Esempio n. 1
0
/* cs_symperm: symmetric permutation of a symmetric sparse matrix. */
void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{
    cs Amatrix, *A, *C, *D ;
    csi ignore, n, *P, *Pinv ;
    if (nargout > 1 || nargin != 2)
    {
        mexErrMsgTxt ("Usage: C = cs_symperm(A,p)") ;
    }
    A = cs_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ;
    n = A->n ;
    P = cs_mex_get_int (n, pargin [1], &ignore, 1) ;    /* get P */
    Pinv = cs_pinv (P, n) ;                             /* P=Pinv' */
    C = cs_symperm (A, Pinv, 1) ;                       /* C = A(p,p) */
    D = cs_transpose (C, 1) ;                           /* sort C */
    cs_spfree (C) ;
    C = cs_transpose (D, 1) ;
    cs_spfree (D) ;
    pargout [0] = cs_mex_put_sparse (&C) ;              /* return C */
    cs_free (P) ;
    cs_free (Pinv) ;
}
Esempio n. 2
0
scs_int factorize(const AMatrix * A, const Settings * stgs, Priv * p) {
	scs_float *info;
	scs_int *Pinv, amd_status, ldl_status;
	cs *C, *K = formKKT(A, stgs);
	if (!K) {
		return -1;
	}
	amd_status = LDLInit(K, p->P, &info);
	if (amd_status < 0)
		return (amd_status);
#if EXTRAVERBOSE > 0
	if(stgs->verbose) {
		scs_printf("Matrix factorization info:\n");
#ifdef DLONG
		amd_l_info(info);
#else
		amd_info(info);
#endif
	}
#endif
	Pinv = cs_pinv(p->P, A->n + A->m);
	C = cs_symperm(K, Pinv, 1);
	ldl_status = LDLFactor(C, NULL, NULL, &p->L, &p->D);
	cs_spfree(C);
	cs_spfree(K);
	scs_free(Pinv);
	scs_free(info);
	return (ldl_status);
}
Esempio n. 3
0
css *cs_schol(int order, const cs *A) {

	int n, *c, *post, *P;
	cs *C;
	css *S;
	if (!CS_CSC (A))
		return (NULL); /* check inputs */
	n = A->n;
	S = (css *) cs_calloc(1, sizeof(css)); /* allocate result S */
	if (!S)
		return (NULL); /* out of memory */
	P = cs_amd(order, A); /* P = amd(A+A'), or natural */
	S->pinv = cs_pinv(P, n); /* find inverse permutation */
	cs_free(P);
	if (order && !S->pinv)
		return (cs_sfree(S));
	C = cs_symperm(A, S->pinv, 0); /* C = spones(triu(A(P,P))) */
	S->parent = cs_etree(C, 0); /* find etree of C */
	post = cs_post(S->parent, n); /* postorder the etree */
	c = cs_counts(C, S->parent, post, 0); /* find column counts of chol(C) */
	cs_free(post);
	cs_spfree(C);
	S->cp = (int *) cs_malloc(n + 1, sizeof(int)); /* allocate result S->cp */
	S->unz = S->lnz = cs_cumsum(S->cp, c, n); /* find column pointers for L */
	cs_free(c);
	return ((S->lnz >= 0) ? S : cs_sfree(S));
}
/* cs_permute: permute a sparse matrix */
void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{
    cs Amatrix, *A, *C, *D ;
    int ignore, *P, *Q, *Pinv ;
    if (nargout > 1 || nargin != 3)
    {
        mexErrMsgTxt ("Usage: C = cs_permute(A,p,q)") ;
    }
    A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ;    /* get A */
    P = cs_mex_get_int (A->m, pargin [1], &ignore, 1) ;     /* get P */
    Q = cs_mex_get_int (A->n, pargin [2], &ignore, 1) ;     /* get Q */
    Pinv = cs_pinv (P, A->m) ;              /* P = Pinv' */
    C = cs_permute (A, Pinv, Q, 1) ;        /* C = A(p,q) */
    D = cs_transpose (C, 1) ;               /* sort C via double transpose */
    cs_spfree (C) ;
    C = cs_transpose (D, 1) ;
    cs_spfree (D) ;
    pargout [0] = cs_mex_put_sparse (&C) ;          /* return C */
    cs_free (Pinv) ;
    cs_free (P) ;
    cs_free (Q) ;
}
Esempio n. 5
0
/* Modified version of Tim Davis's cs_lu_mex.c file for MATLAB */
void install_lu(SEXP Ap, int order, double tol, Rboolean err_sing)
{
    // (order, tol) == (1, 1) by default, when called from R.
