Esempio n. 1
0
TwoDoubles f1(double* x) {
    /*Sphere function*/

    int i, rseed; /*Loop over dim*/
    static unsigned int funcId = 1;
    double Fadd, r, Fval, Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = funcId + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        isInitDone = 1;
    }

    Fadd = Fopt;
    /* COMPUTATION core*/
    for (i = 0; i < DIM; i++)
    {
        r = x[i] - Xopt[i];
        Ftrue += r * r;
    }
    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/
    res.Ftrue = Ftrue;
    res.Fval = Fval;
    return res;
}
Esempio n. 2
0
TwoDoubles f5(double* x) {
    /* linear slope*/
    int i, rseed; /*Loop over dim*/
    static unsigned int funcId = 5;
    static double alpha = 100.;
    static double Fadd; /*Treatment is different from other functions.*/
    double tmp, Fval, Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = funcId + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        Fadd = Fopt;
        computeXopt(rseed, DIM);
        for (i = 0; i < DIM; i ++)
        {
            tmp = pow(sqrt(alpha), ((double)i)/((double)(DIM-1)));
            if (Xopt[i] > 0)
            {
                Xopt[i] = 5.;
            }
            else if (Xopt[i] < 0)
            {
                Xopt[i] = -5.;
            }
            Fadd += 5. * tmp;
        }
        isInitDone = 1;
    }

    /* BOUNDARY HANDLING*/
    /* move "too" good coordinates back into domain*/
    for (i = 0; i < DIM; i++) {
        if ((Xopt[i] == 5.) && (x[i] > 5))
            tmx[i] = 5.;
        else if ((Xopt[i] == -5.) && (x[i] < -5))
            tmx[i] = -5.;
        else
            tmx[i] = x[i];
    }

    /* COMPUTATION core*/
    for (i = 0; i < DIM; i++)
    {
        if (Xopt[i] > 0) {
            Ftrue -= pow(sqrt(alpha), ((double)i)/((double)(DIM-1))) * tmx[i];
        } else {
            Ftrue += pow(sqrt(alpha), ((double)i)/((double)(DIM-1))) * tmx[i];
        }
    }
    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
TwoDoubles f104(double* x) {
    /* Rosenbrock non-rotated with moderate Gauss noise*/
    int i, rseed; /*Loop over dim*/
    static int funcId = 104;
    static int rrseed = 8;
    static double scales;
    double Fadd, Fval, tmp, Fpen = 0., Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = rrseed + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        scales = fmax(1., sqrt((double)DIM) / 8.);
        isInitDone = 1;
    }
    Fadd = Fopt;

    /* BOUNDARY HANDLING*/
    for (i = 0; i < DIM; i++) 
    {
        tmp = fabs(x[i]) - 5.;
        if (tmp > 0.)
        {
            Fpen += tmp * tmp;
        }
    }
    Fadd += 100. * Fpen;

    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++) {
        tmx[i] = scales * (x[i] - 0.75 * Xopt[i]) + 1;
    }

    /* COMPUTATION core*/
    Ftrue = 0.;
    for (i = 0; i < DIM - 1; i++)
    {
        tmp = (tmx[i] * tmx[i] - tmx[i+1]);
        Ftrue += tmp * tmp;
    }
    Ftrue *= 1e2;
    for (i = 0; i < DIM - 1; i ++)
    {
        tmp = (tmx[i] - 1);
        Ftrue += tmp * tmp;
    }

    Fval = FGauss(Ftrue, 0.01);
    Ftrue += Fadd;
    Fval += Fadd;

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
Esempio n. 4
0
TwoDoubles f4(double* x) {
    /* skew Rastrigin-Bueche, condition 10, skew-"condition" 100*/

    int i, rseed; /*Loop over dim*/
    static unsigned int funcId = 4;
    static double condition = 10.;
    static double alpha = 100.;
    double tmp, tmp2, Fadd, Fval, Fpen = 0., Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = 3 + 10000 * trialid; /* Not the same as before.*/
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        for (i = 0; i < DIM; i += 2)
            Xopt[i] = fabs(Xopt[i]); /*Skew*/
        isInitDone = 1;
    }
    Fadd = Fopt;

    for (i = 0; i < DIM; i++) {
        tmp = fabs(x[i]) - 5.;
        if (tmp > 0.)
            Fpen += tmp * tmp;
    }
    Fpen *= 1e2;
    Fadd += Fpen;

