Esempio n. 1
0
static cpBool
cachedArbitersFilter(cpArbiter *arb, struct arbiterFilterContext *context)
{
	cpShape *shape = context->shape;
	cpBody *body = context->body;
	
	
	// Match on the filter shape, or if it's NULL the filter body
	if(
		(body == arb->body_a && (shape == arb->a || shape == NULL)) ||
		(body == arb->body_b && (shape == arb->b || shape == NULL))
	){
		// Call separate when removing shapes.
		if(shape && arb->state != CP_ARBITER_STATE_CACHED){
			// Invalidate the arbiter since one of the shapes was removed.
			arb->state = CP_ARBITER_STATE_INVALIDATED;
			
			cpCollisionHandler *handler = arb->handler;
			handler->separateFunc(arb, context->space, handler->userData);
		}
		
		cpArbiterUnthread(arb);
		cpArrayDeleteObj(context->space->arbiters, arb);
		cpArrayPush(context->space->pooledArbiters, arb);
		
		return cpFalse;
	}
	
	return cpTrue;
}
Esempio n. 2
0
static cpBool
cachedArbitersFilter(cpArbiter *arb, struct arbiterFilterContext *context)
{
	cpShape *shape = context->shape;
	cpBody *body = context->body;
	
	
	// Match on the filter shape, or if it's NULL the filter body
	if(
		(body == arb->body_a && (shape == arb->a || shape == NULL)) ||
		(body == arb->body_b && (shape == arb->b || shape == NULL))
	){
		// Call separate when removing shapes.
		if(shape && arb->state != cpArbiterStateCached) cpArbiterCallSeparate(arb, context->space);
		
		cpArbiterUnthread(arb);
		cpArrayDeleteObj(context->space->arbiters, arb);
		cpArrayPush(context->space->pooledArbiters, arb);
		
		return cpFalse;
	}
	
	return cpTrue;
}
Esempio n. 3
0
void
cpSpaceStep(cpSpace *space, cpFloat dt)
{
	// don't step if the timestep is 0!
	if(dt == 0.0f) return;
	
	space->stamp++;
	
	cpFloat prev_dt = space->curr_dt;
	space->curr_dt = dt;
		
	// Reset and empty the arbiter list.
	cpArray *arbiters = space->arbiters;
	for(int i=0; i<arbiters->num; i++){
		cpArbiter *arb = (cpArbiter *)arbiters->arr[i];
		arb->state = cpArbiterStateNormal;
		
		// If both bodies are awake, unthread the arbiter from the contact graph.
		if(!cpBodyIsSleeping(arb->body_a) && !cpBodyIsSleeping(arb->body_b)){
			cpArbiterUnthread(arb);
		}
	}
	arbiters->num = 0;

	// Integrate positions
	cpArray *bodies = space->bodies;
	for(int i=0; i<bodies->num; i++){
		cpBody *body = (cpBody *)bodies->arr[i];
		body->position_func(body, dt);
	}
	
	// Find colliding pairs.
	cpSpaceLock(space); {
		cpSpacePushFreshContactBuffer(space);
		cpSpatialIndexEach(space->activeShapes, (cpSpatialIndexIteratorFunc)cpShapeUpdateFunc, NULL);
		cpSpatialIndexReindexQuery(space->activeShapes, (cpSpatialIndexQueryFunc)collideShapes, space);
	} cpSpaceUnlock(space, cpFalse);
	
	// If body sleeping is enabled, do that now.
	if(space->sleepTimeThreshold != INFINITY || space->enableContactGraph){
		cpSpaceProcessComponents(space, dt);
	}
	
	// Clear out old cached arbiters and call separate callbacks
	cpHashSetFilter(space->cachedArbiters, (cpHashSetFilterFunc)cpSpaceArbiterSetFilter, space);

	// Prestep the arbiters and constraints.
	cpFloat slop = space->collisionSlop;
	cpFloat biasCoef = 1.0f - cpfpow(space->collisionBias, dt);
	for(int i=0; i<arbiters->num; i++){
		cpArbiterPreStep((cpArbiter *)arbiters->arr[i], dt, slop, biasCoef);
	}

	cpArray *constraints = space->constraints;
	for(int i=0; i<constraints->num; i++){
		cpConstraint *constraint = (cpConstraint *)constraints->arr[i];
		
		cpConstraintPreSolveFunc preSolve = constraint->preSolve;
		if(preSolve) preSolve(constraint, space);
		
		constraint->klass->preStep(constraint, dt);
	}

	// Integrate velocities.
	cpFloat damping = cpfpow(space->damping, dt);
	cpVect gravity = space->gravity;
	for(int i=0; i<bodies->num; i++){
		cpBody *body = (cpBody *)bodies->arr[i];
		body->velocity_func(body, gravity, damping, dt);
	}
	
	// Apply cached impulses
	cpFloat dt_coef = (prev_dt == 0.0f ? 0.0f : dt/prev_dt);
	for(int i=0; i<arbiters->num; i++){
		cpArbiterApplyCachedImpulse((cpArbiter *)arbiters->arr[i], dt_coef);
	}
	
	for(int i=0; i<constraints->num; i++){
		cpConstraint *constraint = (cpConstraint *)constraints->arr[i];
		constraint->klass->applyCachedImpulse(constraint, dt_coef);
	}
	