    SEXP ans;
    css *S;
    csn *N;
    int n, *p, *dims;
    CSP A = AS_CSP__(Ap), D;
    R_CheckStack();

    n = A->n;
    if (A->m != n)
	error(_("LU decomposition applies only to square matrices"));
    if (order) {		/* not using natural order */
	order = (tol == 1) ? 2	/* amd(S'*S) w/dense rows or I */
	    : 1;		/* amd (A+A'), or natural */
    }
    S = cs_sqr(order, A, /*qr = */ 0);	/* symbolic ordering */
    N = cs_lu(A, S, tol);	/* numeric factorization */
    if (!N) {
	if(err_sing)
	    error(_("cs_lu(A) failed: near-singular A (or out of memory)"));
	else {
	    /* No warning: The useR should be careful :
	     * Put  NA  into  "LU" factor */
	    set_factors(Ap, ScalarLogical(NA_LOGICAL), "LU");
	    return;
	}
    }
    cs_dropzeros(N->L);		/* drop zeros from L and sort it */
    D = cs_transpose(N->L, 1);
    cs_spfree(N->L);
    N->L = cs_transpose(D, 1);
    cs_spfree(D);
    cs_dropzeros(N->U);		/* drop zeros from U and sort it */
    D = cs_transpose(N->U, 1);
    cs_spfree(N->U);
    N->U = cs_transpose(D, 1);
    cs_spfree(D);
    p = cs_pinv(N->pinv, n);	/* p=pinv' */
    ans = PROTECT(NEW_OBJECT(MAKE_CLASS("sparseLU")));
    dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2));
    dims[0] = n; dims[1] = n;
    SET_SLOT(ans, install("L"),
	     Matrix_cs_to_SEXP(N->L, "dtCMatrix", 0));
    SET_SLOT(ans, install("U"),
	     Matrix_cs_to_SEXP(N->U, "dtCMatrix", 0));
    Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, /* "p" */
			      INTSXP, n)), p, n);
    if (order)
	Memcpy(INTEGER(ALLOC_SLOT(ans, install("q"),
				  INTSXP, n)), S->q, n);
    cs_nfree(N);
    cs_sfree(S);
    cs_free(p);
    UNPROTECT(1);
    set_factors(Ap, ans, "LU");
}
Esempio n. 6
0
/* cs_lu: sparse LU factorization, with optional fill-reducing ordering */
void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{
    css *S ;
    csn *N ;
    cs Amatrix, *A, *D ;
    csi n, order, *p ;
    double tol ;
    if (nargout > 4 || nargin > 3 || nargin < 1)
    {
        mexErrMsgTxt ("Usage: [L,U,p,q] = cs_lu (A,tol)") ;
    }
    A = cs_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ;        /* get A */
    n = A->n ;
    if (nargin == 2)                        /* determine tol and ordering */
    {
        tol = mxGetScalar (pargin [1]) ;
        order = (nargout == 4) ? 1 : 0 ;    /* amd (A+A'), or natural */
    }
    else
    {
        tol = 1 ;
        order = (nargout == 4) ? 2 : 0 ;    /* amd(S'*S) w/dense rows or I */
    }
    S = cs_sqr (order, A, 0) ;              /* symbolic ordering, no QR bound */
    N = cs_lu (A, S, tol) ;                 /* numeric factorization */
    if (!N) mexErrMsgTxt ("cs_lu failed (singular, or out of memory)") ;
    cs_dropzeros (N->L) ;                   /* drop zeros from L and sort it */
    D = cs_transpose (N->L, 1) ;
    cs_spfree (N->L) ;
    N->L = cs_transpose (D, 1) ;
    cs_spfree (D) ;
    cs_dropzeros (N->U) ;                   /* drop zeros from U and sort it */
    D = cs_transpose (N->U, 1) ;
    cs_spfree (N->U) ;
    N->U = cs_transpose (D, 1) ;
