Esempio n. 1
0
// Callback from the spatial hash.
static void
queryFunc(cpShape *a, cpShape *b, cpSpace *space)
{
	// Reject any of the simple cases
	if(queryReject(a,b)) return;
	
	cpCollisionHandler *handler = lookupCollisionHandler(space, a->collision_type, b->collision_type);
	
	cpBool sensor = a->sensor || b->sensor;
	if(sensor && handler == &cpSpaceDefaultHandler) return;
	
	// Shape 'a' should have the lower shape type. (required by cpCollideShapes() )
	if(a->klass->type > b->klass->type){
		cpShape *temp = a;
		a = b;
		b = temp;
	}
	
	// Narrow-phase collision detection.
	cpContact *contacts = cpContactBufferGetArray(space);
	int numContacts = cpCollideShapes(a, b, contacts);
	if(!numContacts) return; // Shapes are not colliding.
	cpSpacePushContacts(space, numContacts);
	
	// Get an arbiter from space->contactSet for the two shapes.
	// This is where the persistant contact magic comes from.
	cpShape *shape_pair[] = {a, b};
	cpHashValue arbHashID = CP_HASH_PAIR((size_t)a, (size_t)b);
	cpArbiter *arb = (cpArbiter *)cpHashSetInsert(space->contactSet, arbHashID, shape_pair, space);
	cpArbiterUpdate(arb, contacts, numContacts, handler, a, b);
	
	// Call the begin function first if it's the first step
	if(arb->state == cpArbiterStateFirstColl && !handler->begin(arb, space, handler->data)){
		cpArbiterIgnore(arb); // permanently ignore the collision until separation
	}
	
	if(
		// Ignore the arbiter if it has been flagged
		(arb->state != cpArbiterStateIgnore) && 
		// Call preSolve
		handler->preSolve(arb, space, handler->data) &&
		// Process, but don't add collisions for sensors.
		!sensor
	){
		cpArrayPush(space->arbiters, arb);
	} else {
		cpSpacePopContacts(space, numContacts);
		
		arb->contacts = NULL;
		arb->numContacts = 0;
		
		// Normally arbiters are set as used after calling the post-step callback.
		// However, post-step callbacks are not called for sensors or arbiters rejected from pre-solve.
		if(arb->state != cpArbiterStateIgnore) arb->state = cpArbiterStateNormal;
	}
	
	// Time stamp the arbiter so we know it was used recently.
	arb->stamp = space->stamp;
}
Esempio n. 2
0
static void
draw(cpSpace *space)
{
	ChipmunkDemoDefaultDrawImpl(space);
	struct cpContact arr[CP_MAX_CONTACTS_PER_ARBITER];
//	cpCollideShapes(shape1, shape2, (cpCollisionID[]){0}, arr);
	cpCollisionInfo info = cpCollideShapes(shape2, shape1, 0x00000000, arr);
}
Esempio n. 3
0
// Callback from the spatial hash.
static cpCollisionID
ShapeQuery(cpShape *a, cpShape *b, cpCollisionID id, struct ShapeQueryContext *context)
{
	// Reject any of the simple cases
	if(
		(a->group && a->group == b->group) ||
		!(a->layers & b->layers) ||
		a == b
	) return id;
	
	cpContact contacts[CP_MAX_CONTACTS_PER_ARBITER];
	int numContacts = 0;
	
	// Shape 'a' should have the lower shape type. (required by cpCollideShapes() )
	if(a->klass->type <= b->klass->type){
		numContacts = cpCollideShapes(a, b, &id, contacts);
	} else {
		numContacts = cpCollideShapes(b, a, &id, contacts);
		for(int i=0; i<numContacts; i++) contacts[i].n = cpvneg(contacts[i].n);
	}
	
	if(numContacts){
		context->anyCollision = !(a->sensor || b->sensor);
		
		if(context->func){
			cpContactPointSet set;
			set.count = numContacts;
			
			for(int i=0; i<set.count; i++){
				set.points[i].point = contacts[i].p;
				set.points[i].normal = contacts[i].n;
				set.points[i].dist = contacts[i].dist;
			}
			
			context->func(b, &set, context->data);
		}
	}
	
	return id;
}
Esempio n. 4
0
// Callback from the spatial hash.
static void
queryFunc(cpShape *a, cpShape *b, cpSpace *space)
{
	// Reject any of the simple cases
	if(queryReject(a,b)) return;
	