	// Run the impulse solver.
	for(int i=0; i<space->iterations; i++){
		for(int j=0; j<arbiters->num; j++){
			cpArbiterApplyImpulse((cpArbiter *)arbiters->arr[j]);
		}
			
		for(int j=0; j<constraints->num; j++){
			cpConstraint *constraint = (cpConstraint *)constraints->arr[j];
			constraint->klass->applyImpulse(constraint);
		}
	}
	
	// Run the constraint post-solve callbacks
	for(int i=0; i<constraints->num; i++){
		cpConstraint *constraint = (cpConstraint *)constraints->arr[i];
		
		cpConstraintPostSolveFunc postSolve = constraint->postSolve;
		if(postSolve) postSolve(constraint, space);
	}
	
	// run the post-solve callbacks
	cpSpaceLock(space);
	for(int i=0; i<arbiters->num; i++){
		cpArbiter *arb = (cpArbiter *) arbiters->arr[i];
		
		cpCollisionHandler *handler = arb->handler;
		handler->postSolve(arb, space, handler->data);
	}
	cpSpaceUnlock(space, cpTrue);
}
Esempio n. 4
0
void
cpHastySpaceStep(cpSpace *space, cpFloat dt)
{
    // don't step if the timestep is 0!
    if(dt == 0.0f) return;

    space->stamp++;

    cpFloat prev_dt = space->curr_dt;
    space->curr_dt = dt;

    cpArray *bodies = space->dynamicBodies;
    cpArray *constraints = space->constraints;
    cpArray *arbiters = space->arbiters;

    // Reset and empty the arbiter list.
    for(int i=0; i<arbiters->num; i++) {
        cpArbiter *arb = (cpArbiter *)arbiters->arr[i];
        arb->state = CP_ARBITER_STATE_NORMAL;

        // If both bodies are awake, unthread the arbiter from the contact graph.
        if(!cpBodyIsSleeping(arb->body_a) && !cpBodyIsSleeping(arb->body_b)) {
            cpArbiterUnthread(arb);
        }
    }
    arbiters->num = 0;

    cpSpaceLock(space);
    {
        // Integrate positions
        for(int i=0; i<bodies->num; i++) {
            cpBody *body = (cpBody *)bodies->arr[i];
            body->position_func(body, dt);
        }

        // Find colliding pairs.
        cpSpacePushFreshContactBuffer(space);
        cpSpatialIndexEach(space->dynamicShapes, (cpSpatialIndexIteratorFunc)cpShapeUpdateFunc, NULL);
        cpSpatialIndexReindexQuery(space->dynamicShapes, (cpSpatialIndexQueryFunc)cpSpaceCollideShapes, space);
    }
    cpSpaceUnlock(space, cpFalse);

    // Rebuild the contact graph (and detect sleeping components if sleeping is enabled)
    cpSpaceProcessComponents(space, dt);

    cpSpaceLock(space);
    {
        // Clear out old cached arbiters and call separate callbacks
        cpHashSetFilter(space->cachedArbiters, (cpHashSetFilterFunc)cpSpaceArbiterSetFilter, space);

        // Prestep the arbiters and constraints.
        cpFloat slop = space->collisionSlop;
        cpFloat biasCoef = 1.0f - cpfpow(space->collisionBias, dt);
        for(int i=0; i<arbiters->num; i++) {
            cpArbiterPreStep((cpArbiter *)arbiters->arr[i], dt, slop, biasCoef);
        }

        for(int i=0; i<constraints->num; i++) {
            cpConstraint *constraint = (cpConstraint *)constraints->arr[i];

            cpConstraintPreSolveFunc preSolve = constraint->preSolve;
            if(preSolve) preSolve(constraint, space);

            constraint->klass->preStep(constraint, dt);
        }

        // Integrate velocities.
        cpFloat damping = cpfpow(space->damping, dt);
        cpVect gravity = space->gravity;
        for(int i=0; i<bodies->num; i++) {
            cpBody *body = (cpBody *)bodies->arr[i];
            body->velocity_func(body, gravity, damping, dt);
        }

        // Apply cached impulses
        cpFloat dt_coef = (prev_dt == 0.0f ? 0.0f : dt/prev_dt);
        for(int i=0; i<arbiters->num; i++) {
            cpArbiterApplyCachedImpulse((cpArbiter *)arbiters->arr[i], dt_coef);
        }

        for(int i=0; i<constraints->num; i++) {
            cpConstraint *constraint = (cpConstraint *)constraints->arr[i];
            constraint->klass->applyCachedImpulse(constraint, dt_coef);
        }

        // Run the impulse solver.
        cpHastySpace *hasty = (cpHastySpace *)space;
        if((unsigned long)(arbiters->num + constraints->num) > hasty->constraint_count_threshold) {
            RunWorkers(hasty, Solver);
        } else {
            Solver(space, 0, 1);
        }

        // Run the constraint post-solve callbacks
        for(int i=0; i<constraints->num; i++) {
            cpConstraint *constraint = (cpConstraint *)constraints->arr[i];

            cpConstraintPostSolveFunc postSolve = constraint->postSolve;
            if(postSolve) postSolve(constraint, space);
        }

        // run the post-solve callbacks
        for(int i=0; i<arbiters->num; i++) {
            cpArbiter *arb = (cpArbiter *) arbiters->arr[i];

            cpCollisionHandler *handler = arb->handler;
            handler->postSolveFunc(arb, space, handler->userData);
        }
    }
    cpSpaceUnlock(space, cpTrue);
}