    for (i = 0; i < DIM; i++)
    {
        tmx[i] = x[i] - Xopt[i];
    }

    monotoneTFosc(tmx);
    for (i = 0; i < DIM; i++)
    {
        if (i % 2 == 0 && tmx[i] > 0)
            tmx[i] = sqrt(alpha) * tmx[i];
        tmx[i] = pow(sqrt(condition), ((double)i)/((double)(DIM-1))) * tmx[i];
    }
    /* COMPUTATION core*/
    tmp = 0.;
    tmp2 = 0.;
    for (i = 0; i < DIM; i++)
    {
        tmp += cos(2*M_PI*tmx[i]);
        tmp2 += tmx[i]*tmx[i];
    }
    Ftrue = 10 * (DIM - tmp) + tmp2;
    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
Esempio n. 5
0
TwoDoubles f13(double* x) {
    /* sharp ridge*/
    int i, j, k, rseed; /*Loop over dim*/
    static unsigned int funcId = 13;
    static double condition = 10.;
    static double alpha = 100.;
    double Fadd, Fval, Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = funcId + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        computeRotation(rotation, rseed + 1000000, DIM);
        computeRotation(rot2, rseed, DIM);

        for (i = 0; i < DIM; i++)
        {
            for (j = 0; j < DIM; j++)
            {
                linearTF[i][j] = 0.;
                for (k = 0; k < DIM; k++)
                {
                    linearTF[i][j] += rotation[i][k] * pow(sqrt(condition), ((double)k)/((double)(DIM-1))) * rot2[k][j];
                }
            }
        }
        isInitDone = 1;
    }
    Fadd = Fopt;
    /* BOUNDARY HANDLING*/

    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++)
    {
        tmx[i] = 0.;
        for (j = 0; j < DIM; j++) {
            tmx[i] += linearTF[i][j] * (x[j] - Xopt[j]);
        }
    }

    /* COMPUTATION core*/
    for (i = 1; i < DIM; i++)
    {
        Ftrue += tmx[i] * tmx[i];
    }
    Ftrue = alpha * sqrt(Ftrue);
    Ftrue += tmx[0] * tmx[0];

    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
TwoDoubles f118(double* x) {
    /* ellipsoid with Cauchy noise, monotone x-transformation, condition 1e4*/
    int i, j, rseed; /*Loop over dim*/
    static int funcId = 118;
    static int rrseed = 10;
    static double condition = 1e4;
    double Fadd, Fval, tmp, Fpen = 0., Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = rrseed + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        computeRotation(rotation, rseed + 1000000, DIM);
        isInitDone = 1;
    }
    Fadd = Fopt;

    /* BOUNDARY HANDLING*/
    for (i = 0; i < DIM; i++) 
    {
        tmp = fabs(x[i]) - 5.;
        if (tmp > 0.)
        {
            Fpen += tmp * tmp;
        }
    }
    Fadd += 100. * Fpen;

    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++)
    {
        tmx[i] = 0.;
        for (j = 0; j < DIM; j++) {
            tmx[i] += rotation[i][j] * (x[j] - Xopt[j]);
        }
    }

    monotoneTFosc(tmx);
    /* COMPUTATION core*/
    for (i = 0; i < DIM; i++)
    {
        Ftrue += pow(condition, ((double)i)/((double)(DIM-1))) * tmx[i] * tmx[i];
    }

    Fval = FCauchy(Ftrue, 1., 0.2);

    Ftrue += Fadd;
    Fval += Fadd;

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
TwoDoubles f121(double* x) {
    /* sum of different powers with seldom Cauchy Noise, between x^2 and x^6*/
    int i, j, rseed; /*Loop over dim*/
    static int funcId = 121;
    static int rrseed = 14;
    static double alpha = 4.;
    double Fadd, Fval, tmp, Fpen = 0., Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = rrseed + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        computeRotation(rotation, rseed + 1000000, DIM);
        isInitDone = 1;
    }
    Fadd = Fopt;

    /* BOUNDARY HANDLING*/
    for (i = 0; i < DIM; i++) 
    {
        tmp = fabs(x[i]) - 5.;
        if (tmp > 0.)
        {
            Fpen += tmp * tmp;
        }
    }
    Fadd += 100. * Fpen;

