Esempio n. 1
0
/* Subroutine */ int chbevx_(char *jobz, char *range, char *uplo, integer *n, 
	integer *kd, complex *ab, integer *ldab, complex *q, integer *ldq, 
	real *vl, real *vu, integer *il, integer *iu, real *abstol, integer *
	m, real *w, complex *z__, integer *ldz, complex *work, real *rwork, 
	integer *iwork, integer *ifail, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, 
	    i__2;
    real r__1, r__2;

    /* Local variables */
    integer i__, j, jj;
    real eps, vll, vuu, tmp1;
    integer indd, inde;
    real anrm;
    integer imax;
    real rmin, rmax;
    logical test;
    complex ctmp1;
    integer itmp1, indee;
    real sigma;
    integer iinfo;
    char order[1];
    logical lower;
    logical wantz;
    logical alleig, indeig;
    integer iscale, indibl;
    logical valeig;
    real safmin;
    real abstll, bignum;
    integer indiwk, indisp;
    integer indrwk, indwrk;
    integer nsplit;
    real smlnum;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  CHBEVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a complex Hermitian band matrix A.  Eigenvalues and eigenvectors */
/*  can be selected by specifying either a range of values or a range of */
/*  indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found; */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found; */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) COMPLEX array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the Hermitian band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */

/*          On exit, AB is overwritten by values generated during the */
/*          reduction to tridiagonal form. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD + 1. */

/*  Q       (output) COMPLEX array, dimension (LDQ, N) */
/*          If JOBZ = 'V', the N-by-N unitary matrix used in the */
/*                          reduction to tridiagonal form. */
/*          If JOBZ = 'N', the array Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  If JOBZ = 'V', then */
/*          LDQ >= max(1,N). */

/*  VL      (input) REAL */
/*  VU      (input) REAL */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) REAL */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing AB to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*SLAMCH('S'). */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) REAL array, dimension (N) */
/*          The first M elements contain the selected eigenvalues in */
/*          ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and the */
/*          index of the eigenvector is returned in IFAIL. */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) COMPLEX array, dimension (N) */

/*  RWORK   (workspace) REAL array, dimension (7*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
/*                Their indices are stored in array IFAIL. */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lower = lsame_(uplo, "L");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*kd < 0) {
	*info = -5;
    } else if (*ldab < *kd + 1) {
	*info = -7;
    } else if (wantz && *ldq < max(1,*n)) {
	*info = -9;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -11;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -12;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -13;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -18;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHBEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	*m = 1;
	if (lower) {
	    i__1 = ab_dim1 + 1;
	    ctmp1.r = ab[i__1].r, ctmp1.i = ab[i__1].i;
	} else {
	    i__1 = *kd + 1 + ab_dim1;
	    ctmp1.r = ab[i__1].r, ctmp1.i = ab[i__1].i;
	}
	tmp1 = ctmp1.r;
	if (valeig) {
	    if (! (*vl < tmp1 && *vu >= tmp1)) {
		*m = 0;
	    }
	}
	if (*m == 1) {
	    w[1] = ctmp1.r;
	    if (wantz) {
		i__1 = z_dim1 + 1;
		z__[i__1].r = 1.f, z__[i__1].i = 0.f;
	    }
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    } else {
	vll = 0.f;
	vuu = 0.f;
    }
    anrm = clanhb_("M", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]);
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    clascl_("B", kd, kd, &c_b16, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	} else {
	    clascl_("Q", kd, kd, &c_b16, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	}
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call CHBTRD to reduce Hermitian band matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indrwk = inde + *n;
    indwrk = 1;
    chbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &rwork[indd], &rwork[
	    inde], &q[q_offset], ldq, &work[indwrk], &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal */
/*     to zero, then call SSTERF or CSTEQR.  If this fails for some */
/*     eigenvalue, then try SSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.f) {
	scopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
	indee = indrwk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    ssterf_(n, &w[1], &rwork[indee], info);
	} else {
	    clacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
		    rwork[indrwk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwk = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
	    rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
	    rwork[indrwk], &iwork[indiwk], info);

    if (wantz) {
	cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
		indiwk], &ifail[1], info);

/*        Apply unitary matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by CSTEIN. */

	i__1 = *m;
	for (j = 1; j <= i__1; ++j) {
	    ccopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
	    cgemv_("N", n, n, &c_b2, &q[q_offset], ldq, &work[1], &c__1, &
		    c_b1, &z__[j * z_dim1 + 1], &c__1);
	}
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L30:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
	}
    }

    return 0;

/*     End of CHBEVX */

} /* chbevx_ */
Esempio n. 2
0
/* Subroutine */ int cheevr_(char *jobz, char *range, char *uplo, integer *n, 
	complex *a, integer *lda, real *vl, real *vu, integer *il, integer *
	iu, real *abstol, integer *m, real *w, complex *z__, integer *ldz, 
	integer *isuppz, complex *work, integer *lwork, real *rwork, integer *
	lrwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, nb, jj;
    real eps, vll, vuu, tmp1, anrm;
    integer imax;
    real rmin, rmax;
    logical test;
    integer itmp1, indrd, indre;
    real sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    char order[1];
    integer indwk;
    extern /* Subroutine */ int cswap_(integer *, complex *, integer *, 
	    complex *, integer *);
    integer lwmin;
    logical lower;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    logical wantz, alleig, indeig;
    integer iscale, ieeeok, indibl, indrdd, indifl, indree;
    logical valeig;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int chetrd_(char *, integer *, complex *, integer 
	    *, real *, real *, complex *, complex *, integer *, integer *), csscal_(integer *, real *, complex *, integer *);
    real safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    real abstll, bignum;
    integer indtau, indisp;
    extern /* Subroutine */ int cstein_(integer *, real *, real *, integer *, 
	    real *, integer *, integer *, complex *, integer *, real *, 
	    integer *, integer *, integer *);
    integer indiwo, indwkn;
    extern doublereal clansy_(char *, char *, integer *, complex *, integer *, 
	     real *);
    extern /* Subroutine */ int cstemr_(char *, char *, integer *, real *, 
	    real *, real *, real *, integer *, integer *, integer *, real *, 
	    complex *, integer *, integer *, integer *, logical *, real *, 
	    integer *, integer *, integer *, integer *);
    integer indrwk, liwmin;
    logical tryrac;
    extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
    integer lrwmin, llwrkn, llwork, nsplit;
    real smlnum;
    extern /* Subroutine */ int cunmtr_(char *, char *, char *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *), sstebz_(
	    char *, char *, integer *, real *, real *, integer *, integer *, 
	    real *, real *, real *, integer *, integer *, real *, integer *, 
	    integer *, real *, integer *, integer *);
    logical lquery;
    integer lwkopt, llrwork;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHEEVR computes selected eigenvalues and, optionally, eigenvectors */
/*  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can */
/*  be selected by specifying either a range of values or a range of */
/*  indices for the desired eigenvalues. */

/*  CHEEVR first reduces the matrix A to tridiagonal form T with a call */
/*  to CHETRD.  Then, whenever possible, CHEEVR calls CSTEMR to compute */
/*  the eigenspectrum using Relatively Robust Representations.  CSTEMR */
/*  computes eigenvalues by the dqds algorithm, while orthogonal */
/*  eigenvectors are computed from various "good" L D L^T representations */
/*  (also known as Relatively Robust Representations). Gram-Schmidt */
/*  orthogonalization is avoided as far as possible. More specifically, */
/*  the various steps of the algorithm are as follows. */

