Esempio n. 1
0
File: sun4m.c Progetto: Fantu/qemu
static void cpu_devinit(const char *cpu_model, unsigned int id,
                        uint64_t prom_addr, qemu_irq **cpu_irqs)
{
    CPUState *cs;
    SPARCCPU *cpu;
    CPUSPARCState *env;

    cpu = cpu_sparc_init(cpu_model);
    if (cpu == NULL) {
        fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
        exit(1);
    }
    env = &cpu->env;

    cpu_sparc_set_id(env, id);
    if (id == 0) {
        qemu_register_reset(main_cpu_reset, cpu);
    } else {
        qemu_register_reset(secondary_cpu_reset, cpu);
        cs = CPU(cpu);
        cs->halted = 1;
    }
    *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
    env->prom_addr = prom_addr;
}
Esempio n. 2
0
static int cpu_sparc_register(CPUSPARCState *env, const char *cpu_model)
{
    sparc_def_t def1, *def = &def1;

    if (cpu_sparc_find_by_name(def, cpu_model) < 0) {
        return -1;
    }

    env->def = g_new0(sparc_def_t, 1);
    memcpy(env->def, def, sizeof(*def));
#if defined(CONFIG_USER_ONLY)
    if ((env->def->features & CPU_FEATURE_FLOAT)) {
        env->def->features |= CPU_FEATURE_FLOAT128;
    }
#endif
    env->cpu_model_str = cpu_model;
    env->version = def->iu_version;
    env->fsr = def->fpu_version;
    env->nwindows = def->nwindows;
#if !defined(TARGET_SPARC64)
    env->mmuregs[0] |= def->mmu_version;
    cpu_sparc_set_id(env, 0);
    env->mxccregs[7] |= def->mxcc_version;
#else
    env->mmu_version = def->mmu_version;
    env->maxtl = def->maxtl;
    env->version |= def->maxtl << 8;
    env->version |= def->nwindows - 1;
#endif
    return 0;
}
Esempio n. 3
0
static int cpu_sparc_register(SPARCCPU *cpu, const char *cpu_model)
{
    CPUClass *cc = CPU_GET_CLASS(cpu);
    CPUSPARCState *env = &cpu->env;
    char *s = g_strdup(cpu_model);
    char *featurestr, *name = strtok(s, ",");
    sparc_def_t def1, *def = &def1;
    Error *err = NULL;

    if (cpu_sparc_find_by_name(def, name) < 0) {
        g_free(s);
        return -1;
    }

    env->def = g_new0(sparc_def_t, 1);
    memcpy(env->def, def, sizeof(*def));

    featurestr = strtok(NULL, ",");
    cc->parse_features(CPU(cpu), featurestr, &err);
    g_free(s);
    if (err) {
        error_report("%s", error_get_pretty(err));
        error_free(err);
        return -1;
    }

    env->version = def->iu_version;
    env->fsr = def->fpu_version;
    env->nwindows = def->nwindows;
#if !defined(TARGET_SPARC64)
    env->mmuregs[0] |= def->mmu_version;
    cpu_sparc_set_id(env, 0);
    env->mxccregs[7] |= def->mxcc_version;
#else
    env->mmu_version = def->mmu_version;
    env->maxtl = def->maxtl;
    env->version |= def->maxtl << 8;
    env->version |= def->nwindows - 1;
#endif
    return 0;
}
Esempio n. 4
0
static void leon3_generic_hw_init(QEMUMachineInitArgs *args)
{
    ram_addr_t ram_size = args->ram_size;
    const char *cpu_model = args->cpu_model;
    const char *kernel_filename = args->kernel_filename;
    SPARCCPU *cpu;
    CPUSPARCState   *env;
    MemoryRegion *address_space_mem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
    MemoryRegion *prom = g_new(MemoryRegion, 1);
    int         ret;
    char       *filename;
    qemu_irq   *cpu_irqs = NULL;
    int         bios_size;
    int         prom_size;
    ResetData  *reset_info;

    /* Init CPU */
    if (!cpu_model) {
        cpu_model = "LEON3";
    }

    cpu = cpu_sparc_init(cpu_model);
    if (cpu == NULL) {
        fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
        exit(1);
    }
    env = &cpu->env;

    cpu_sparc_set_id(env, 0);

