/* Create the system admittance matrix from power system data. Note that this function is called transparently from GetPSFromFile once power system data has been populated (if the file read is successful). */ int CreateYBus(PS ps, int *ids){ int i, from, to, num_buses = ps->num_buses, num_branches = ps->num_branches, nnz = num_buses + 2*num_branches; double r, x, b; double _Complex y, *diags = malloc(num_buses*sizeof(double _Complex)); //allocate a ybus cs_ci *ybus = cs_ci_spalloc(num_buses, num_buses, nnz, 1, 1), *ybus_comp, *ybus_comp_t; //check memory if(!ybus) return 1; //loop through ybus branches for(i=0; i<num_branches; i++) { //get branch from/to bus indices from = ps->branches[i].from_index; to = ps->branches[i].to_index; //determine line admittance r = ps->branches[i].r; x = ps->branches[i].x; b = ps->branches[i].b; y = (1.0+0.0*I)/(r+x*I); //add off-diagonals to ybus and increment diagonal entries cs_ci_entry(ybus, from, to, -y); cs_ci_entry(ybus, to, from, -y); diags[from]+=(y+I*b/2.0); diags[to]+=(y+I*b/2.0); } //add diogonal entries to ybus. for(i=0; i<num_buses; i++) cs_ci_entry(ybus, i, i, diags[i]); //compress ybus ybus_comp=cs_ci_compress(ybus); //check that memory allocation was okay if(!ybus_comp){cs_ci_spfree(ybus); return 1;} //free the old ybus and sum duplicates in the compressed matrix (i.e., parallel branches) cs_ci_spfree(ybus); cs_ci_dupl(ybus_comp); //sort the columns of ybus using the transpose-transpose trick ybus_comp_t = cs_ci_transpose(ybus_comp, 1); if(!ybus_comp_t){free(ybus_comp); return 1;} free(ybus_comp); ybus_comp = cs_ci_transpose(ybus_comp_t, 1); if(!ybus_comp){free(ybus_comp_t); return 1;} free(ybus_comp_t); //assign the ps ybus pointer to the compressed, summed ybus matrix ps->ybus = ybus_comp; //free the diagonal workspace and return free(diags); return 0; }
/* free workspace for demo3 */ static int done3 (int ok, cs_cis *S, cs_cin *N, cs_complex_t *y, cs_ci *W, cs_ci *E, int *p) { cs_ci_sfree (S) ; cs_ci_nfree (N) ; cs_ci_free (y) ; cs_ci_spfree (W) ; cs_ci_spfree (E) ; cs_ci_free (p) ; return (ok) ; }
/* free a problem */ problem *free_problem (problem *Prob) { if (!Prob) return (NULL) ; cs_ci_spfree (Prob->A) ; if (Prob->sym) cs_ci_spfree (Prob->C) ; cs_ci_free (Prob->b) ; cs_ci_free (Prob->x) ; cs_ci_free (Prob->resid) ; return (cs_ci_free (Prob)) ; }
void freeAllocationsAC(void) { if (circuit_simulation.matrix_sparsity == SPARSE) { if (circuit_simulation.method == DIRECT) { cs_ci_sfree( Scomplex ); cs_ci_nfree( Ncomplex ); } else { cs_ci_spfree( G2complex ); } } else { free( matrix_Gcomplex ); if (circuit_simulation.method == DIRECT && circuit_simulation.matrix_type == NONSPD) { free( transposition ); } } if (circuit_simulation.method == ITERATIVE) { free( inv_preconditioner_complex ); } }
/* read a problem from a file */ problem *get_problem (FILE *f, double tol) { cs_ci *T, *A, *C ; int sym, m, n, mn, nz1, nz2 ; problem *Prob ; Prob = cs_ci_calloc (1, sizeof (problem)) ; if (!Prob) return (NULL) ; T = cs_ci_load (f) ; /* load triplet matrix T from a file */ Prob->A = A = cs_ci_compress (T) ; /* A = compressed-column form of T */ cs_ci_spfree (T) ; /* clear T */ if (!cs_ci_dupl (A)) return (free_problem (Prob)) ; /* sum up duplicates */ Prob->sym = sym = is_sym (A) ; /* determine if A is symmetric */ m = A->m ; n = A->n ; mn = CS_MAX (m,n) ; nz1 = A->p [n] ; cs_ci_dropzeros (A) ; /* drop zero entries */ nz2 = A->p [n] ; if (tol > 0) cs_ci_droptol (A, tol) ; /* drop tiny entries (just to test) */ Prob->C = C = sym ? make_sym (A) : A ; /* C = A + triu(A,1)', or C=A */ if (!C) return (free_problem (Prob)) ; printf ("\n--- Matrix: %d-by-%d, nnz: %d (sym: %d: nnz %d), norm: %8.2e\n", m, n, A->p [n], sym, sym ? C->p [n] : 0, cs_ci_norm (C)) ; if (nz1 != nz2) printf ("zero entries dropped: %d\n", nz1 - nz2) ; if (nz2 != A->p [n]) printf ("tiny entries dropped: %d\n", nz2 - A->p [n]) ; Prob->b = cs_ci_malloc (mn, sizeof (cs_complex_t)) ; Prob->x = cs_ci_malloc (mn, sizeof (cs_complex_t)) ; Prob->resid = cs_ci_malloc (mn, sizeof (cs_complex_t)) ; return ((!Prob->b || !Prob->x || !Prob->resid) ? free_problem (Prob) : Prob) ; }
/* C = A + triu(A,1)' */ static cs_ci *make_sym (cs_ci *A) { cs_ci *AT, *C ; AT = cs_ci_transpose (A, 1) ; /* AT = A' */ cs_ci_fkeep (AT, &dropdiag, NULL) ; /* drop diagonal entries from AT */ C = cs_ci_add (A, AT, 1, 1) ; /* C = A+AT */ cs_ci_spfree (AT) ; return (C) ; }
/* * Free memory allocated for power system data. */ int FreePS(PS *ps){ if((*ps)->buses){free((*ps)->buses); (*ps)->buses = NULL;} if((*ps)->branches){free((*ps)->branches); (*ps)->branches = NULL;} if((*ps)->gens){free((*ps)->gens); (*ps)->gens = NULL;} if((*ps)->shunts){free((*ps)->shunts);(*ps)->shunts = NULL;} if((*ps)->machines){free((*ps)->machines);(*ps)->machines = NULL;} if((*ps)->src_buses){free((*ps)->src_buses); (*ps)->src_buses=NULL;} if((*ps)->ybus) cs_ci_spfree((*ps)->ybus); *ps = NULL; return 0; };
void CholeskyDecompositionComplex(long int run) { int k, i, j; unsigned int dimension; double sum, temp; double complex sum2; #if DEBUG int l; double complex temp_val; #endif dimension = circuit_simulation.number_of_nodes + circuit_simulation.group2_elements; if (circuit_simulation.matrix_sparsity == SPARSE) { if(run == 0) { printf( "\n\nCholesky Decomposition...\n\n" ); } Scomplex = cs_ci_schol( 1, G2complex ); Ncomplex = cs_ci_chol( G2complex, Scomplex ); cs_ci_spfree( G2complex ); if (Ncomplex == NULL) { printf( "Error, the matrix must be hermitian & positive definite.\n\n" ); printf( "Terminating.\n" ); exit( -1 ); } } else { if(run == 0) { printf( "\n\nCholesky Decomposition...\n\n" ); } for (k = 0; k < dimension; k++) { for (sum = 0, j = 0; j < k; j++) { if (matrix_Gcomplex[k * dimension + j] != conj(matrix_Gcomplex[j * dimension + k])) { printf( "Error, the matrix must be hermitian & positive definite.\n\n" ); printf( "Terminating.\n" ); exit( -1 ); } sum += creal(conj(matrix_Gcomplex[k * dimension + j]) * matrix_Gcomplex[k * dimension + j]); } if(cimag(matrix_Gcomplex[k * dimension + k]) != 0) { printf( "Error, the matrix must be hermitian & positive definite.\n\n" ); printf( "Terminating.\n" ); exit( -1 ); } if ((temp = creal(matrix_Gcomplex[k * dimension + k]) - sum) < 0) { printf( "Error, the matrix must be hermitian & positive definite.\n\n" ); printf( "Terminating.