/*  For each unreduced block (submatrix) of T, */
/*     (a) Compute T - sigma I  = L D L^T, so that L and D */
/*         define all the wanted eigenvalues to high relative accuracy. */
/*         This means that small relative changes in the entries of D and L */
/*         cause only small relative changes in the eigenvalues and */
/*         eigenvectors. The standard (unfactored) representation of the */
/*         tridiagonal matrix T does not have this property in general. */
/*     (b) Compute the eigenvalues to suitable accuracy. */
/*         If the eigenvectors are desired, the algorithm attains full */
/*         accuracy of the computed eigenvalues only right before */
/*         the corresponding vectors have to be computed, see steps c) and d). */
/*     (c) For each cluster of close eigenvalues, select a new */
/*         shift close to the cluster, find a new factorization, and refine */
/*         the shifted eigenvalues to suitable accuracy. */
/*     (d) For each eigenvalue with a large enough relative separation compute */
/*         the corresponding eigenvector by forming a rank revealing twisted */
/*         factorization. Go back to (c) for any clusters that remain. */

/*  The desired accuracy of the output can be specified by the input */
/*  parameter ABSTOL. */

/*  For more details, see DSTEMR's documentation and: */
/*  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
/*    to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
/*    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
/*  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
/*    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
/*    2004.  Also LAPACK Working Note 154. */
/*  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
/*    tridiagonal eigenvalue/eigenvector problem", */
/*    Computer Science Division Technical Report No. UCB/CSD-97-971, */
/*    UC Berkeley, May 1997. */


/*  Note 1 : CHEEVR calls CSTEMR when the full spectrum is requested */
/*  on machines which conform to the ieee-754 floating point standard. */
/*  CHEEVR calls SSTEBZ and CSTEIN on non-ieee machines and */
/*  when partial spectrum requests are made. */

/*  Normal execution of CSTEMR may create NaNs and infinities and */
/*  hence may abort due to a floating point exception in environments */
/*  which do not handle NaNs and infinities in the ieee standard default */
/*  manner. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found. */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found. */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */
/* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and */
/* ********* CSTEIN are called */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA, N) */
/*          On entry, the Hermitian matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */
/*          On exit, the lower triangle (if UPLO='L') or the upper */
/*          triangle (if UPLO='U') of A, including the diagonal, is */
/*          destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  VL      (input) REAL */
/*  VU      (input) REAL */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) REAL */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing A to tridiagonal form. */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*          If high relative accuracy is important, set ABSTOL to */
/*          SLAMCH( 'Safe minimum' ).  Doing so will guarantee that */
/*          eigenvalues are computed to high relative accuracy when */
/*          possible in future releases.  The current code does not */
/*          make any guarantees about high relative accuracy, but */
/*          furutre releases will. See J. Barlow and J. Demmel, */
/*          "Computing Accurate Eigensystems of Scaled Diagonally */
/*          Dominant Matrices", LAPACK Working Note #7, for a discussion */
/*          of which matrices define their eigenvalues to high relative */
/*          accuracy. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) REAL array, dimension (N) */
/*          The first M elements contain the selected eigenvalues in */
/*          ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) ) */
/*          The support of the eigenvectors in Z, i.e., the indices */
/*          indicating the nonzero elements in Z. The i-th eigenvector */
/*          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
/*          ISUPPZ( 2*i ). */
/* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK >= max(1,2*N). */
/*          For optimal efficiency, LWORK >= (NB+1)*N, */
/*          where NB is the max of the blocksize for CHETRD and for */
/*          CUNMTR as returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal sizes of the WORK, RWORK and */
/*          IWORK arrays, returns these values as the first entries of */
/*          the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  RWORK   (workspace/output) REAL array, dimension (MAX(1,LRWORK)) */
/*          On exit, if INFO = 0, RWORK(1) returns the optimal */
/*          (and minimal) LRWORK. */

/* LRWORK   (input) INTEGER */
/*          The length of the array RWORK.  LRWORK >= max(1,24*N). */

/*          If LRWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the optimal */
/*          (and minimal) LIWORK. */

/* LIWORK   (input) INTEGER */
/*          The dimension of the array IWORK.  LIWORK >= max(1,10*N). */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  Internal error */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Inderjit Dhillon, IBM Almaden, USA */
/*     Osni Marques, LBNL/NERSC, USA */
/*     Ken Stanley, Computer Science Division, University of */
/*       California at Berkeley, USA */
/*     Jason Riedy, Computer Science Division, University of */
/*       California at Berkeley, USA */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --isuppz;
    --work;
    --rwork;
    --iwork;

    /* Function Body */
    ieeeok = ilaenv_(&c__10, "CHEEVR", "N", &c__1, &c__2, &c__3, &c__4);

    lower = lsame_(uplo, "L");
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;

/* Computing MAX */
    i__1 = 1, i__2 = *n * 24;
    lrwmin = max(i__1,i__2);
/* Computing MAX */
    i__1 = 1, i__2 = *n * 10;
    liwmin = max(i__1,i__2);
/* Computing MAX */
    i__1 = 1, i__2 = *n << 1;
    lwmin = max(i__1,i__2);

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -8;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -9;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -10;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -15;
	}
    }

    if (*info == 0) {
	nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1);
/* Computing MAX */
	i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMTR", uplo, n, &c_n1, &c_n1, &
		c_n1);
	nb = max(i__1,i__2);
/* Computing MAX */
	i__1 = (nb + 1) * *n;
	lwkopt = max(i__1,lwmin);
	work[1].r = (real) lwkopt, work[1].i = 0.f;
	rwork[1] = (real) lrwmin;
	iwork[1] = liwmin;

	if (*lwork < lwmin && ! lquery) {
	    *info = -18;
	} else if (*lrwork < lrwmin && ! lquery) {
	    *info = -20;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -22;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHEEVR", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	work[1].r = 1.f, work[1].i = 0.f;
	return 0;
    }