    /* Reset data */
    reset_info        = g_malloc0(sizeof(ResetData));
    reset_info->cpu   = cpu;
    qemu_register_reset(main_cpu_reset, reset_info);

    /* Allocate IRQ manager */
    grlib_irqmp_create(0x80000200, env, &cpu_irqs, MAX_PILS, &leon3_set_pil_in);

    env->qemu_irq_ack = leon3_irq_manager;

    /* Allocate RAM */
    if ((uint64_t)ram_size > (1UL << 30)) {
        fprintf(stderr,
                "qemu: Too much memory for this machine: %d, maximum 1G\n",
                (unsigned int)(ram_size / (1024 * 1024)));
        exit(1);
    }

    memory_region_init_ram(ram, "leon3.ram", ram_size);
    vmstate_register_ram_global(ram);
    memory_region_add_subregion(address_space_mem, 0x40000000, ram);

    /* Allocate BIOS */
    prom_size = 8 * 1024 * 1024; /* 8Mb */
    memory_region_init_ram(prom, "Leon3.bios", prom_size);
    vmstate_register_ram_global(prom);
    memory_region_set_readonly(prom, true);
    memory_region_add_subregion(address_space_mem, 0x00000000, prom);

    /* Load boot prom */
    if (bios_name == NULL) {
        bios_name = PROM_FILENAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);

    bios_size = get_image_size(filename);

    if (bios_size > prom_size) {
        fprintf(stderr, "qemu: could not load prom '%s': file too big\n",
                filename);
        exit(1);
    }

    if (bios_size > 0) {
        ret = load_image_targphys(filename, 0x00000000, bios_size);
        if (ret < 0 || ret > prom_size) {
            fprintf(stderr, "qemu: could not load prom '%s'\n", filename);
            exit(1);
        }
    } else if (kernel_filename == NULL) {
        fprintf(stderr, "Can't read bios image %s\n", filename);
        exit(1);
    }

    /* Can directly load an application. */
    if (kernel_filename != NULL) {
        long     kernel_size;
        uint64_t entry;

        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
                               1 /* big endian */, ELF_MACHINE, 0);
        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }
        if (bios_size <= 0) {
            /* If there is no bios/monitor, start the application.  */
            env->pc = entry;
            env->npc = entry + 4;
            reset_info->entry = entry;
        }
    }

    /* Allocate timers */
    grlib_gptimer_create(0x80000300, 2, CPU_CLK, cpu_irqs, 6);

    /* Allocate uart */
    if (serial_hds[0]) {
        grlib_apbuart_create(0x80000100, serial_hds[0], cpu_irqs[3]);
    }
}
Esempio n. 5
0
static void sun4c_hw_init(const struct hwdef *hwdef, int RAM_size,
                          const char *boot_device,
                          DisplayState *ds, const char *kernel_filename,
                          const char *kernel_cmdline,
                          const char *initrd_filename, const char *cpu_model)
{
    CPUState *env;
    unsigned int i;
    void *iommu, *espdma, *ledma, *main_esp, *nvram;
    qemu_irq *cpu_irqs, *slavio_irq, *espdma_irq, *ledma_irq;
    qemu_irq *esp_reset, *le_reset;
    unsigned long prom_offset, kernel_size;
    int ret;
    char buf[1024];
    BlockDriverState *fd[MAX_FD];
    int index;

    /* init CPU */
    if (!cpu_model)
        cpu_model = hwdef->default_cpu_model;

    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
        exit(1);
    }

    cpu_sparc_set_id(env, 0);

    qemu_register_reset(main_cpu_reset, env);
    register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
    cpu_irqs = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
    env->prom_addr = hwdef->slavio_base;

    /* allocate RAM */
    if ((uint64_t)RAM_size > hwdef->max_mem) {
        fprintf(stderr, "qemu: Too much memory for this machine: %d, maximum %d\n",
                (unsigned int)RAM_size / (1024 * 1024),
                (unsigned int)hwdef->max_mem / (1024 * 1024));
        exit(1);
    }
    cpu_register_physical_memory(0, RAM_size, 0);