    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++)
    {
        tmx[i] = 0.;
        for (j = 0; j < DIM; j++) {
            tmx[i] += rotation[i][j] * (x[j] - Xopt[j]);
        }
    }

    /* COMPUTATION core*/
    for (i = 0; i < DIM; i++)
    {
        Ftrue += pow(fabs(tmx[i]), 2 + alpha * ((double)i)/((double)(DIM-1)));
    }
    Ftrue = sqrt(Ftrue);

    Fval = FCauchy(Ftrue, 1., 0.2);

    Ftrue += Fadd;
    Fval += Fadd;

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
Esempio n. 8
0
TwoDoubles f12(double* x) {
    /* bent cigar with asymmetric space distortion, condition 1e6*/
    int i, j, rseed; /*Loop over dim*/
    static unsigned int funcId = 12;
    static double condition = 1e6;
    static double beta = 0.5;
    double Fadd, Fval, Ftrue;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = funcId + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed + 1000000, DIM);
        computeRotation(rotation, rseed + 1000000, DIM);
        isInitDone = 1;
    }
    Fadd = Fopt;
    /* BOUNDARY HANDLING*/

    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++)
    {
        tmpvect[i] = 0.;
        for (j = 0; j < DIM; j++) {
            tmpvect[i] += rotation[i][j] * (x[j] - Xopt[j]);
        }
        if (tmpvect[i] > 0)
        {
            tmpvect[i] = pow(tmpvect[i], 1 + beta * ((double)i)/((double)(DIM-1)) * sqrt(tmpvect[i]));
        }
    }

    for (i = 0; i < DIM; i++)
    {
        tmx[i] = 0.;
        for (j = 0; j < DIM; j++) {
            tmx[i] += rotation[i][j] * tmpvect[j];
        }
    }

    /* COMPUTATION core*/
    Ftrue = tmx[0] * tmx[0];
    for (i = 1; i < DIM; i++)
    {
        Ftrue += condition * tmx[i] * tmx[i];
    }
    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
Esempio n. 9
0
TwoDoubles f3(double* x) {
    /* Rastrigin with monotone transformation separable "condition" 10*/
    int i, rseed; /*Loop over dim*/

    static unsigned int funcId = 3;
    static double condition = 10.;
    static double beta = 0.2;
    double tmp, tmp2, Fadd, Fval, Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = funcId + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        isInitDone = 1;
    }

    Fadd = Fopt;
    for (i = 0; i < DIM; i++)
    {
        tmx[i] = x[i] - Xopt[i];
    }

    monotoneTFosc(tmx);
    for (i = 0; i < DIM; i++)
    {
        tmp = ((double)i)/((double)(DIM-1));
        if (tmx[i] > 0)
            tmx[i] = pow(tmx[i], 1 + beta * tmp * sqrt(tmx[i]));
        tmx[i] = pow(sqrt(condition), tmp) * tmx[i];
    }
    /* COMPUTATION core*/
    tmp = 0.;
    tmp2 = 0.;
    for (i = 0; i < DIM; i++)
    {
        tmp += cos(2*M_PI*tmx[i]);
        tmp2 += tmx[i]*tmx[i];
    }
    Ftrue = 10 * (DIM - tmp) + tmp2;
    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
Esempio n. 10
0
TwoDoubles f8(double* x) {
    /* Rosenbrock, non-rotated*/
    static unsigned int funcId = 8;
    int i, rseed; /*Loop over dim*/
    static double scales;
    double tmp, Fadd, Fval, Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = funcId + 10000 * trialid;

        scales = fmax(1., sqrt(DIM) / 8.);
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        for (i = 0; i < DIM; i ++)
            Xopt[i] *= 0.75;
        isInitDone = 1;
    }
    Fadd = Fopt;

    /* BOUNDARY HANDLING*/

    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++) {
        tmx[i] = scales * (x[i] - Xopt[i]) + 1;
    }

    /* COMPUTATION core*/
    for (i = 0; i < DIM - 1; i++)
    {
        tmp = (tmx[i] * tmx[i] - tmx[i+1]);
        Ftrue += tmp * tmp;
    }
    Ftrue *= 1e2;
    for (i = 0; i < DIM - 1; i ++)
    {
        tmp = (tmx[i] - 1.);
        Ftrue += tmp * tmp;
    }
    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
TwoDoubles f101(double* x) {
    /*sphere with moderate Gauss noise*/
    int i, rseed; /*Loop over dim*/
    static unsigned int funcId = 101;
    static unsigned int rrseed = 1;
    double Fadd, Fval, tmp, Fpen = 0., Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = rrseed + 10000 * trialid;
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        isInitDone = 1;
    }
    Fadd = Fopt;