    if (*n == 1) {
	work[1].r = 2.f, work[1].i = 0.f;
	if (alleig || indeig) {
	    *m = 1;
	    i__1 = a_dim1 + 1;
	    w[1] = a[i__1].r;
	} else {
	    i__1 = a_dim1 + 1;
	    i__2 = a_dim1 + 1;
	    if (*vl < a[i__1].r && *vu >= a[i__2].r) {
		*m = 1;
		i__1 = a_dim1 + 1;
		w[1] = a[i__1].r;
	    }
	}
	if (wantz) {
	    i__1 = z_dim1 + 1;
	    z__[i__1].r = 1.f, z__[i__1].i = 0.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    }
    anrm = clansy_("M", uplo, n, &a[a_offset], lda, &rwork[1]);
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		csscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
/* L10: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		csscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
/* L20: */
	    }
	}
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }
/*     Initialize indices into workspaces.  Note: The IWORK indices are */
/*     used only if SSTERF or CSTEMR fail. */
/*     WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the */
/*     elementary reflectors used in CHETRD. */
    indtau = 1;
/*     INDWK is the starting offset of the remaining complex workspace, */
/*     and LLWORK is the remaining complex workspace size. */
    indwk = indtau + *n;
    llwork = *lwork - indwk + 1;
/*     RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal */
/*     entries. */
    indrd = 1;
/*     RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the */
/*     tridiagonal matrix from CHETRD. */
    indre = indrd + *n;
/*     RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over */
/*     -written by CSTEMR (the SSTERF path copies the diagonal to W). */
    indrdd = indre + *n;
/*     RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over */
/*     -written while computing the eigenvalues in SSTERF and CSTEMR. */
    indree = indrdd + *n;
/*     INDRWK is the starting offset of the left-over real workspace, and */
/*     LLRWORK is the remaining workspace size. */
    indrwk = indree + *n;
    llrwork = *lrwork - indrwk + 1;
/*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and */
/*     stores the block indices of each of the M<=N eigenvalues. */
    indibl = 1;
/*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and */
/*     stores the starting and finishing indices of each block. */
    indisp = indibl + *n;
/*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
/*     that corresponding to eigenvectors that fail to converge in */
/*     SSTEIN.  This information is discarded; if any fail, the driver */
/*     returns INFO > 0. */
    indifl = indisp + *n;
/*     INDIWO is the offset of the remaining integer workspace. */
    indiwo = indisp + *n;

/*     Call CHETRD to reduce Hermitian matrix to tridiagonal form. */

    chetrd_(uplo, n, &a[a_offset], lda, &rwork[indrd], &rwork[indre], &work[
	    indtau], &work[indwk], &llwork, &iinfo);

/*     If all eigenvalues are desired */
/*     then call SSTERF or CSTEMR and CUNMTR. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && ieeeok == 1) {
	if (! wantz) {
	    scopy_(n, &rwork[indrd], &c__1, &w[1], &c__1);
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[indre], &c__1, &rwork[indree], &c__1);
	    ssterf_(n, &w[1], &rwork[indree], info);
	} else {
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[indre], &c__1, &rwork[indree], &c__1);
	    scopy_(n, &rwork[indrd], &c__1, &rwork[indrdd], &c__1);

	    if (*abstol <= *n * 2.f * eps) {
		tryrac = TRUE_;
	    } else {
		tryrac = FALSE_;
	    }
	    cstemr_(jobz, "A", n, &rwork[indrdd], &rwork[indree], vl, vu, il, 
		    iu, m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, 
		     &rwork[indrwk], &llrwork, &iwork[1], liwork, info);

/*           Apply unitary matrix used in reduction to tridiagonal */
/*           form to eigenvectors returned by CSTEIN. */

	    if (wantz && *info == 0) {
		indwkn = indwk;
		llwrkn = *lwork - indwkn + 1;
		cunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau]
, &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
	    }
	}


	if (*info == 0) {
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */
/*     Also call SSTEBZ and CSTEIN if CSTEMR fails. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indrd], &
	    rwork[indre], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
	    rwork[indrwk], &iwork[indiwo], info);

    if (wantz) {
	cstein_(n, &rwork[indrd], &rwork[indre], m, &w[1], &iwork[indibl], &
		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
		indiwo], &iwork[indifl], info);

/*        Apply unitary matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by CSTEIN. */

	indwkn = indwk;
	llwrkn = *lwork - indwkn + 1;
	cunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
		z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L30:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L40: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
	    }
/* L50: */
	}
    }

/*     Set WORK(1) to optimal workspace size. */

    work[1].r = (real) lwkopt, work[1].i = 0.f;
    rwork[1] = (real) lrwmin;
    iwork[1] = liwmin;

    return 0;

/*     End of CHEEVR */

} /* cheevr_ */
Esempio n. 3
0
/* Subroutine */ int chpevx_(char *jobz, char *range, char *uplo, integer *n, 
	complex *ap, real *vl, real *vu, integer *il, integer *iu, real *
	abstol, integer *m, real *w, complex *z__, integer *ldz, complex *
	work, real *rwork, integer *iwork, integer *ifail, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    CHPEVX computes selected eigenvalues and, optionally, eigenvectors   
    of a complex Hermitian matrix A in packed storage.   
    Eigenvalues/vectors can be selected by specifying either a range of   
    values or a range of indices for the desired eigenvalues.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    RANGE   (input) CHARACTER*1   
            = 'A': all eigenvalues will be found;   
            = 'V': all eigenvalues in the half-open interval (VL,VU]   
                   will be found;   
            = 'I': the IL-th through IU-th eigenvalues will be found.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    AP      (input/output) COMPLEX array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the Hermitian matrix   
            A, packed columnwise in a linear array.  The j-th column of A   
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.   

            On exit, AP is overwritten by values generated during the   
            reduction to tridiagonal form.  If UPLO = 'U', the diagonal   
            and first superdiagonal of the tridiagonal matrix T overwrite   
            the corresponding elements of A, and if UPLO = 'L', the   
            diagonal and first subdiagonal of T overwrite the   
            corresponding elements of A.   

    VL      (input) REAL   
    VU      (input) REAL   
            If RANGE='V', the lower and upper bounds of the interval to   
            be searched for eigenvalues. VL < VU.   
            Not referenced if RANGE = 'A' or 'I'.   

    IL      (input) INTEGER   
    IU      (input) INTEGER   
            If RANGE='I', the indices (in ascending order) of the   
            smallest and largest eigenvalues to be returned.   
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   
            Not referenced if RANGE = 'A' or 'V'.   

    ABSTOL  (input) REAL   
            The absolute error tolerance for the eigenvalues.   
            An approximate eigenvalue is accepted as converged   
            when it is determined to lie in an interval [a,b]   
            of width less than or equal to   

                    ABSTOL + EPS *   max( |a|,|b| ) ,   

            where EPS is the machine precision.  If ABSTOL is less than   
            or equal to zero, then  EPS*|T|  will be used in its place,   
            where |T| is the 1-norm of the tridiagonal matrix obtained   
            by reducing AP to tridiagonal form.   

            Eigenvalues will be computed most accurately when ABSTOL is   
            set to twice the underflow threshold 2*SLAMCH('S'), not zero.   
            If this routine returns with INFO>0, indicating that some   
            eigenvectors did not converge, try setting ABSTOL to   
            2*SLAMCH('S').   

            See "Computing Small Singular Values of Bidiagonal Matrices   
            with Guaranteed High Relative Accuracy," by Demmel and   
            Kahan, LAPACK Working Note #3.   

    M       (output) INTEGER   
            The total number of eigenvalues found.  0 <= M <= N.   
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.   

    W       (output) REAL array, dimension (N)   
            If INFO = 0, the selected eigenvalues in ascending order.   