	// Find the collision pair function for the shapes.
	struct{cpCollisionType a, b;} ids = {a->collision_type, b->collision_type};
	cpHashValue collHashID = CP_HASH_PAIR(a->collision_type, b->collision_type);
	cpCollisionHandler *handler = (cpCollisionHandler *)cpHashSetFind(space->collFuncSet, collHashID, &ids);
	
	int sensor = a->sensor || b->sensor;
	if(sensor && handler == &space->defaultHandler) return;
	
	// Shape 'a' should have the lower shape type. (required by cpCollideShapes() )
	if(a->klass->type > b->klass->type){
		cpShape *temp = a;
		a = b;
		b = temp;
	}
	
	// Narrow-phase collision detection.
	cpContact *contacts = NULL;
	int numContacts = cpCollideShapes(a, b, &contacts);
	if(!numContacts) return; // Shapes are not colliding.
	
	// Get an arbiter from space->contactSet for the two shapes.
	// This is where the persistant contact magic comes from.
	cpShape *shape_pair[] = {a, b};
	cpHashValue arbHashID = CP_HASH_PAIR(a, b);
	cpArbiter *arb = (cpArbiter *)cpHashSetInsert(space->contactSet, arbHashID, shape_pair, NULL);
	cpArbiterUpdate(arb, contacts, numContacts, handler, a, b); // retains the contacts array
	
	// Call the begin function first if we need to
	int beginPass = (arb->stamp >= 0) || (handler->begin(arb, space, handler->data));
	if(beginPass && handler->preSolve(arb, space, handler->data) && !sensor){
		cpArrayPush(space->arbiters, arb);
	} else {
		cpfree(arb->contacts);
		arb->contacts = NULL;
	}
	
	// Time stamp the arbiter so we know it was used recently.
	arb->stamp = space->stamp;
}
Esempio n. 5
0
// Callback from the spatial hash.
static void
queryFunc(cpShape *a, cpShape *b, cpSpace *space)
{
	// Reject any of the simple cases
	if(queryReject(a,b)) return;
	
	// Find the collision pair function for the shapes.
	struct{cpCollisionType a, b;} ids = {a->collision_type, b->collision_type};
	cpHashValue collHashID = CP_HASH_PAIR(a->collision_type, b->collision_type);
	cpCollisionHandler *handler = (cpCollisionHandler *)cpHashSetFind(space->collFuncSet, collHashID, &ids);
	
	int sensor = a->sensor || b->sensor;
	if(sensor && handler == &space->defaultHandler) return;
	
	// Shape 'a' should have the lower shape type. (required by cpCollideShapes() )
	if(a->klass->type > b->klass->type){
		cpShape *temp = a;
		a = b;
		b = temp;
	}
	
	if(space->contactBuffersHead->numContacts + CP_MAX_CONTACTS_PER_ARBITER > CP_CONTACTS_BUFFER_SIZE){
		// contact buffer could overflow on the next collision, push a fresh one.
		cpSpacePushNewContactBuffer(space);
	}
	
	// Narrow-phase collision detection.
	cpContact *contacts = ((cpContactBuffer *)(space->contactBuffersHead))->contacts + space->contactBuffersHead->numContacts;
	int numContacts = cpCollideShapes(a, b, contacts);
	if(!numContacts) return; // Shapes are not colliding.
	space->contactBuffersHead->numContacts += numContacts;
	