    cs_spfree (D) ;
    p = cs_pinv (N->pinv, n) ;              /* p=pinv' */
    pargout [0] = cs_mex_put_sparse (&(N->L)) ;     /* return L */
    pargout [1] = cs_mex_put_sparse (&(N->U)) ;     /* return U */
    pargout [2] = cs_mex_put_int (p, n, 1, 1) ;     /* return p */
    /* return Q */
    if (nargout == 4) pargout [3] = cs_mex_put_int (S->q, n, 1, 0) ;
    cs_nfree (N) ;
    cs_sfree (S) ;
}
Esempio n. 7
0
// Modified version of Tim Davis's cs_qr_mex.c file for MATLAB (in CSparse)
//  Usage: [V,beta,p,R,q] = cs_qr(A) ;
SEXP dgCMatrix_QR(SEXP Ap, SEXP order)
{
    CSP A = AS_CSP__(Ap), D;
    int io = INTEGER(order)[0];
    Rboolean verbose = (io < 0);
    int m = A->m, n = A->n, ord = asLogical(order) ? 3 : 0, *p;
    R_CheckStack();

    if (m < n) error(_("A must have #{rows} >= #{columns}")) ;
    SEXP ans = PROTECT(NEW_OBJECT(MAKE_CLASS("sparseQR")));
    int *dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2));
    dims[0] = m; dims[1] = n;
    css *S = cs_sqr(ord, A, 1);	/* symbolic QR ordering & analysis*/
    if (!S) error(_("cs_sqr failed"));
    if(verbose && S->m2 > m) // in ./cs.h , m2 := # of rows for QR, after adding fictitious rows
	Rprintf("Symbolic QR(): Matrix structurally rank deficient (m2-m = %d)\n",
		S->m2 - m);
    csn *N = cs_qr(A, S);		/* numeric QR factorization */
    if (!N) error(_("cs_qr failed")) ;
    cs_dropzeros(N->L);		/* drop zeros from V and sort */
    D = cs_transpose(N->L, 1); cs_spfree(N->L);
    N->L = cs_transpose(D, 1); cs_spfree(D);
    cs_dropzeros(N->U);		/* drop zeros from R and sort */
    D = cs_transpose(N->U, 1); cs_spfree(N->U) ;
    N->U = cs_transpose(D, 1); cs_spfree(D);
    m = N->L->m;		/* m may be larger now */
    // MM: m := S->m2  also counting the ficticious rows (Tim Davis, p.72, 74f)
    p = cs_pinv(S->pinv, m);	/* p = pinv' */
    SET_SLOT(ans, install("V"),
	     Matrix_cs_to_SEXP(N->L, "dgCMatrix", 0));
    Memcpy(REAL(ALLOC_SLOT(ans, install("beta"),
			   REALSXP, n)), N->B, n);
    Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym,
			      INTSXP, m)), p, m);
    SET_SLOT(ans, install("R"),
	     Matrix_cs_to_SEXP(N->U, "dgCMatrix", 0));
    if (ord)
	Memcpy(INTEGER(ALLOC_SLOT(ans, install("q"),
				  INTSXP, n)), S->q, n);
    else
	ALLOC_SLOT(ans, install("q"), INTSXP, 0);
    cs_nfree(N);
    cs_sfree(S);
    cs_free(p);
    UNPROTECT(1);
    return ans;
}
Esempio n. 8
0
/* cs_qr: sparse QR factorization */
void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{
    css *S ;
    csn *N ;
    cs Amatrix, *A, *D ;
    csi m, n, order, *p ;
    if (nargout > 5 || nargin != 1)
    {
        mexErrMsgTxt ("Usage: [V,beta,p,R,q] = cs_qr(A)") ;
    }
    A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ;        /* get A */
    m = A->m ;
    n = A->n ;
    if (m < n) mexErrMsgTxt ("A must have # rows >= # columns") ;
    order = (nargout == 5) ? 3 : 0 ;        /* determine ordering */
    S = cs_sqr (order, A, 1) ;              /* symbolic QR ordering & analysis*/