    Z       (output) COMPLEX array, dimension (LDZ, max(1,M))   
            If JOBZ = 'V', then if INFO = 0, the first M columns of Z   
            contain the orthonormal eigenvectors of the matrix A   
            corresponding to the selected eigenvalues, with the i-th   
            column of Z holding the eigenvector associated with W(i).   
            If an eigenvector fails to converge, then that column of Z   
            contains the latest approximation to the eigenvector, and   
            the index of the eigenvector is returned in IFAIL.   
            If JOBZ = 'N', then Z is not referenced.   
            Note: the user must ensure that at least max(1,M) columns are   
            supplied in the array Z; if RANGE = 'V', the exact value of M   
            is not known in advance and an upper bound must be used.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    WORK    (workspace) COMPLEX array, dimension (2*N)   

    RWORK   (workspace) REAL array, dimension (7*N)   

    IWORK   (workspace) INTEGER array, dimension (5*N)   

    IFAIL   (output) INTEGER array, dimension (N)   
            If JOBZ = 'V', then if INFO = 0, the first M elements of   
            IFAIL are zero.  If INFO > 0, then IFAIL contains the   
            indices of the eigenvectors that failed to converge.   
            If JOBZ = 'N', then IFAIL is not referenced.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, then i eigenvectors failed to converge.   
                  Their indices are stored in array IFAIL.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    real r__1, r__2;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer indd, inde;
    static real anrm;
    static integer imax;
    static real rmin, rmax;
    static integer itmp1, i__, j, indee;
    static real sigma;
    extern logical lsame_(char *, char *);
    static integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    static char order[1];
    extern /* Subroutine */ int cswap_(integer *, complex *, integer *, 
	    complex *, integer *), scopy_(integer *, real *, integer *, real *
	    , integer *);
    static logical wantz;
    static integer jj;
    static logical alleig, indeig;
    static integer iscale, indibl;
    extern doublereal clanhp_(char *, char *, integer *, complex *, real *);
    static logical valeig;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
	    *);
    static real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static real abstll, bignum;
    static integer indiwk, indisp, indtau;
    extern /* Subroutine */ int chptrd_(char *, integer *, complex *, real *, 
	    real *, complex *, integer *), cstein_(integer *, real *, 
	    real *, integer *, real *, integer *, integer *, complex *, 
	    integer *, real *, integer *, integer *, integer *);
    static integer indrwk, indwrk;
    extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, 
	    complex *, integer *, real *, integer *), cupgtr_(char *, 
	    integer *, complex *, complex *, complex *, integer *, complex *, 
	    integer *), ssterf_(integer *, real *, real *, integer *);
    static integer nsplit;
    extern /* Subroutine */ int cupmtr_(char *, char *, char *, integer *, 
	    integer *, complex *, complex *, complex *, integer *, complex *, 
	    integer *);
    static real smlnum;
    extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
	    real *, integer *, integer *, real *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, real *, integer *, 
	    integer *);
    static real eps, vll, vuu, tmp1;
#define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1
#define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)]


    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lsame_(uplo, "L") || lsame_(uplo, 
	    "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -7;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -8;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -9;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -14;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHPEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = ap[1].r;
	} else {
	    if (*vl < ap[1].r && *vu >= ap[1].r) {
		*m = 1;
		w[1] = ap[1].r;
	    }
	}
	if (wantz) {
	    i__1 = z___subscr(1, 1);
	    z__[i__1].r = 1.f, z__[i__1].i = 0.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    } else {
	vll = 0.f;
	vuu = 0.f;
    }
    anrm = clanhp_("M", uplo, n, &ap[1], &rwork[1]);
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	i__1 = *n * (*n + 1) / 2;
	csscal_(&i__1, &sigma, &ap[1], &c__1);
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call CHPTRD to reduce Hermitian packed matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indrwk = inde + *n;
    indtau = 1;
    indwrk = indtau + *n;
    chptrd_(uplo, n, &ap[1], &rwork[indd], &rwork[inde], &work[indtau], &
	    iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal   
       to zero, then call SSTERF or CUPGTR and CSTEQR.  If this fails   
       for some eigenvalue, then try SSTEBZ. */

    if ((alleig || indeig && *il == 1 && *iu == *n) && *abstol <= 0.f) {
	scopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
	indee = indrwk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    ssterf_(n, &w[1], &rwork[indee], info);
	} else {
	    cupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &
		    work[indwrk], &iinfo);
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
		    rwork[indrwk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L20;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwk = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
	    rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
	    rwork[indrwk], &iwork[indiwk], info);

    if (wantz) {
	cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
		indiwk], &ifail[1], info);

/*        Apply unitary matrix used in reduction to tridiagonal   
          form to eigenvectors returned by CSTEIN. */

	indwrk = indtau + *n;
	cupmtr_("L", uplo, "N", n, m, &ap[1], &work[indtau], &z__[z_offset], 
		ldz, &work[indwrk], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L20:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with   
       eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L30: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		cswap_(n, &z___ref(1, i__), &c__1, &z___ref(1, j), &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L40: */
	}
    }

    return 0;