    /* BOUNDARY HANDLING*/
    for (i = 0; i < DIM; i++) 
    {
        tmp = fabs(x[i]) - 5.;
        if (tmp > 0.)
        {
            Fpen += tmp * tmp;
        }
    }
    Fadd += 100. * Fpen;

    /* COMPUTATION core*/
    for (i = 0; i < DIM; i++)
    {
        tmp = (x[i] - Xopt[i]);
        Ftrue += tmp * tmp;
    }

    Fval = FGauss(Ftrue, 0.01);
    Ftrue += Fadd;
    Fval += Fadd;

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
Esempio n. 12
0
TwoDoubles f14(double* x) {
    /* sum of different powers, between x^2 and x^6*/
    int i, j, rseed;
    static unsigned int funcId = 14;
    static double alpha = 4.;
    double Fadd, Fval, Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = funcId + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        computeRotation(rotation, rseed + 1000000, DIM);
        isInitDone = 1;
    }
    Fadd = Fopt;
    /* BOUNDARY HANDLING*/

    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++)
    {
        tmx[i] = 0.;
        for (j = 0; j < DIM; j++) {
            tmx[i] += rotation[i][j] * (x[j] - Xopt[j]);
        }
    }

    /* COMPUTATION core*/
    for (i = 0; i < DIM; i++)
    {
        Ftrue += pow(fabs(tmx[i]), 2. + alpha * ((double)i)/((double)(DIM-1)));
    }
    Ftrue = sqrt(Ftrue);

    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
Esempio n. 13
0
TwoDoubles f11(double* x) {
    /* discus (tablet) with monotone transformation, condition 1e6*/
    int i, j, rseed; /*Loop over dim*/
    static unsigned int funcId = 11;
    static double condition = 1e6;
    double Fadd, Fval, Ftrue;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = funcId + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        computeRotation(rotation, rseed + 1000000, DIM);
        isInitDone = 1;
    }
    Fadd = Fopt;
    /* BOUNDARY HANDLING*/

    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++)
    {
        tmx[i] = 0.;
        for (j = 0; j < DIM; j++) {
            tmx[i] += rotation[i][j] * (x[j] - Xopt[j]);
        }
    }

    monotoneTFosc(tmx);

    /* COMPUTATION core*/
    Ftrue = condition * tmx[0] * tmx[0];
    for (i = 1; i < DIM; i++)
    {
        Ftrue += tmx[i] * tmx[i];
    }
    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/
    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
Esempio n. 14
0
TwoDoubles f2(double* x) {
    /* separable ellipsoid with monotone transformation, condition 1e6*/

    int i, rseed; /*Loop over dim*/
    static double condition = 1e6;
    static unsigned int funcId = 2;
    double Fadd, Fval, Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = funcId + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        isInitDone = 1;
    }

    Fadd = Fopt;

    for (i = 0; i < DIM; i++)
    {
        tmx[i] = x[i] - Xopt[i];
    }

    monotoneTFosc(tmx);

    /* COMPUTATION core*/
    for (i = 0; i < DIM; i++)
    {
        Ftrue += pow(condition, ((double)i)/((double)(DIM-1))) * tmx[i] * tmx[i];
    }
    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
TwoDoubles f115(double* x) {
    /* step-ellipsoid with Cauchy noise, condition 100*/
    int i, j, rseed; /*Loop over dim*/
    static int funcId = 115;
    static int rrseed = 7;
    static double condition = 100.;
    static double alpha = 10.;
    double x1, Fadd, Fval, tmp, Fpen = 0., Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = rrseed + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        computeRotation(rotation, rseed + 1000000, DIM);
        computeRotation(rot2, rseed, DIM);
        isInitDone = 1;
    }
    Fadd = Fopt;

    /* BOUNDARY HANDLING*/
    for (i = 0; i < DIM; i++) 
    {
        tmp = fabs(x[i]) - 5.;
        if (tmp > 0.)
        {
            Fpen += tmp * tmp;
        }
    }
    Fadd += 100. * Fpen;