    N = cs_qr (A, S) ;                      /* numeric QR factorization */
    if (!N) mexErrMsgTxt ("qr failed") ;
    cs_dropzeros (N->L) ;                   /* drop zeros from V and sort */
    D = cs_transpose (N->L, 1) ;
    cs_spfree (N->L) ;
    N->L = cs_transpose (D, 1) ;
    cs_spfree (D) ;
    cs_dropzeros (N->U) ;                   /* drop zeros from R and sort */
    D = cs_transpose (N->U, 1) ;
    cs_spfree (N->U) ;
    N->U = cs_transpose (D, 1) ;
    cs_spfree (D) ;
    m = N->L->m ;                                   /* m may be larger now */
    p = cs_pinv (S->pinv, m) ;                      /* p = pinv' */
    pargout [0] = cs_mex_put_sparse (&(N->L)) ;     /* return V */
    cs_mex_put_double (n, N->B, &(pargout [1])) ;   /* return beta */
    pargout [2] = cs_mex_put_int (p, m, 1, 1) ;     /* return p */
    pargout [3] = cs_mex_put_sparse (&(N->U)) ;     /* return R */
    pargout [4] = cs_mex_put_int (S->q, n, 1, 0) ;  /* return q */
    cs_nfree (N) ;
    cs_sfree (S) ;
}
/* Cholesky update/downdate */
int demo3 (problem *Prob)
{
    cs *A, *C, *W = NULL, *WW, *WT, *E = NULL, *W2 ;
    int n, k, *Li, *Lp, *Wi, *Wp, p1, p2, *p = NULL, ok ;
    double *b, *x, *resid, *y = NULL, *Lx, *Wx, s,  t, t1 ;
    css *S = NULL ;
    csn *N = NULL ;
    if (!Prob || !Prob->sym || Prob->A->n == 0) return (0) ;
    A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid;
    n = A->n ;
    if (!Prob->sym || n == 0) return (1) ;
    rhs (x, b, n) ;                             /* compute right-hand side */
    printf ("\nchol then update/downdate ") ;
    print_order (1) ;
    y = cs_malloc (n, sizeof (double)) ;
    t = tic () ;
    S = cs_schol (1, C) ;                       /* symbolic Chol, amd(A+A') */
    printf ("\nsymbolic chol time %8.2f\n", toc (t)) ;
    t = tic () ;
    N = cs_chol (C, S) ;                        /* numeric Cholesky */
    printf ("numeric  chol time %8.2f\n", toc (t)) ;
    if (!S || !N || !y) return (done3 (0, S, N, y, W, E, p)) ;
    t = tic () ;
    cs_ipvec (S->pinv, b, y, n) ;               /* y = P*b */
    cs_lsolve (N->L, y) ;                       /* y = L\y */
    cs_ltsolve (N->L, y) ;                      /* y = L'\y */
    cs_pvec (S->pinv, y, x, n) ;                /* x = P'*y */
    printf ("solve    chol time %8.2f\n", toc (t)) ;
    printf ("original: ") ;
    print_resid (1, C, x, b, resid) ;           /* print residual */
    k = n/2 ;                                   /* construct W  */
    W = cs_spalloc (n, 1, n, 1, 0) ;
    if (!W) return (done3 (0, S, N, y, W, E, p)) ;
    Lp = N->L->p ; Li = N->L->i ; Lx = N->L->x ;
    Wp = W->p ; Wi = W->i ; Wx = W->x ;
    Wp [0] = 0 ;
    p1 = Lp [k] ;
    Wp [1] = Lp [k+1] - p1 ;
    s = Lx [p1] ;
    srand (1) ;
    for ( ; p1 < Lp [k+1] ; p1++)
    {
        p2 = p1 - Lp [k] ;
        Wi [p2] = Li [p1] ;
        Wx [p2] = s * rand () / ((double) RAND_MAX) ;
    }
    t = tic () ;
    ok = cs_updown (N->L, +1, W, S->parent) ;   /* update: L*L'+W*W' */
    t1 = toc (t) ;
    printf ("update:   time: %8.2f\n", t1) ;