/*     End of CHPEVX */

} /* chpevx_ */
Esempio n. 4
0
/* Subroutine */
int chbgvx_(char *jobz, char *range, char *uplo, integer *n, integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, complex *q, integer *ldq, real *vl, real *vu, integer * il, integer *iu, real *abstol, integer *m, real *w, complex *z__, integer *ldz, complex *work, real *rwork, integer *iwork, integer * ifail, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, i__2;
    /* Local variables */
    integer i__, j, jj;
    real tmp1;
    integer indd, inde;
    char vect[1];
    logical test;
    integer itmp1, indee;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */
    int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *);
    integer iinfo;
    char order[1];
    extern /* Subroutine */
    int ccopy_(integer *, complex *, integer *, complex *, integer *), cswap_(integer *, complex *, integer *, complex *, integer *);
    logical upper;
    extern /* Subroutine */
    int scopy_(integer *, real *, integer *, real *, integer *);
    logical wantz, alleig, indeig;
    integer indibl;
    extern /* Subroutine */
    int chbtrd_(char *, char *, integer *, integer *, complex *, integer *, real *, real *, complex *, integer *, complex *, integer *);
    logical valeig;
    extern /* Subroutine */
    int chbgst_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, real *, integer *), clacpy_( char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *), cpbstf_( char *, integer *, integer *, complex *, integer *, integer *);
    integer indiwk, indisp;
    extern /* Subroutine */
    int cstein_(integer *, real *, real *, integer *, real *, integer *, integer *, complex *, integer *, real *, integer *, integer *, integer *);
    integer indrwk, indwrk;
    extern /* Subroutine */
    int csteqr_(char *, integer *, real *, real *, complex *, integer *, real *, integer *), ssterf_(integer *, real *, real *, integer *);
    integer nsplit;
    extern /* Subroutine */
    int sstebz_(char *, char *, integer *, real *, real *, integer *, integer *, real *, real *, real *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *);
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    bb_dim1 = *ldbb;
    bb_offset = 1 + bb_dim1;
    bb -= bb_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    *info = 0;
    if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -1;
    }
    else if (! (alleig || valeig || indeig))
    {
        *info = -2;
    }
    else if (! (upper || lsame_(uplo, "L")))
    {
        *info = -3;
    }
    else if (*n < 0)
    {
        *info = -4;
    }
    else if (*ka < 0)
    {
        *info = -5;
    }
    else if (*kb < 0 || *kb > *ka)
    {
        *info = -6;
    }
    else if (*ldab < *ka + 1)
    {
        *info = -8;
    }
    else if (*ldbb < *kb + 1)
    {
        *info = -10;
    }
    else if (*ldq < 1 || wantz && *ldq < *n)
    {
        *info = -12;
    }
    else
    {
        if (valeig)
        {
            if (*n > 0 && *vu <= *vl)
            {
                *info = -14;
            }
        }
        else if (indeig)
        {
            if (*il < 1 || *il > max(1,*n))
            {
                *info = -15;
            }
            else if (*iu < min(*n,*il) || *iu > *n)
            {
                *info = -16;
            }
        }
    }
    if (*info == 0)
    {
        if (*ldz < 1 || wantz && *ldz < *n)
        {
            *info = -21;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CHBGVX", &i__1);
        return 0;
    }
    /* Quick return if possible */
    *m = 0;
    if (*n == 0)
    {
        return 0;
    }
    /* Form a split Cholesky factorization of B. */
    cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
    if (*info != 0)
    {
        *info = *n + *info;
        return 0;
    }
    /* Transform problem to standard eigenvalue problem. */
    chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &q[q_offset], ldq, &work[1], &rwork[1], &iinfo);
    /* Solve the standard eigenvalue problem. */
    /* Reduce Hermitian band matrix to tridiagonal form. */
    indd = 1;
    inde = indd + *n;
    indrwk = inde + *n;
    indwrk = 1;
    if (wantz)
    {
        *(unsigned char *)vect = 'U';
    }
    else
    {
        *(unsigned char *)vect = 'N';
    }
    chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &rwork[indd], &rwork[ inde], &q[q_offset], ldq, &work[indwrk], &iinfo);
    /* If all eigenvalues are desired and ABSTOL is less than or equal */
    /* to zero, then call SSTERF or CSTEQR. If this fails for some */
    /* eigenvalue, then try SSTEBZ. */
    test = FALSE_;
    if (indeig)
    {
        if (*il == 1 && *iu == *n)
        {
            test = TRUE_;
        }
    }
    if ((alleig || test) && *abstol <= 0.f)
    {
        scopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
        indee = indrwk + (*n << 1);
        i__1 = *n - 1;
        scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
        if (! wantz)
        {
            ssterf_(n, &w[1], &rwork[indee], info);
        }
        else
        {
            clacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
            csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, & rwork[indrwk], info);
            if (*info == 0)
            {
                i__1 = *n;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    ifail[i__] = 0;
                    /* L10: */
                }
            }
        }
        if (*info == 0)
        {
            *m = *n;
            goto L30;
        }
        *info = 0;
    }
    /* Otherwise, call SSTEBZ and, if eigenvectors are desired, */
    /* call CSTEIN. */
    if (wantz)
    {
        *(unsigned char *)order = 'B';
    }
    else
    {
        *(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwk = indisp + *n;
    sstebz_(range, order, n, vl, vu, il, iu, abstol, &rwork[indd], &rwork[ inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[ indrwk], &iwork[indiwk], info);
    if (wantz)
    {
        cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], & iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[ indiwk], &ifail[1], info);
        /* Apply unitary matrix used in reduction to tridiagonal */
        /* form to eigenvectors returned by CSTEIN. */
        i__1 = *m;
        for (j = 1;
                j <= i__1;
                ++j)
        {
            ccopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
            cgemv_("N", n, n, &c_b2, &q[q_offset], ldq, &work[1], &c__1, & c_b1, &z__[j * z_dim1 + 1], &c__1);
            /* L20: */
        }
    }
L30: /* If eigenvalues are not in order, then sort them, along with */
    /* eigenvectors. */
    if (wantz)
    {
        i__1 = *m - 1;
        for (j = 1;
                j <= i__1;
                ++j)
        {
            i__ = 0;
            tmp1 = w[j];
            i__2 = *m;
            for (jj = j + 1;
                    jj <= i__2;
                    ++jj)
            {
                if (w[jj] < tmp1)
                {
                    i__ = jj;
                    tmp1 = w[jj];
                }
                /* L40: */
            }
            if (i__ != 0)
            {
                itmp1 = iwork[indibl + i__ - 1];
                w[i__] = w[j];
                iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
                w[j] = tmp1;
                iwork[indibl + j - 1] = itmp1;
                cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1);
                if (*info != 0)
                {
                    itmp1 = ifail[i__];
                    ifail[i__] = ifail[j];
                    ifail[j] = itmp1;
                }
            }
            /* L50: */
        }
    }
    return 0;
    /* End of CHBGVX */
}
Esempio n. 5
0
/* Subroutine */ int chbgvx_(char *jobz, char *range, char *uplo, integer *n, 
	integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb, 
	integer *ldbb, complex *q, integer *ldq, real *vl, real *vu, integer *
	il, integer *iu, real *abstol, integer *m, real *w, complex *z__, 
	integer *ldz, complex *work, real *rwork, integer *iwork, integer *
	ifail, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1, 
	    z_offset, i__1, i__2;

    /* Local variables */
    integer i__, j, jj;
    real tmp1;
    integer indd, inde;
    char vect[1];
    logical test;
    integer itmp1, indee;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *);
    integer iinfo;
    char order[1];
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *), cswap_(integer *, complex *, integer *, 
	    complex *, integer *);
    logical upper;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    logical wantz, alleig, indeig;
    integer indibl;
    extern /* Subroutine */ int chbtrd_(char *, char *, integer *, integer *, 
	    complex *, integer *, real *, real *, complex *, integer *, 
	    complex *, integer *);
    logical valeig;
    extern /* Subroutine */ int chbgst_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, integer *, complex *, 
	    integer *, complex *, real *, integer *), clacpy_(
	    char *, integer *, integer *, complex *, integer *, complex *, 
	    integer *), xerbla_(char *, integer *), cpbstf_(
	    char *, integer *, integer *, complex *, integer *, integer *);
    integer indiwk, indisp;
    extern /* Subroutine */ int cstein_(integer *, real *, real *, integer *, 
	    real *, integer *, integer *, complex *, integer *, real *, 
	    integer *, integer *, integer *);
    integer indrwk, indwrk;
    extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, 
	    complex *, integer *, real *, integer *), ssterf_(integer 
	    *, real *, real *, integer *);
    integer nsplit;
    extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
	    real *, integer *, integer *, real *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, real *, integer *, 
	    integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHBGVX computes all the eigenvalues, and optionally, the eigenvectors */
/*  of a complex generalized Hermitian-definite banded eigenproblem, of */
/*  the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian */
/*  and banded, and B is also positive definite.  Eigenvalues and */
/*  eigenvectors can be selected by specifying either all eigenvalues, */
/*  a range of values or a range of indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found; */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found; */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  KA      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'. KA >= 0. */

/*  KB      (input) INTEGER */
/*          The number of superdiagonals of the matrix B if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'. KB >= 0. */

/*  AB      (input/output) COMPLEX array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the Hermitian band */
/*          matrix A, stored in the first ka+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka). */

/*          On exit, the contents of AB are destroyed. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KA+1. */

/*  BB      (input/output) COMPLEX array, dimension (LDBB, N) */
/*          On entry, the upper or lower triangle of the Hermitian band */
/*          matrix B, stored in the first kb+1 rows of the array.  The */
/*          j-th column of B is stored in the j-th column of the array BB */
/*          as follows: */
/*          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
/*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb). */

/*          On exit, the factor S from the split Cholesky factorization */
/*          B = S**H*S, as returned by CPBSTF. */

/*  LDBB    (input) INTEGER */
/*          The leading dimension of the array BB.  LDBB >= KB+1. */