    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++) {
        tmpvect[i] = 0.;
        tmp = sqrt(pow(condition/10., ((double)i)/((double)(DIM-1))));
        for (j = 0; j < DIM; j++) {
            tmpvect[i] += tmp * rot2[i][j] * (x[j] - Xopt[j]);
        }
    }
    x1 = tmpvect[0];
    for (i = 0; i < DIM; i++) {
        if (fabs(tmpvect[i]) > 0.5)
        {
            tmpvect[i] = round(tmpvect[i]);
        }
        else
        {
            tmpvect[i] = round(alpha * tmpvect[i])/alpha;
        }
    }

    for (i = 0; i < DIM; i++) {
        tmx[i] = 0.;
        for (j = 0; j < DIM; j++) {
            tmx[i] += rotation[i][j] * tmpvect[j];
        }
    }

    /* COMPUTATION core*/
    for (i = 0; i < DIM; i++)
    {
        Ftrue += pow(condition, ((double)i)/((double)(DIM-1))) * tmx[i] * tmx[i];
    }
    Ftrue = 0.1 * fmax(1e-4 * fabs(x1), Ftrue);
    Fval = FCauchy(Ftrue, 1., 0.2);

    Ftrue += Fadd;
    Fval += Fadd;

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
Esempio n. 16
0
TwoDoubles f6(double* x) {
    /* attractive sector function*/
    int i, j, k, rseed; /*Loop over dim*/
    static unsigned int funcId = 6;
    static double alpha = 100.;
    double Fadd, Fval, Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        static double condition = 10.;
        rseed = funcId + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        computeRotation(rotation, rseed + 1000000, DIM);
        computeRotation(rot2, rseed, DIM);
        /* decouple scaling from function definition*/
        for (i = 0; i < DIM; i ++)
        {
            for (j = 0; j < DIM; j++)
            {
                linearTF[i][j] = 0.;
                for (k = 0; k < DIM; k++) {
                    linearTF[i][j] += rotation[i][k] * pow(sqrt(condition), ((double)k)/((double)(DIM-1))) * rot2[k][j];
                }
            }
        }
        isInitDone = 1;
    }
    Fadd = Fopt;

    /* BOUNDARY HANDLING*/
    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++) {

        tmx[i] = 0.;
        for (j = 0; j < DIM; j++) {
            tmx[i] += linearTF[i][j] * (x[j] - Xopt[j]);
        }
    }

    /* COMPUTATION core*/
    for (i = 0; i < DIM; i++)
    {
        if (tmx[i] * Xopt[i] > 0)
            tmx[i] *= alpha;
        Ftrue += tmx[i] * tmx[i];
    }

    /*MonotoneTFosc...*/
    if (Ftrue > 0)
    {
        Ftrue = pow(exp(log(Ftrue)/0.1 + 0.49*(sin(log(Ftrue)/0.1) + sin(0.79*log(Ftrue)/0.1))), 0.1);
    }
    else if (Ftrue < 0)
    {
        Ftrue = -pow(exp(log(-Ftrue)/0.1 + 0.49*(sin(0.55 * log(-Ftrue)/0.1) + sin(0.31*log(-Ftrue)/0.1))), 0.1);
    }
    Ftrue = pow(Ftrue, 0.9);
    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
TwoDoubles f124(double* x) {
    /* Schaffers F7 with seldom Cauchy noise, with asymmetric non-linear transformation, condition 10*/
    int i, j, rseed; /*Loop over dim*/
    static int funcId = 124;
    static int rrseed = 17;
    static double condition = 10.;
    static double beta = 0.5;
    double Fadd, Fval, tmp, Fpen = 0., Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = rrseed + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        computeRotation(rotation, rseed + 1000000, DIM);
        computeRotation(rot2, rseed, DIM);
        isInitDone = 1;
    }
    Fadd = Fopt;

    /* BOUNDARY HANDLING*/
    for (i = 0; i < DIM; i++) 
    {
        tmp = fabs(x[i]) - 5.;
        if (tmp > 0.)
        {
            Fpen += tmp * tmp;
        }
    }
    Fadd += 100. * Fpen;