\n" ); exit( -1 ); } matrix_Gcomplex[k * dimension + k] = sqrt( temp ); for (i = k + 1; i < dimension; i++) { for (sum2 = 0, j = 0; j < k; j++) { sum2 += conj(matrix_Gcomplex[i * dimension + j]) * matrix_Gcomplex[k * dimension + j]; } matrix_Gcomplex[k * dimension + i] = matrix_Gcomplex[i * dimension + k] = (matrix_Gcomplex[k * dimension + i] - sum2) / matrix_Gcomplex[k * dimension + k]; } } } #if DEBUG printf("\nCholesky Decomposition\n~~~~~~~~~~~~~~~~~~~~~~~\n\n"); printf("\nDecomposed Matrix:\n\n"); for(k = 0; k < dimension; k++) { for(l = 0; l < dimension; l++) { if(l == k) { printf(" \\\\"); } if (circuit_simulation.matrix_sparsity == SPARSE) { if(l <= k) { temp_val = getElementAtComplex(Ncomplex -> L, k, l); printf("(%7.3lf %7.3lfi) ", creal(temp_val), cimag(temp_val)); } else { temp_val = getElementAtComplex(Ncomplex -> L, l, k); printf("(%7.3lf %7.3lfi) ", creal(temp_val), cimag(temp_val)); } } else { printf("(%7.3lf %7.3lfi) ", creal(matrix_Gcomplex[k * dimension + l]), cimag(matrix_Gcomplex[k * dimension + l])); } if(l == k) { printf(" \\\\"); } } printf("\n\n"); } printf("\n\n"); #endif }
void LUDecompositionComplex(long int run) { int k, i, m, j; unsigned int dimension; #if DEBUG int l; double complex temp_val; #endif dimension = circuit_simulation.number_of_nodes + circuit_simulation.group2_elements; if (circuit_simulation.matrix_sparsity == SPARSE) { if(run == 0) { printf( "\n\nLU Decomposition...\n\n" ); } Scomplex = cs_ci_sqr( 2, G2complex, 0 ); Ncomplex = cs_ci_lu( G2complex, Scomplex, 1 ); cs_ci_spfree( G2complex ); if (Ncomplex == NULL) { printf( "Error, the matrix cannot be inverted.\n\n" ); printf( "Terminating.\n" ); exit( -1 ); } } else { transposition = ( int * ) malloc( dimension * sizeof(int) ); if (transposition == NULL) { printf( "Could not allocate matrices.\n" ); printf( "Terminating.\n" ); exit( -1 ); } for (i = 0; i < dimension; i++) { transposition[i] = i; } if(run == 0) { printf( "\n\nLU Decomposition...\n\n" ); } for (k = 0; k < dimension - 1; k++) { for (m = i = k; i < dimension; i++) { if (cabs( matrix_Gcomplex[i * dimension + k] ) > cabs( matrix_Gcomplex[m * dimension + k] )) { m = i; } } interchangeComplex( m, k ); if (cabs( matrix_Gcomplex[k * dimension + k] ) == 0) { printf( "Error, the matrix cannot be inverted.\n\n" ); printf( "Terminating.\n" ); exit( -1 ); } for (i = k + 1; i < dimension; i++) { matrix_Gcomplex[i * dimension + k] /= matrix_Gcomplex[k * dimension + k]; for (j = k + 1; j < dimension; j++) { matrix_Gcomplex[i * dimension + j] += -matrix_Gcomplex[i * dimension + k] * matrix_Gcomplex[k * dimension + j]; } } } } #if DEBUG printf("\nLU Decomposition\n~~~~~~~~~~~~~~~~~\n\n"); printf("\nDecomposed Matrix:\n\n"); for(k = 0; k < dimension; k++) { for(l = 0; l < dimension; l++) { if(l == k) { printf(" \\\\"); } if (circuit_simulation.matrix_sparsity == SPARSE) { if(l >= k) { temp_val = getElementAtComplex(Ncomplex -> U, k, l); printf("(%7.3lf %7.3lfi) ", creal(temp_val), cimag(temp_val)); } else { temp_val = getElementAtComplex(Ncomplex -> L, k, l); printf("(%7.3lf %7.3lfi) ", creal(temp_val), cimag(temp_val)); } } else { printf("(%7.3lf %7.3lfi) ", creal(matrix_Gcomplex[k * dimension + l]), cimag(matrix_Gcomplex[k * dimension + l])); } } printf("\n\n"); } printf("\n\n"); printf("\nLine Transposition:\n"); for(k = 0; k < dimension; k++) { if (circuit_simulation.matrix_sparsity == SPARSE) { printf("line %d contains line %d\n", Ncomplex -> pinv[k], k); } else { printf("line %d contains line %d\n", k, transposition[k]); } } printf("\n\n"); #endif }