    if (!ok) return (done3 (0, S, N, y, W, E, p)) ;
    t = tic () ;
    cs_ipvec (S->pinv, b, y, n) ;               /* y = P*b */
    cs_lsolve (N->L, y) ;                       /* y = L\y */
    cs_ltsolve (N->L, y) ;                      /* y = L'\y */
    cs_pvec (S->pinv, y, x, n) ;                /* x = P'*y */
    t = toc (t) ;
    p = cs_pinv (S->pinv, n) ;
    W2 = cs_permute (W, p, NULL, 1) ;           /* E = C + (P'W)*(P'W)' */
    WT = cs_transpose (W2,1) ;
    WW = cs_multiply (W2, WT) ;
    cs_spfree (WT) ;
    cs_spfree (W2) ;
    E = cs_add (C, WW, 1, 1) ;
    cs_spfree (WW) ;
    if (!E || !p) return (done3 (0, S, N, y, W, E, p)) ;
    printf ("update:   time: %8.2f (incl solve) ", t1+t) ;
    print_resid (1, E, x, b, resid) ;           /* print residual */
    cs_nfree (N) ;                              /* clear N */
    t = tic () ;
    N = cs_chol (E, S) ;                        /* numeric Cholesky */
    if (!N) return (done3 (0, S, N, y, W, E, p)) ;
    cs_ipvec (S->pinv, b, y, n) ;               /* y = P*b */
    cs_lsolve (N->L, y) ;                       /* y = L\y */
    cs_ltsolve (N->L, y) ;                      /* y = L'\y */
    cs_pvec (S->pinv, y, x, n) ;                /* x = P'*y */
    t = toc (t) ;
    printf ("rechol:   time: %8.2f (incl solve) ", t) ;
    print_resid (1, E, x, b, resid) ;           /* print residual */
    t = tic () ;
    ok = cs_updown (N->L, -1, W, S->parent) ;   /* downdate: L*L'-W*W' */
    t1 = toc (t) ;
    if (!ok) return (done3 (0, S, N, y, W, E, p)) ;
    printf ("downdate: time: %8.2f\n", t1) ;
    t = tic () ;
    cs_ipvec (S->pinv, b, y, n) ;               /* y = P*b */
    cs_lsolve (N->L, y) ;                       /* y = L\y */
    cs_ltsolve (N->L, y) ;                      /* y = L'\y */
    cs_pvec (S->pinv, y, x, n) ;                /* x = P'*y */
    t = toc (t) ;
    printf ("downdate: time: %8.2f (incl solve) ", t1+t) ;
    print_resid (1, C, x, b, resid) ;           /* print residual */
    return (done3 (1, S, N, y, W, E, p)) ;
} 
Esempio n. 10
0
/* Given A, compute coarse and then fine dmperm */
csd *cs_dmperm (const cs *A, int seed)
{
    int m, n, i, j, k, cnz, nc, *jmatch, *imatch, *wi, *wj, *pinv, *Cp, *Ci,
        *ps, *rs, nb1, nb2, *p, *q, *cc, *rr, *r, *s, ok ;
    cs *C ;
    csd *D, *scc ;
    /* --- Maximum matching ------------------------------------------------- */
    if (!CS_CSC (A)) return (NULL) ;            /* check inputs */
    m = A->m ; n = A->n ;
    D = cs_dalloc (m, n) ;                      /* allocate result */
    if (!D) return (NULL) ;
    p = D->p ; q = D->q ; r = D->r ; s = D->s ; cc = D->cc ; rr = D->rr ;
    jmatch = cs_maxtrans (A, seed) ;            /* max transversal */
    imatch = jmatch + m ;                       /* imatch = inverse of jmatch */
    if (!jmatch) return (cs_ddone (D, NULL, jmatch, 0)) ;
    /* --- Coarse decomposition --------------------------------------------- */
    wi = r ; wj = s ;                           /* use r and s as workspace */
    for (j = 0 ; j < n ; j++) wj [j] = -1 ;     /* unmark all cols for bfs */