/*  Q       (output) COMPLEX array, dimension (LDQ, N) */
/*          If JOBZ = 'V', the n-by-n matrix used in the reduction of */
/*          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, */
/*          and consequently C to tridiagonal form. */
/*          If JOBZ = 'N', the array Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  If JOBZ = 'N', */
/*          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). */

/*  VL      (input) REAL */
/*  VU      (input) REAL */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) REAL */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing AP to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*SLAMCH('S'). */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
/*          eigenvectors, with the i-th column of Z holding the */
/*          eigenvector associated with W(i). The eigenvectors are */
/*          normalized so that Z**H*B*Z = I. */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= N. */

/*  WORK    (workspace) COMPLEX array, dimension (N) */

/*  RWORK   (workspace) REAL array, dimension (7*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, and i is: */
/*             <= N:  then i eigenvectors failed to converge.  Their */
/*                    indices are stored in array IFAIL. */
/*             > N:   if INFO = N + i, for 1 <= i <= N, then CPBSTF */
/*                    returned INFO = i: B is not positive definite. */
/*                    The factorization of B could not be completed and */
/*                    no eigenvalues or eigenvectors were computed. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    bb_dim1 = *ldbb;
    bb_offset = 1 + bb_dim1;
    bb -= bb_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ka < 0) {
	*info = -5;
    } else if (*kb < 0 || *kb > *ka) {
	*info = -6;
    } else if (*ldab < *ka + 1) {
	*info = -8;
    } else if (*ldbb < *kb + 1) {
	*info = -10;
    } else if (*ldq < 1 || wantz && *ldq < *n) {
	*info = -12;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -14;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -15;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -16;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -21;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHBGVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

/*     Form a split Cholesky factorization of B. */

    cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem. */

    chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 
	     &q[q_offset], ldq, &work[1], &rwork[1], &iinfo);

/*     Solve the standard eigenvalue problem. */
/*     Reduce Hermitian band matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indrwk = inde + *n;
    indwrk = 1;
    if (wantz) {
	*(unsigned char *)vect = 'U';
    } else {
	*(unsigned char *)vect = 'N';
    }
    chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &rwork[indd], &rwork[
	    inde], &q[q_offset], ldq, &work[indwrk], &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal */
/*     to zero, then call SSTERF or CSTEQR.  If this fails for some */
/*     eigenvalue, then try SSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.f) {
	scopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
	indee = indrwk + (*n << 1);
	i__1 = *n - 1;
	scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	if (! wantz) {
	    ssterf_(n, &w[1], &rwork[indee], info);
	} else {
	    clacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
	    csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
		    rwork[indrwk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, */
/*     call CSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwk = indisp + *n;
    sstebz_(range, order, n, vl, vu, il, iu, abstol, &rwork[indd], &rwork[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[
	    indrwk], &iwork[indiwk], info);

    if (wantz) {
	cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
		indiwk], &ifail[1], info);

/*        Apply unitary matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by CSTEIN. */

	i__1 = *m;
	for (j = 1; j <= i__1; ++j) {
	    ccopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
	    cgemv_("N", n, n, &c_b2, &q[q_offset], ldq, &work[1], &c__1, &
		    c_b1, &z__[j * z_dim1 + 1], &c__1);
/* L20: */
	}
    }

L30:

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L40: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L50: */
	}
    }

    return 0;

/*     End of CHBGVX */

} /* chbgvx_ */
Esempio n. 6
0
/* Subroutine */ int cheevx_(char *jobz, char *range, char *uplo, integer *n, 
	complex *a, integer *lda, real *vl, real *vu, integer *il, integer *
	iu, real *abstol, integer *m, real *w, complex *z__, integer *ldz, 
	complex *work, integer *lwork, real *rwork, integer *iwork, integer *
	ifail, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, nb, jj;
    real eps, vll, vuu, tmp1;
    integer indd, inde;
    real anrm;
    integer imax;
    real rmin, rmax;
    logical test;
    integer itmp1, indee;
    real sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    char order[1];
    extern /* Subroutine */ int cswap_(integer *, complex *, integer *, 
	    complex *, integer *);
    logical lower;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    logical wantz;
    extern doublereal clanhe_(char *, char *, integer *, complex *, integer *, 
	     real *);
    logical alleig, indeig;
    integer iscale, indibl;
    logical valeig;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int chetrd_(char *, integer *, complex *, integer 
	    *, real *, real *, complex *, complex *, integer *, integer *), csscal_(integer *, real *, complex *, integer *), 
	    clacpy_(char *, integer *, integer *, complex *, integer *, 
	    complex *, integer *);
    real safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    real abstll, bignum;
    integer indiwk, indisp, indtau;
    extern /* Subroutine */ int cstein_(integer *, real *, real *, integer *, 
	    real *, integer *, integer *, complex *, integer *, real *, 
	    integer *, integer *, integer *);
    integer indrwk, indwrk, lwkmin;
    extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, 
	    complex *, integer *, real *, integer *), cungtr_(char *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    integer *), ssterf_(integer *, real *, real *, integer *),
	     cunmtr_(char *, char *, char *, integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *, complex *, integer *, 
	    integer *);
    integer nsplit, llwork;
    real smlnum;
    extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
	    real *, integer *, integer *, real *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, real *, integer *, 
	    integer *);
    integer lwkopt;
    logical lquery;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHEEVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can */
/*  be selected by specifying either a range of values or a range of */
/*  indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found. */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found. */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA, N) */
/*          On entry, the Hermitian matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */
/*          On exit, the lower triangle (if UPLO='L') or the upper */
/*          triangle (if UPLO='U') of A, including the diagonal, is */
/*          destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  VL      (input) REAL */
/*  VU      (input) REAL */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) REAL */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing A to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*SLAMCH('S'). */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) REAL array, dimension (N) */
/*          On normal exit, the first M elements contain the selected */
/*          eigenvalues in ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and the */
/*          index of the eigenvector is returned in IFAIL. */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK >= 1, when N <= 1; */
/*          otherwise 2*N. */
/*          For optimal efficiency, LWORK >= (NB+1)*N, */
/*          where NB is the max of the blocksize for CHETRD and for */
/*          CUNMTR as returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) REAL array, dimension (7*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
/*                Their indices are stored in array IFAIL. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;

    /* Function Body */
    lower = lsame_(uplo, "L");
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lquery = *lwork == -1;