/* Cholesky update/downdate */ int demo3 (problem *Prob) { cs_ci *A, *C, *W = NULL, *WW, *WT, *E = NULL, *W2 ; int n, k, *Li, *Lp, *Wi, *Wp, p1, p2, *p = NULL, ok ; cs_complex_t *b, *x, *resid, *y = NULL, *Lx, *Wx, s ; double t, t1 ; cs_cis *S = NULL ; cs_cin *N = NULL ; if (!Prob || !Prob->sym || Prob->A->n == 0) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; n = A->n ; if (!Prob->sym || n == 0) return (1) ; rhs (x, b, n) ; /* compute right-hand side */ printf ("\nchol then update/downdate ") ; print_order (1) ; y = cs_ci_malloc (n, sizeof (cs_complex_t)) ; t = tic () ; S = cs_ci_schol (1, C) ; /* symbolic Chol, amd(A+A') */ printf ("\nsymbolic chol time %8.2f\n", toc (t)) ; t = tic () ; N = cs_ci_chol (C, S) ; /* numeric Cholesky */ printf ("numeric chol time %8.2f\n", toc (t)) ; if (!S || !N || !y) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_ci_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_ci_lsolve (N->L, y) ; /* y = L\y */ cs_ci_ltsolve (N->L, y) ; /* y = L'\y */ cs_ci_pvec (S->pinv, y, x, n) ; /* x = P'*y */ printf ("solve chol time %8.2f\n", toc (t)) ; printf ("original: ") ; print_resid (1, C, x, b, resid) ; /* print residual */ k = n/2 ; /* construct W */ W = cs_ci_spalloc (n, 1, n, 1, 0) ; if (!W) return (done3 (0, S, N, y, W, E, p)) ; Lp = N->L->p ; Li = N->L->i ; Lx = N->L->x ; Wp = W->p ; Wi = W->i ; Wx = W->x ; Wp [0] = 0 ; p1 = Lp [k] ; Wp [1] = Lp [k+1] - p1 ; s = Lx [p1] ; srand (1) ; for ( ; p1 < Lp [k+1] ; p1++) { p2 = p1 - Lp [k] ; Wi [p2] = Li [p1] ; Wx [p2] = s * rand () / ((double) RAND_MAX) ; } t = tic () ; ok = cs_ci_updown (N->L, +1, W, S->parent) ; /* update: L*L'+W*W' */ t1 = toc (t) ; printf ("update: time: %8.2f\n", t1) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; t = tic () ; cs_ci_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_ci_lsolve (N->L, y) ; /* y = L\y */ cs_ci_ltsolve (N->L, y) ; /* y = L'\y */ cs_ci_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; p = cs_ci_pinv (S->pinv, n) ; W2 = cs_ci_permute (W, p, NULL, 1) ; /* E = C + (P'W)*(P'W)' */ WT = cs_ci_transpose (W2,1) ; WW = cs_ci_multiply (W2, WT) ; cs_ci_spfree (WT) ; cs_ci_spfree (W2) ; E = cs_ci_add (C, WW, 1, 1) ; cs_ci_spfree (WW) ; if (!E || !p) return (done3 (0, S, N, y, W, E, p)) ; printf ("update: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, E, x, b, resid) ; /* print residual */ cs_ci_nfree (N) ; /* clear N */ t = tic () ; N = cs_ci_chol (E, S) ; /* numeric Cholesky */ if (!N) return (done3 (0, S, N, y, W, E, p)) ; cs_ci_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_ci_lsolve (N->L, y) ; /* y = L\y */ cs_ci_ltsolve (N->L, y) ; /* y = L'\y */ cs_ci_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("rechol: time: %8.2f (incl solve) ", t) ; print_resid (1, E, x, b, resid) ; /* print residual */ t = tic () ; ok = cs_ci_updown (N->L, -1, W, S->parent) ; /* downdate: L*L'-W*W' */ t1 = toc (t) ; if (!ok) return (done3 (0, S, N, y, W, E, p)) ; printf ("downdate: time: %8.2f\n", t1) ; t = tic () ; cs_ci_ipvec (S->pinv, b, y, n) ; /* y = P*b */ cs_ci_lsolve (N->L, y) ; /* y = L\y */ cs_ci_ltsolve (N->L, y) ; /* y = L'\y */ cs_ci_pvec (S->pinv, y, x, n) ; /* x = P'*y */ t = toc (t) ; printf ("downdate: time: %8.2f (incl solve) ", t1+t) ; print_resid (1, C, x, b, resid) ; /* print residual */ return (done3 (1, S, N, y, W, E, p)) ; }