    for (i = 0 ; i < m ; i++) wi [i] = -1 ;     /* unmark all rows for bfs */
    cs_bfs (A, n, wi, wj, q, imatch, jmatch, 1) ;       /* find C1, R1 from C0*/
    ok = cs_bfs (A, m, wj, wi, p, jmatch, imatch, 3) ;  /* find R3, C3 from R0*/
    if (!ok) return (cs_ddone (D, NULL, jmatch, 0)) ;
    cs_unmatched (n, wj, q, cc, 0) ;                    /* unmatched set C0 */
    cs_matched (n, wj, imatch, p, q, cc, rr, 1, 1) ;    /* set R1 and C1 */
    cs_matched (n, wj, imatch, p, q, cc, rr, 2, -1) ;   /* set R2 and C2 */
    cs_matched (n, wj, imatch, p, q, cc, rr, 3, 3) ;    /* set R3 and C3 */
    cs_unmatched (m, wi, p, rr, 3) ;                    /* unmatched set R0 */
    cs_free (jmatch) ;
    /* --- Fine decomposition ----------------------------------------------- */
    pinv = cs_pinv (p, m) ;         /* pinv=p' */
    if (!pinv) return (cs_ddone (D, NULL, NULL, 0)) ;
    C = cs_permute (A, pinv, q, 0) ;/* C=A(p,q) (it will hold A(R2,C2)) */
    cs_free (pinv) ;
    if (!C) return (cs_ddone (D, NULL, NULL, 0)) ;
    Cp = C->p ;
    nc = cc [3] - cc [2] ;          /* delete cols C0, C1, and C3 from C */
    if (cc [2] > 0) for (j = cc [2] ; j <= cc [3] ; j++) Cp [j-cc[2]] = Cp [j] ;
    C->n = nc ;
    if (rr [2] - rr [1] < m)        /* delete rows R0, R1, and R3 from C */
    {
        cs_fkeep (C, cs_rprune, rr) ;
        cnz = Cp [nc] ;
        Ci = C->i ;
        if (rr [1] > 0) for (k = 0 ; k < cnz ; k++) Ci [k] -= rr [1] ;
    }
    C->m = nc ;
    scc = cs_scc (C) ;              /* find strongly connected components of C*/
    if (!scc) return (cs_ddone (D, C, NULL, 0)) ;
    /* --- Combine coarse and fine decompositions --------------------------- */
    ps = scc->p ;                   /* C(ps,ps) is the permuted matrix */
    rs = scc->r ;                   /* kth block is rs[k]..rs[k+1]-1 */
    nb1 = scc->nb  ;                /* # of blocks of A(R2,C2) */
    for (k = 0 ; k < nc ; k++) wj [k] = q [ps [k] + cc [2]] ;
    for (k = 0 ; k < nc ; k++) q [k + cc [2]] = wj [k] ;
    for (k = 0 ; k < nc ; k++) wi [k] = p [ps [k] + rr [1]] ;
    for (k = 0 ; k < nc ; k++) p [k + rr [1]] = wi [k] ;
    nb2 = 0 ;                       /* create the fine block partitions */
    r [0] = s [0] = 0 ;
    if (cc [2] > 0) nb2++ ;         /* leading coarse block A (R1, [C0 C1]) */
    for (k = 0 ; k < nb1 ; k++)     /* coarse block A (R2,C2) */
    {
        r [nb2] = rs [k] + rr [1] ; /* A (R2,C2) splits into nb1 fine blocks */
        s [nb2] = rs [k] + cc [2] ;
        nb2++ ;
    }
    if (rr [2] < m)
    {
        r [nb2] = rr [2] ;          /* trailing coarse block A ([R3 R0], C3) */
        s [nb2] = cc [3] ;
        nb2++ ;
    }
    r [nb2] = m ;
    s [nb2] = n ;
    D->nb = nb2 ;
    cs_dfree (scc) ;
    return (cs_ddone (D, C, NULL, 1)) ;
}
Esempio n. 11
0
/* Modified version of Tim Davis's cs_lu_mex.c file for MATLAB */
void install_lu(SEXP Ap, int order, double tol, Rboolean err_sing, Rboolean keep_dimnms)
{
    // (order, tol) == (1, 1) by default, when called from R.