	// Get an arbiter from space->contactSet for the two shapes.
	// This is where the persistant contact magic comes from.
	cpShape *shape_pair[] = {a, b};
	cpHashValue arbHashID = CP_HASH_PAIR((size_t)a, (size_t)b);
	cpArbiter *arb = (cpArbiter *)cpHashSetInsert(space->contactSet, arbHashID, shape_pair, space);
	cpArbiterUpdate(arb, contacts, numContacts, handler, a, b); // retains the contacts array
	
	// Call the begin function first if it's the first step
	if(arb->stamp == -1 && !handler->begin(arb, space, handler->data)){
		cpArbiterIgnore(arb); // permanently ignore the collision until separation
	}
	
	if(
		// Ignore the arbiter if it has been flagged
		(arb->state != cpArbiterStateIgnore) && 
		// Call preSolve
		handler->preSolve(arb, space, handler->data) &&
		// Process, but don't add collisions for sensors.
		!sensor
	){
		cpArrayPush(space->arbiters, arb);
	} else {
//		cpfree(arb->contacts);
		space->contactBuffersHead->numContacts -= numContacts;
		arb->contacts = NULL;
		arb->numContacts = 0;
	}
	
	// Time stamp the arbiter so we know it was used recently.
	arb->stamp = space->stamp;
}
Esempio n. 6
0
// Callback from the spatial hash.
// TODO: Refactor this into separate functions?
static int
queryFunc(void *p1, void *p2, void *data)
{
	// Cast the generic pointers from the spatial hash back to usefull types
	cpShape *a = (cpShape *)p1;
	cpShape *b = (cpShape *)p2;
	cpSpace *space = (cpSpace *)data;
	
	// Reject any of the simple cases
	if(queryReject(a,b)) return 0;
	
	// Shape 'a' should have the lower shape type. (required by cpCollideShapes() )
	if(a->klass->type > b->klass->type){
		cpShape *temp = a;
		a = b;
		b = temp;
	}
	
	// Find the collision pair function for the shapes.
	unsigned int ids[] = {a->collision_type, b->collision_type};
	unsigned int hash = CP_HASH_PAIR(a->collision_type, b->collision_type);
	cpCollPairFunc *pairFunc = (cpCollPairFunc *)cpHashSetFind(space->collFuncSet, hash, ids);
	if(!pairFunc->func) return 0; // A NULL pair function means don't collide at all.
	
	// Narrow-phase collision detection.
	cpContact *contacts = NULL;
	int numContacts = cpCollideShapes(a, b, &contacts);
	if(!numContacts) return 0; // Shapes are not colliding.
	
	// The collision pair function requires objects to be ordered by their collision types.
	cpShape *pair_a = a;
	cpShape *pair_b = b;
	cpFloat normal_coef = 1.0f;
	
	// Swap them if necessary.
	if(pair_a->collision_type != pairFunc->a){
		cpShape *temp = pair_a;
		pair_a = pair_b;
		pair_b = temp;
		normal_coef = -1.0f;
	}
	
	if(pairFunc->func(pair_a, pair_b, contacts, numContacts, normal_coef, pairFunc->data)){
		// The collision pair function OKed the collision. Record the contact information.
		
		// Get an arbiter from space->contactSet for the two shapes.
		// This is where the persistant contact magic comes from.
		cpShape *shape_pair[] = {a, b};
		cpArbiter *arb = (cpArbiter *)cpHashSetInsert(space->contactSet, CP_HASH_PAIR(a, b), shape_pair, space);
		
		// Timestamp the arbiter.
		arb->stamp = space->stamp;
		arb->a = a; arb->b = b; // TODO: Investigate why this is still necessary?
		// Inject the new contact points into the arbiter.
		cpArbiterInject(arb, contacts, numContacts);
		
		// Add the arbiter to the list of active arbiters.
		cpArrayPush(space->arbiters, arb);
		
		return numContacts;
	} else {
		// The collision pair function rejected the collision.
		
		free(contacts);
		return 0;
	}
}