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -8;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -9;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -10;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -15;
	}
    }

    if (*info == 0) {
	if (*n <= 1) {
	    lwkmin = 1;
	    work[1].r = (real) lwkmin, work[1].i = 0.f;
	} else {
	    lwkmin = *n << 1;
	    nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1);
/* Computing MAX */
	    i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMTR", uplo, n, &c_n1, &c_n1, 
		    &c_n1);
	    nb = max(i__1,i__2);
/* Computing MAX */
	    i__1 = 1, i__2 = (nb + 1) * *n;
	    lwkopt = max(i__1,i__2);
	    work[1].r = (real) lwkopt, work[1].i = 0.f;
	}

	if (*lwork < lwkmin && ! lquery) {
	    *info = -17;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHEEVX", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    i__1 = a_dim1 + 1;
	    w[1] = a[i__1].r;
	} else if (valeig) {
	    i__1 = a_dim1 + 1;
	    i__2 = a_dim1 + 1;
	    if (*vl < a[i__1].r && *vu >= a[i__2].r) {
		*m = 1;
		i__1 = a_dim1 + 1;
		w[1] = a[i__1].r;
	    }
	}
	if (wantz) {
	    i__1 = z_dim1 + 1;
	    z__[i__1].r = 1.f, z__[i__1].i = 0.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    }
    anrm = clanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]);
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		csscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
/* L10: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		csscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
/* L20: */
	    }
	}
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call CHETRD to reduce Hermitian matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indrwk = inde + *n;
    indtau = 1;
    indwrk = indtau + *n;
    llwork = *lwork - indwrk + 1;
    chetrd_(uplo, n, &a[a_offset], lda, &rwork[indd], &rwork[inde], &work[
	    indtau], &work[indwrk], &llwork, &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal to */
/*     zero, then call SSTERF or CUNGTR and CSTEQR.  If this fails for */
/*     some eigenvalue, then try SSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.f) {
	scopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
	indee = indrwk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    ssterf_(n, &w[1], &rwork[indee], info);
	} else {
	    clacpy_("A", n, n, &a[a_offset], lda, &z__[z_offset], ldz);
	    cungtr_(uplo, n, &z__[z_offset], ldz, &work[indtau], &work[indwrk]
, &llwork, &iinfo);
	    i__1 = *n - 1;
	    scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
		    rwork[indrwk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L30: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L40;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwk = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
	    rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
	    rwork[indrwk], &iwork[indiwk], info);

    if (wantz) {
	cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
		indiwk], &ifail[1], info);

/*        Apply unitary matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by CSTEIN. */

	cunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
		z_offset], ldz, &work[indwrk], &llwork, &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L40:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L50: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L60: */
	}
    }

/*     Set WORK(1) to optimal complex workspace size. */

    work[1].r = (real) lwkopt, work[1].i = 0.f;

    return 0;

/*     End of CHEEVX */

} /* cheevx_ */
Esempio n. 7
0
/* Subroutine */ int clarrv_(integer *n, real *d__, real *l, integer *isplit, 
	integer *m, real *w, integer *iblock, real *gersch, real *tol, 
	complex *z__, integer *ldz, integer *isuppz, real *work, integer *
	iwork, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    real r__1, r__2;
    complex q__1, q__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    static integer iend, jblk, iter, temp[1], ktot, itmp1, itmp2, i__, j, k, 
	    p, q, indld;
    static real sigma;
    static integer ndone, iinfo, iindr;
    static real resid;
    extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer 
	    *, complex *, integer *);
    static integer nclus;
    extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, 
	    integer *, complex *, integer *), scopy_(integer *, real *, 
	    integer *, real *, integer *);
    static integer iindc1, iindc2, indin1, indin2;
    extern /* Subroutine */ int clar1v_(integer *, integer *, integer *, real 
	    *, real *, real *, real *, real *, real *, complex *, real *, 
	    real *, integer *, integer *, real *);
    extern doublereal scnrm2_(integer *, complex *, integer *);
    static real lambda;
    static integer im, in, ibegin, indgap, indlld;
    extern doublereal slamch_(char *);
    static real mingma;
    extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
	    *);
    static integer oldien, oldncl;
    static real relgap;
    extern /* Subroutine */ int claset_(char *, integer *, integer *, complex 
	    *, complex *, complex *, integer *);
    static integer oldcls, ndepth, inderr, iindwk;
    extern /* Subroutine */ int cstein_(integer *, real *, real *, integer *, 
	    real *, integer *, integer *, complex *, integer *, real *, 
	    integer *, integer *, integer *), slarrb_(integer *, real *, real 
	    *, real *, real *, integer *, integer *, real *, real *, real *, 
	    real *, real *, real *, integer *, integer *);
    static logical mgscls;
    static integer lsbdpt, newcls, oldfst;
    static real minrgp;
    static integer indwrk;
    extern /* Subroutine */ int slarrf_(integer *, real *, real *, real *, 
	    real *, integer *, integer *, real *, real *, real *, real *, 
	    integer *, integer *);
    static integer oldlst;
    static real reltol;
    static integer maxitr, newfrs, newftt;
    static real mgstol;
    static integer nsplit;
    static real nrminv, rqcorr;
    static integer newlst, newsiz;
    static real gap, eps, ztz, tmp1;


#define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1
#define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)]


/*  -- LAPACK auxiliary routine (instru to count ops, version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   

       Common block to return operation count ..   

    Purpose   
    =======   

    CLARRV computes the eigenvectors of the tridiagonal matrix   
    T = L D L^T given L, D and the eigenvalues of L D L^T.   
    The input eigenvalues should have high relative accuracy with   
    respect to the entries of L and D. The desired accuracy of the   
    output can be specified by the input parameter TOL.   

    Arguments   
    =========   

    N       (input) INTEGER   
            The order of the matrix.  N >= 0.   

    D       (input/output) REAL array, dimension (N)   
            On entry, the n diagonal elements of the diagonal matrix D.   
            On exit, D may be overwritten.   

    L       (input/output) REAL array, dimension (N-1)   
            On entry, the (n-1) subdiagonal elements of the unit   
            bidiagonal matrix L in elements 1 to N-1 of L. L(N) need   
            not be set. On exit, L is overwritten.   

    ISPLIT  (input) INTEGER array, dimension (N)   
            The splitting points, at which T breaks up into submatrices.   
            The first submatrix consists of rows/columns 1 to   
            ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1   
            through ISPLIT( 2 ), etc.   

    TOL     (input) REAL   
            The absolute error tolerance for the   
            eigenvalues/eigenvectors.   
            Errors in the input eigenvalues must be bounded by TOL.   
            The eigenvectors output have residual norms   
            bounded by TOL, and the dot products between different   
            eigenvectors are bounded by TOL. TOL must be at least   
            N*EPS*|T|, where EPS is the machine precision and |T| is   
            the 1-norm of the tridiagonal matrix.   

    M       (input) INTEGER   
            The total number of eigenvalues found.  0 <= M <= N.   
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.   

    W       (input) REAL array, dimension (N)   
            The first M elements of W contain the eigenvalues for   
            which eigenvectors are to be computed.  The eigenvalues   
            should be grouped by split-off block and ordered from   
            smallest to largest within the block ( The output array   
            W from SLARRE is expected here ).   
            Errors in W must be bounded by TOL (see above).   

    IBLOCK  (input) INTEGER array, dimension (N)   
            The submatrix indices associated with the corresponding   
            eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to   
            the first submatrix from the top, =2 if W(i) belongs to   
            the second submatrix, etc.   

    Z       (output) COMPLEX array, dimension (LDZ, max(1,M) )   
            If JOBZ = 'V', then if INFO = 0, the first M columns of Z   
            contain the orthonormal eigenvectors of the matrix T   
            corresponding to the selected eigenvalues, with the i-th   
            column of Z holding the eigenvector associated with W(i).   
            If JOBZ = 'N', then Z is not referenced.   
            Note: the user must ensure that at least max(1,M) columns are   
            supplied in the array Z; if RANGE = 'V', the exact value of M   
            is not known in advance and an upper bound must be used.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) )   
            The support of the eigenvectors in Z, i.e., the indices   
            indicating the nonzero elements in Z. The i-th eigenvector   
            is nonzero only in elements ISUPPZ( 2*i-1 ) through   
            ISUPPZ( 2*i ).   