    SEXP ans;
    css *S;
    csn *N;
    int n, *p, *dims;
    CSP A = AS_CSP__(Ap), D;
    R_CheckStack();

    n = A->n;
    if (A->m != n)
	error(_("LU decomposition applies only to square matrices"));
    if (order) {		/* not using natural order */
	order = (tol == 1) ? 2	/* amd(S'*S) w/dense rows or I */
	    : 1;		/* amd (A+A'), or natural */
    }
    S = cs_sqr(order, A, /*qr = */ 0);	/* symbolic ordering */
    N = cs_lu(A, S, tol);	/* numeric factorization */
    if (!N) {
	if(err_sing)
	    error(_("cs_lu(A) failed: near-singular A (or out of memory)"));
	else {
	    /* No warning: The useR should be careful :
	     * Put  NA  into  "LU" factor */
	    set_factors(Ap, ScalarLogical(NA_LOGICAL), "LU");
	    return;
	}
    }
    cs_dropzeros(N->L);		/* drop zeros from L and sort it */
    D = cs_transpose(N->L, 1);
    cs_spfree(N->L);
    N->L = cs_transpose(D, 1);
    cs_spfree(D);
    cs_dropzeros(N->U);		/* drop zeros from U and sort it */
    D = cs_transpose(N->U, 1);
    cs_spfree(N->U);
    N->U = cs_transpose(D, 1);
    cs_spfree(D);
    p = cs_pinv(N->pinv, n);	/* p=pinv' */
    ans = PROTECT(NEW_OBJECT(MAKE_CLASS("sparseLU")));
    dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2));
    dims[0] = n; dims[1] = n;
    SEXP dn; Rboolean do_dn = FALSE;
    if(keep_dimnms) {
	dn = GET_SLOT(Ap, Matrix_DimNamesSym);
	do_dn = !isNull(VECTOR_ELT(dn, 0));
	if(do_dn) {
	    dn = PROTECT(duplicate(dn));
	    // permute rownames by p :  rn <- rn[ p ] :
	    SEXP rn = PROTECT(duplicate(VECTOR_ELT(dn, 0)));
	    for(int i=0; i < n; i++)
		SET_STRING_ELT(VECTOR_ELT(dn, 0), i, STRING_ELT(rn, p[i]));
	    UNPROTECT(1); // rn
	    SET_VECTOR_ELT(dn, 1, R_NilValue); // colnames(.) := NULL
	}
    }
    SET_SLOT(ans, install("L"),
	     Matrix_cs_to_SEXP(N->L, "dtCMatrix", 0, do_dn ? dn : R_NilValue));

    if(keep_dimnms) {
	if(do_dn) {
	    UNPROTECT(1); // dn
	    dn = GET_SLOT(Ap, Matrix_DimNamesSym);
	}
	do_dn = !isNull(VECTOR_ELT(dn, 1));
	if(do_dn) {
	    dn = PROTECT(duplicate(dn));
	    if(order) { // permute colnames by S->q :  cn <- cn[ S->q ] :
		SEXP cn = PROTECT(duplicate(VECTOR_ELT(dn, 1)));
		for(int j=0; j < n; j++)
		    SET_STRING_ELT(VECTOR_ELT(dn, 1), j, STRING_ELT(cn, S->q[j]));
		UNPROTECT(1); // cn
	    }
	    SET_VECTOR_ELT(dn, 0, R_NilValue); // rownames(.) := NULL
	}
    }
    SET_SLOT(ans, install("U"),
	     Matrix_cs_to_SEXP(N->U, "dtCMatrix", 0, do_dn ? dn : R_NilValue));
    if(do_dn) UNPROTECT(1); // dn
    Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, /* "p" */
			      INTSXP, n)), p, n);
    if (order)
	Memcpy(INTEGER(ALLOC_SLOT(ans, install("q"),
				  INTSXP, n)), S->q, n);
    cs_nfree(N);
    cs_sfree(S);
    cs_free(p);
    UNPROTECT(1);
    set_factors(Ap, ans, "LU");
}
Esempio n. 12
0
// Modified version of Tim Davis's cs_qr_mex.c file for MATLAB (in CSparse)
//  Usage: [V,beta,p,R,q] = cs_qr(A) ;
SEXP dgCMatrix_QR(SEXP Ap, SEXP order, SEXP keep_dimnames)