    /* load boot prom */
    prom_offset = RAM_size + hwdef->vram_size;
    cpu_register_physical_memory(hwdef->slavio_base,
                                 (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) &
                                 TARGET_PAGE_MASK,
                                 prom_offset | IO_MEM_ROM);

    if (bios_name == NULL)
        bios_name = PROM_FILENAME;
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
    ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL);
    if (ret < 0 || ret > PROM_SIZE_MAX)
        ret = load_image(buf, phys_ram_base + prom_offset);
    if (ret < 0 || ret > PROM_SIZE_MAX) {
        fprintf(stderr, "qemu: could not load prom '%s'\n",
                buf);
        exit(1);
    }
    prom_offset += (ret + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;

    /* set up devices */
    slavio_intctl = sun4c_intctl_init(hwdef->sun4c_intctl_base,
                                      &slavio_irq, cpu_irqs);

    iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
                       slavio_irq[hwdef->me_irq]);

    espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[hwdef->esp_irq],
                              iommu, &espdma_irq, &esp_reset);

    ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
                             slavio_irq[hwdef->le_irq], iommu, &ledma_irq,
                             &le_reset);

    if (graphic_depth != 8 && graphic_depth != 24) {
        fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
        exit (1);
    }
    tcx_init(ds, hwdef->tcx_base, phys_ram_base + RAM_size, RAM_size,
             hwdef->vram_size, graphic_width, graphic_height, graphic_depth);

    if (nd_table[0].model == NULL
        || strcmp(nd_table[0].model, "lance") == 0) {
        lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset);
    } else if (strcmp(nd_table[0].model, "?") == 0) {
        fprintf(stderr, "qemu: Supported NICs: lance\n");
        exit (1);
    } else {
        fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
        exit (1);
    }

    nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0,
                        hwdef->nvram_size, 2);

    slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq],
                              nographic);
    // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
    // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
    slavio_serial_init(hwdef->serial_base, slavio_irq[hwdef->ser_irq],
                       serial_hds[1], serial_hds[0]);

    if (hwdef->fd_base != (target_phys_addr_t)-1) {
        /* there is zero or one floppy drive */
        fd[1] = fd[0] = NULL;
        index = drive_get_index(IF_FLOPPY, 0, 0);
        if (index != -1)
            fd[0] = drives_table[index].bdrv;

        sun4m_fdctrl_init(slavio_irq[hwdef->fd_irq], hwdef->fd_base, fd);
    }

    if (drive_get_max_bus(IF_SCSI) > 0) {
        fprintf(stderr, "qemu: too many SCSI bus\n");
        exit(1);
    }

    main_esp = esp_init(hwdef->esp_base, espdma, *espdma_irq,
                        esp_reset);

    for (i = 0; i < ESP_MAX_DEVS; i++) {
        index = drive_get_index(IF_SCSI, 0, i);
        if (index == -1)
            continue;
        esp_scsi_attach(main_esp, drives_table[index].bdrv, i);
    }

    kernel_size = sun4m_load_kernel(kernel_filename, kernel_cmdline,
                                    initrd_filename);

    nvram_init((m48t59_t *)nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
               boot_device, RAM_size, kernel_size, graphic_width,
               graphic_height, graphic_depth, hwdef->machine_id, "Sun4c");
}
Esempio n. 6
0
File: sun4m.c Progetto: anhkgg/temu
static void sun4d_hw_init(const struct sun4d_hwdef *hwdef, int RAM_size,
                          const char *boot_device,
                          DisplayState *ds, const char *kernel_filename,
                          const char *kernel_cmdline,
                          const char *initrd_filename, const char *cpu_model)
{
    CPUState *env, *envs[MAX_CPUS];
    unsigned int i;
    void *iounits[MAX_IOUNITS], *espdma, *ledma, *main_esp, *nvram, *sbi;
    qemu_irq *cpu_irqs[MAX_CPUS], *sbi_irq, *sbi_cpu_irq,
        *espdma_irq, *ledma_irq;
    qemu_irq *esp_reset, *le_reset;
    unsigned long prom_offset, kernel_size;
    int ret;
    char buf[1024];
    int index;

    /* init CPUs */
    if (!cpu_model)
        cpu_model = hwdef->default_cpu_model;

    for (i = 0; i < smp_cpus; i++) {
        env = cpu_init(cpu_model);
        if (!env) {
            fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
            exit(1);
        }
        cpu_sparc_set_id(env, i);
        envs[i] = env;
        if (i == 0) {
            qemu_register_reset(main_cpu_reset, env);
        } else {
            qemu_register_reset(secondary_cpu_reset, env);
            env->halted = 1;
        }
        register_savevm("cpu", i, 3, cpu_save, cpu_load, env);
        cpu_irqs[i] = qemu_allocate_irqs(cpu_set_irq, envs[i], MAX_PILS);
        env->prom_addr = hwdef->slavio_base;
    }

    for (i = smp_cpus; i < MAX_CPUS; i++)
        cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);

