSearchSurface (model); descr_est.compute (*model_descriptors); descr_est.setInputCloud (scene_keypoints); descr_est.setInputNormals (scene_normals); descr_est.setSearchSurface (scene); descr_est.compute (*scene_descriptors); // Find Model-Scene Correspondences with KdTree pcl::CorrespondencesPtr model_scene_corrs (new pcl::Correspondences ()); pcl::KdTreeFLANN<DescriptorType> match_search; match_search.setInputCloud (model_descriptors); // For each scene keypoint descriptor, find nearest neighbor into the model keypoints descriptor cloud and add it to the correspondences vector. for (size_t i = 0; i < scene_descriptors->size (); ++i) { std::vector<int> neigh_indices (1); std::vector<float> neigh_sqr_dists (1); if (!pcl_isfinite (scene_descriptors->at (i).descriptor[0])) //skipping NaNs { continue; } int found_neighs = match_search.nearestKSearch (scene_descriptors->at (i), 1, neigh_indices, neigh_sqr_dists); if(found_neighs == 1 && neigh_sqr_dists[0] < 0.25f) // add match only if the squared descriptor distance is less than 0.25 (SHOT descriptor distances are between 0 and 1 by design) { pcl::Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]); model_scene_corrs->push_back (corr); } } std::cout << "Correspondences found: " << model_scene_corrs->size () << std::endl; // Actual Clustering std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations; std::vector<pcl::Correspondences> clustered_corrs; // Using Hough3D if (use_hough_) { // // Compute (Keypoints) Reference Frames only for Hough // pcl::PointCloud<RFType>::Ptr model_rf (new pcl::PointCloud<RFType> ()); pcl::PointCloud<RFType>::Ptr scene_rf (new pcl::PointCloud<RFType> ()); pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est; rf_est.setFindHoles (true); rf_est.setRadiusSearch (rf_rad_); rf_est.setInputCloud (model_keypoints); rf_est.setInputNormals (model_normals); rf_est.setSearchSurface (model); rf_est.compute (*model_rf); rf_est.setInputCloud (scene_keypoints); rf_est.setInputNormals (scene_normals); rf_est.setSearchSurface (scene); rf_est.compute (*scene_rf); // Clustering pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer; clusterer.setHoughBinSize (cg_size_); clusterer.setHoughThreshold (cg_thresh_); clusterer.setUseInterpolation (true); clusterer.setUseDistanceWeight (false); clusterer.setInputCloud (model_keypoints); clusterer.setInputRf (model_rf); clusterer.setSceneCloud (scene_keypoints); clusterer.setSceneRf (scene_rf); clusterer.setModelSceneCorrespondences (model_scene_corrs); //clusterer.cluster (clustered_corrs); clusterer.recognize (rototranslations, clustered_corrs); } else // Using GeometricConsistency { pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer; gc_clusterer.setGCSize (cg_size_); gc_clusterer.setGCThreshold (cg_thresh_); gc_clusterer.setInputCloud (model_keypoints); gc_clusterer.setSceneCloud (scene_keypoints); gc_clusterer.setModelSceneCorrespondences (model_scene_corrs); //gc_clusterer.cluster (clustered_corrs); gc_clusterer.recognize (rototranslations, clustered_corrs); } // Output results std::cout << "Model instances found: " << rototranslations.size () << std::endl; /*for (size_t i = 0; i < rototranslations.size (); ++i) { std::cout << "\n Instance " << i + 1 << ":" << std::endl; std::cout << " Correspondences belonging to this instance: " << clustered_corrs[i].size () << std::endl; // Print the rotation matrix and translation vector Eigen::Matrix3f rotation = rototranslations[i].block<3,3>(0, 0); Eigen::Vector3f translation = rototranslations[i].block<3,1>(0, 3); printf ("\n"); printf (" | %6.3f %6.3f %6.3f | \n", rotation (0,0), rotation (0,1), rotation (0,2)); printf (" R = | %6.3f %6.3f %6.3f | \n", rotation (1,0), rotation (1,1), rotation (1,2)); printf (" | %6.3f %6.3f %6.3f | \n", rotation (2,0), rotation (2,1), rotation (2,2)); printf ("\n"); printf (" t = < %0.3f, %0.3f, %0.3f >\n", translation (0), translation (1), translation (2)); }*/ return rototranslations.size(); }