    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++)
    {
        tmpvect[i] = 0.;
        for (j = 0; j < DIM; j++)
        {
            tmpvect[i] += rotation[i][j] * (x[j] - Xopt[j]);
        }
        if (tmpvect[i] > 0)
            tmpvect[i] = pow(tmpvect[i], 1 + beta * ((double)i)/((double)(DIM-1)) * sqrt(tmpvect[i]));
    }

    for (i = 0; i < DIM; i++)
    {
        tmx[i] = 0.;
        tmp = pow(sqrt(condition), ((double)i)/((double)(DIM-1)));
        for (j = 0; j < DIM; j++)
        {
            tmx[i] += tmp * rot2[i][j] * tmpvect[j];
        }
    }

    /* COMPUTATION core*/
    for (i = 0; i < DIM - 1; i++)
    {
        tmp = tmx[i] * tmx[i] + tmx[i+1] * tmx[i+1];
        Ftrue += pow(tmp, 0.25) * (pow(sin(50. * pow(tmp, 0.1)), 2.) + 1.);
    }
    Ftrue = pow(Ftrue/(double)(DIM - 1), 2.);

    Fval = FCauchy(Ftrue, 1., 0.2);

    Ftrue += Fadd;
    Fval += Fadd;

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
Esempio n. 18
0
TwoDoubles f16(double* x) {
    /* Weierstrass, condition 100*/
    int i, j, k, rseed; /*Loop over dim*/
    static unsigned int funcId = 16;
    static double condition = 100.;
    static double aK[12];
    static double bK[12];
    static double F0;
    double tmp, Fadd, Fval, Fpen = 0., Ftrue = 0.;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = funcId + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        computeRotation(rotation, rseed + 1000000, DIM);
        computeRotation(rot2, rseed, DIM);
        for (i = 0; i < DIM; i++)
        {
            for (j = 0; j < DIM; j++)
            {
                linearTF[i][j] = 0.;
                for (k = 0; k < DIM; k++) {
                    linearTF[i][j] += rotation[i][k] * pow(1./sqrt(condition), ((double)k)/((double)(DIM-1))) * rot2[k][j];
                }
            }
        }

        F0 = 0.;
        for (i = 0; i < 12; i ++) /* number of summands, 20 in CEC2005, 10/12 saves 30% of time*/
        {
            aK[i] = pow(0.5, (double)i);
            bK[i] = pow(3., (double)i);
            F0 += aK[i] * cos(2 * M_PI * bK[i] * 0.5);
        }
        isInitDone = 1;
    }
    Fadd = Fopt;

    /* BOUNDARY HANDLING*/
    for (i = 0; i < DIM; i++)
    {
        tmp = fabs(x[i]) - 5.;
        if (tmp > 0.)
        {
            Fpen += tmp * tmp;
        }
    }
    Fadd += 10./(double)DIM * Fpen;

    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++)
    {
        tmpvect[i] = 0.;
        for (j = 0; j < DIM; j++)
        {
            tmpvect[i] += rotation[i][j] * (x[j] - Xopt[j]);
        }
    }

    monotoneTFosc(tmpvect);
    for (i = 0; i < DIM; i++)
    {
        tmx[i] = 0.;
        for (j = 0; j < DIM; j++)
        {
            tmx[i] += linearTF[i][j] * tmpvect[j];
        }
    }
    /* COMPUTATION core*/
    for (i = 0; i < DIM; i++)
    {
        tmp = 0.;
        for (j = 0; j < 12; j++)
        {
            tmp += cos(2 * M_PI * (tmx[i] + 0.5) * bK[j]) * aK[j];
        }
        Ftrue += tmp;
    }
    Ftrue = 10. * pow(Ftrue/(double)DIM - F0, 3.);
    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
Esempio n. 19
0
TwoDoubles f15(double* x) {
    /* Rastrigin with asymmetric non-linear distortion, "condition" 10*/
    int i, j, k, rseed; /*Loop over dim*/
    static unsigned int funcId = 15;
    static double condition = 10.;
    static double beta = 0.2;
    double tmp = 0., tmp2 = 0., Fadd, Fval, Ftrue;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = funcId + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        computeRotation(rotation, rseed + 1000000, DIM);
        computeRotation(rot2, rseed, DIM);
        for (i = 0; i < DIM; i++)
        {
            for (j = 0; j < DIM; j++)
            {
                linearTF[i][j] = 0.;
                for (k = 0; k < DIM; k++) {
                    linearTF[i][j] += rotation[i][k] * pow(sqrt(condition), ((double)k)/((double)(DIM-1))) * rot2[k][j];
                }
            }
        }
        isInitDone = 1;
    }
    Fadd = Fopt;
    /* BOUNDARY HANDLING*/