{
    CSP A = AS_CSP__(Ap), D;
    int io = INTEGER(order)[0];
    Rboolean verbose = (io < 0);// verbose=TRUE, encoded with negative 'order'
    int m0 = A->m, m = m0, n = A->n, ord = asLogical(order) ? 3 : 0, *p;
    R_CheckStack();

    if (m < n) error(_("A must have #{rows} >= #{columns}")) ;
    SEXP ans = PROTECT(NEW_OBJECT(MAKE_CLASS("sparseQR")));
    int *dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2));
    dims[0] = m; dims[1] = n;
    css *S = cs_sqr(ord, A, 1);	/* symbolic QR ordering & analysis*/
    if (!S) error(_("cs_sqr failed"));
    int keep_dimnms = asLogical(keep_dimnames);
    if(keep_dimnms == NA_LOGICAL) { keep_dimnms = TRUE;
	warning(_("dgcMatrix_QR(*, keep_dimnames = NA): NA taken as TRUE"));
    }
    if(verbose && S->m2 > m) // in ./cs.h , m2 := # of rows for QR, after adding fictitious rows
	Rprintf("Symbolic QR(): Matrix structurally rank deficient (m2-m = %d)\n",
		S->m2 - m);
    csn *N = cs_qr(A, S);		/* numeric QR factorization */
    if (!N) error(_("cs_qr failed")) ;
    cs_dropzeros(N->L);		/* drop zeros from V and sort */
    D = cs_transpose(N->L, 1); cs_spfree(N->L);
    N->L = cs_transpose(D, 1); cs_spfree(D);
    cs_dropzeros(N->U);		/* drop zeros from R and sort */
    D = cs_transpose(N->U, 1); cs_spfree(N->U) ;
    N->U = cs_transpose(D, 1); cs_spfree(D);
    m = N->L->m;		/* m may be larger now */
    // MM: m := S->m2  also counting the ficticious rows (Tim Davis, p.72, 74f)
    p = cs_pinv(S->pinv, m);	/* p = pinv' */
    SEXP dn = R_NilValue; Rboolean do_dn = FALSE;
    if(keep_dimnms) {
	dn = GET_SLOT(Ap, Matrix_DimNamesSym);
	do_dn = !isNull(VECTOR_ELT(dn, 0)) && m == m0;
	// FIXME? also deal with case m > m0 ?
	if(do_dn) { // keep rownames
	    dn = PROTECT(duplicate(dn));
	    SET_VECTOR_ELT(dn, 1, R_NilValue);
	} else dn = R_NilValue;
    }
    SET_SLOT(ans, Matrix_VSym, Matrix_cs_to_SEXP(N->L, "dgCMatrix", 0, dn)); // "V"
    Memcpy(REAL(ALLOC_SLOT(ans, Matrix_betaSym, REALSXP, n)), N->B, n);
    Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym,  INTSXP, m)), p, m);
    if(do_dn) {
	UNPROTECT(1); // dn
	dn = R_NilValue; do_dn = FALSE;
    }
    if (ord) {
	Memcpy(INTEGER(ALLOC_SLOT(ans, install("q"), INTSXP, n)), S->q, n);
	if(keep_dimnms) {
	    dn = GET_SLOT(Ap, Matrix_DimNamesSym);
	    do_dn = !isNull(VECTOR_ELT(dn, 1));
	    if(do_dn) {
		dn = PROTECT(duplicate(dn));
		// permute colnames by S->q :  cn <- cn[ S->q ] :
		SEXP cns = PROTECT(duplicate(VECTOR_ELT(dn, 1)));
		for(int j=0; j < n; j++)
		    SET_STRING_ELT(VECTOR_ELT(dn, 1), j, STRING_ELT(cns, S->q[j]));
		UNPROTECT(1);
		SET_VECTOR_ELT(dn, 0, R_NilValue);
	    } else dn = R_NilValue;
	}
    } else
	ALLOC_SLOT(ans, install("q"), INTSXP, 0);
    SET_SLOT(ans, install("R"), Matrix_cs_to_SEXP(N->U, "dgCMatrix", 0, dn));
    if(do_dn) UNPROTECT(1); // dn
    cs_nfree(N);
    cs_sfree(S);
    cs_free(p);
    UNPROTECT(1);
    return ans;
}