    /* allocate RAM */
    if ((uint64_t)RAM_size > hwdef->max_mem) {
        fprintf(stderr, "qemu: Too much memory for this machine: %d, maximum %d\n",
                (unsigned int)RAM_size / (1024 * 1024),
                (unsigned int)(hwdef->max_mem / (1024 * 1024)));
        exit(1);
    }
    cpu_register_physical_memory(0, RAM_size, 0);

    /* load boot prom */
    prom_offset = RAM_size + hwdef->vram_size;
    cpu_register_physical_memory(hwdef->slavio_base,
                                 (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) &
                                 TARGET_PAGE_MASK,
                                 prom_offset | IO_MEM_ROM);

    if (bios_name == NULL)
        bios_name = PROM_FILENAME;
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
    ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL);
    if (ret < 0 || ret > PROM_SIZE_MAX)
        ret = load_image(buf, phys_ram_base + prom_offset);
    if (ret < 0 || ret > PROM_SIZE_MAX) {
        fprintf(stderr, "qemu: could not load prom '%s'\n",
                buf);
        exit(1);
    }

    /* set up devices */
    sbi = sbi_init(hwdef->sbi_base, &sbi_irq, &sbi_cpu_irq, cpu_irqs);

    for (i = 0; i < MAX_IOUNITS; i++)
        if (hwdef->iounit_bases[i] != (target_phys_addr_t)-1)
            iounits[i] = iommu_init(hwdef->iounit_bases[i],
                                    hwdef->iounit_version,
                                    sbi_irq[hwdef->me_irq]);

    espdma = sparc32_dma_init(hwdef->espdma_base, sbi_irq[hwdef->esp_irq],
                              iounits[0], &espdma_irq, &esp_reset);

    ledma = sparc32_dma_init(hwdef->ledma_base, sbi_irq[hwdef->le_irq],
                             iounits[0], &ledma_irq, &le_reset);

    if (graphic_depth != 8 && graphic_depth != 24) {
        fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
        exit (1);
    }
    tcx_init(ds, hwdef->tcx_base, phys_ram_base + RAM_size, RAM_size,
             hwdef->vram_size, graphic_width, graphic_height, graphic_depth);

    if (nd_table[0].model == NULL
        || strcmp(nd_table[0].model, "lance") == 0) {
        lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset);
    } else if (strcmp(nd_table[0].model, "?") == 0) {
        fprintf(stderr, "qemu: Supported NICs: lance\n");
        exit (1);
    } else {
        fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
        exit (1);
    }

    nvram = m48t59_init(sbi_irq[0], hwdef->nvram_base, 0,
                        hwdef->nvram_size, 8);

    slavio_timer_init_all(hwdef->counter_base, sbi_irq[hwdef->clock1_irq],
                          sbi_cpu_irq, smp_cpus);

    slavio_serial_ms_kbd_init(hwdef->ms_kb_base, sbi_irq[hwdef->ms_kb_irq],
                              nographic);
    // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
    // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
    slavio_serial_init(hwdef->serial_base, sbi_irq[hwdef->ser_irq],
                       serial_hds[1], serial_hds[0]);

    if (drive_get_max_bus(IF_SCSI) > 0) {
        fprintf(stderr, "qemu: too many SCSI bus\n");
        exit(1);
    }

    main_esp = esp_init(hwdef->esp_base, espdma, *espdma_irq,
                        esp_reset);

    for (i = 0; i < ESP_MAX_DEVS; i++) {
        index = drive_get_index(IF_SCSI, 0, i);
        if (index == -1)
            continue;
        esp_scsi_attach(main_esp, drives_table[index].bdrv, i);
    }

    kernel_size = sun4m_load_kernel(kernel_filename, kernel_cmdline,
                                    initrd_filename);

    nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
               boot_device, RAM_size, kernel_size, graphic_width,
               graphic_height, graphic_depth, hwdef->machine_id, "Sun4d");
}