    /* TRANSFORMATION IN SEARCH SPACE*/
    for (i = 0; i < DIM; i++)
    {
        tmpvect[i] = 0.;
        for (j = 0; j < DIM; j++)
        {
            tmpvect[i] += rotation[i][j] * (x[j] - Xopt[j]);
        }
    }

    monotoneTFosc(tmpvect);
    for (i = 0; i < DIM; i++)
    {
        if (tmpvect[i] > 0)
            tmpvect[i] = pow(tmpvect[i], 1 + beta * ((double)i)/((double)(DIM-1)) * sqrt(tmpvect[i]));
    }
    for (i = 0; i < DIM; i++)
    {
        tmx[i] = 0.;
        for (j = 0; j < DIM; j++)
        {
            tmx[i] += linearTF[i][j] * tmpvect[j];
        }
    }
    /* COMPUTATION core*/
    for (i = 0; i < DIM; i++)
    {
        tmp += cos(2. * M_PI * tmx[i]);
        tmp2 += tmx[i] * tmx[i];
    }
    Ftrue = 10. * ((double)DIM - tmp) + tmp2;
    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}
Esempio n. 20
0
TwoDoubles f23(double* x) {
    /* Katsuura function*/
    int i, j, k, rseed; /*Loop over dim*/
    static unsigned int funcId = 23;
    static double condition = 100.;
    double Fadd = 0., Fpen = 0., tmp, Ftrue = 0., arr, prod = 1., tmp2, Fval;
    double *ptmx, *plinTF, *ptmp;
    TwoDoubles res;

    if (!isInitDone)
    {
        rseed = funcId + 10000 * trialid;
        /*INITIALIZATION*/
        Fopt = computeFopt(funcId, trialid);
        computeXopt(rseed, DIM);
        computeRotation(rotation, rseed + 1000000, DIM);
        computeRotation(rot2, rseed, DIM);

        for (i = 0; i < DIM; i++)
        {
            for (j = 0; j < DIM; j++)
            {
                linearTF[i][j] = 0.;
                for (k = 0; k < DIM; k++)
                {
                    linearTF[i][j] += rotation[i][k] * pow(sqrt(condition), ((double)k)/(double)(DIM - 1)) * rot2[k][j];
                }
            }
        }
        isInitDone = 1;
    }
    Fadd = Fopt;

    /* BOUNDARY HANDLING*/
    for (i = 0; i < DIM; i++)
    {
        tmp = fabs(x[i]) - 5.;
        if (tmp > 0.)
        {
            Fpen += tmp * tmp;
        }
    }
    Fadd += Fpen;

    /* TRANSFORMATION IN SEARCH SPACE*/
    /* write rotated difference vector into tmx*/
    for (j = 0; j < DIM; j++)  /* store difference vector*/
        tmpvect[j] = x[j] - Xopt[j];
    for (i = 0; i < DIM; i++) {
        tmx[i] = 0.;
        ptmx = &tmx[i];
        plinTF = linearTF[i];
        ptmp = tmpvect;
        for (j = 0; j < DIM; j++) {
            *ptmx += *plinTF++ * *ptmp++;
        }
    }

/*     for (i = 0; i < DIM; i++) {
           tmx[i] = 0.;
           for (j = 0; j < DIM; j++) {
               tmx[i] += linearTF[i][j] * (x[j] - Xopt[j]);
           }
       }*/

    /* COMPUTATION core*/
    for (i = 0; i < DIM; i++)
    {
        tmp = 0.;
        for (j = 1; j < 33; j++)
        {
            tmp2 = pow(2., (double)j);
            arr = tmx[i] * tmp2;
            tmp += fabs(arr - round(arr)) / tmp2;
        }
        tmp = 1. + tmp * (double)(i + 1);
        prod *= tmp;
    }
    Ftrue = 10./(double)DIM/(double)DIM * (-1. + pow(prod, 10./pow((double)DIM, 1.2)));
    Ftrue += Fadd;
    Fval = Ftrue; /* without noise*/

    res.Fval = Fval;
    res.Ftrue = Ftrue;
    return res;
}