    WORK    (workspace) REAL array, dimension (13*N)   

    IWORK   (workspace) INTEGER array, dimension (6*N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = 1, internal error in SLARRB   
                  if INFO = 2, internal error in CSTEIN   

    Further Details   
    ===============   

    Based on contributions by   
       Inderjit Dhillon, IBM Almaden, USA   
       Osni Marques, LBNL/NERSC, USA   
       Ken Stanley, Computer Science Division, University of   
         California at Berkeley, USA   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    --d__;
    --l;
    --isplit;
    --w;
    --iblock;
    --gersch;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --isuppz;
    --work;
    --iwork;

    /* Function Body */
    inderr = *n + 1;
    indld = *n << 1;
    indlld = *n * 3;
    indgap = *n << 2;
    indin1 = *n * 5 + 1;
    indin2 = *n * 6 + 1;
    indwrk = *n * 7 + 1;

    iindr = *n;
    iindc1 = *n << 1;
    iindc2 = *n * 3;
    iindwk = (*n << 2) + 1;

    eps = slamch_("Precision");

    i__1 = *n << 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	iwork[i__] = 0;
/* L10: */
    }
    latime_1.ops += (real) (*m + 1);
    i__1 = *m;
    for (i__ = 1; i__ <= i__1; ++i__) {
	work[inderr + i__ - 1] = eps * (r__1 = w[i__], dabs(r__1));
/* L20: */
    }
    claset_("Full", n, n, &c_b1, &c_b1, &z__[z_offset], ldz);
    mgstol = eps * 5.f;

    nsplit = iblock[*m];
    ibegin = 1;
    i__1 = nsplit;
    for (jblk = 1; jblk <= i__1; ++jblk) {
	iend = isplit[jblk];

/*        Find the eigenvectors of the submatrix indexed IBEGIN   
          through IEND. */

	if (ibegin == iend) {
	    i__2 = z___subscr(ibegin, ibegin);
	    z__[i__2].r = 1.f, z__[i__2].i = 0.f;
	    isuppz[(ibegin << 1) - 1] = ibegin;
	    isuppz[ibegin * 2] = ibegin;
	    ibegin = iend + 1;
	    goto L170;
	}
	oldien = ibegin - 1;
	in = iend - oldien;
	latime_1.ops += 1.f;
/* Computing MIN */
	r__1 = .01f, r__2 = 1.f / (real) in;
	reltol = dmin(r__1,r__2);
	im = in;
	scopy_(&im, &w[ibegin], &c__1, &work[1], &c__1);
	latime_1.ops += (real) (in - 1);
	i__2 = in - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[indgap + i__] = work[i__ + 1] - work[i__];
/* L30: */
	}
/* Computing MAX */
	r__2 = (r__1 = work[in], dabs(r__1));
	work[indgap + in] = dmax(r__2,eps);
	ndone = 0;

	ndepth = 0;
	lsbdpt = 1;
	nclus = 1;
	iwork[iindc1 + 1] = 1;
	iwork[iindc1 + 2] = in;

/*        While( NDONE.LT.IM ) do */

L40:
	if (ndone < im) {
	    oldncl = nclus;
	    nclus = 0;
	    lsbdpt = 1 - lsbdpt;
	    i__2 = oldncl;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		if (lsbdpt == 0) {
		    oldcls = iindc1;
		    newcls = iindc2;
		} else {
		    oldcls = iindc2;
		    newcls = iindc1;
		}

/*              If NDEPTH > 1, retrieve the relatively robust   
                representation (RRR) and perform limited bisection   
                (if necessary) to get approximate eigenvalues. */

		j = oldcls + (i__ << 1);
		oldfst = iwork[j - 1];
		oldlst = iwork[j];
		if (ndepth > 0) {
		    j = oldien + oldfst;
		    i__3 = in;
		    for (k = 1; k <= i__3; ++k) {
			i__4 = z___subscr(ibegin + k - 1, oldien + oldfst);
			d__[ibegin + k - 1] = z__[i__4].r;
			i__4 = z___subscr(ibegin + k - 1, oldien + oldfst + 1)
				;
			l[ibegin + k - 1] = z__[i__4].r;
/* L45: */
		    }
		    sigma = l[iend];
		}
		k = ibegin;
		latime_1.ops += (real) (in - 1 << 1);
		i__3 = in - 1;
		for (j = 1; j <= i__3; ++j) {
		    work[indld + j] = d__[k] * l[k];
		    work[indlld + j] = work[indld + j] * l[k];
		    ++k;
/* L50: */
		}
		if (ndepth > 0) {
		    slarrb_(&in, &d__[ibegin], &l[ibegin], &work[indld + 1], &
			    work[indlld + 1], &oldfst, &oldlst, &sigma, &
			    reltol, &work[1], &work[indgap + 1], &work[inderr]
			    , &work[indwrk], &iwork[iindwk], &iinfo);
		    if (iinfo != 0) {
			*info = 1;
			return 0;
		    }
		}

/*              Classify eigenvalues of the current representation (RRR)   
                as (i) isolated, (ii) loosely clustered or (iii) tightly   
                clustered */

		newfrs = oldfst;
		i__3 = oldlst;
		for (j = oldfst; j <= i__3; ++j) {
		    latime_1.ops += 1.f;
		    if (j == oldlst || work[indgap + j] >= reltol * (r__1 = 
			    work[j], dabs(r__1))) {
			newlst = j;
		    } else {

/*                    continue (to the next loop) */

			latime_1.ops += 1.f;
			relgap = work[indgap + j] / (r__1 = work[j], dabs(
				r__1));
			if (j == newfrs) {
			    minrgp = relgap;
			} else {
			    minrgp = dmin(minrgp,relgap);
			}
			goto L140;
		    }
		    newsiz = newlst - newfrs + 1;
		    maxitr = 10;
		    newftt = oldien + newfrs;
		    if (newsiz > 1) {
			mgscls = newsiz <= 20 && minrgp >= mgstol;
			if (! mgscls) {
			    i__4 = in;
			    for (k = 1; k <= i__4; ++k) {
				i__5 = z___subscr(ibegin + k - 1, newftt);
				work[indin1 + k - 1] = z__[i__5].r;
				i__5 = z___subscr(ibegin + k - 1, newftt + 1);
				work[indin2 + k - 1] = z__[i__5].r;
/* L55: */
			    }
			    slarrf_(&in, &d__[ibegin], &l[ibegin], &work[
				    indld + 1], &work[indlld + 1], &newfrs, &
				    newlst, &work[1], &work[indin1], &work[
				    indin2], &work[indwrk], &iwork[iindwk], 
				    info);
			    if (*info == 0) {
				++nclus;
				k = newcls + (nclus << 1);
				iwork[k - 1] = newfrs;
				iwork[k] = newlst;
			    } else {
				*info = 0;
				if (minrgp >= mgstol) {
				    mgscls = TRUE_;
				} else {

/*                             Call CSTEIN to process this tight cluster.   
                               This happens only if MINRGP <= MGSTOL   
                               and SLARRF returns INFO = 1. The latter   
                               means that a new RRR to "break" the   
                               cluster could not be found. */

				    work[indwrk] = d__[ibegin];
				    latime_1.ops += (real) (in - 1);
				    i__4 = in - 1;
				    for (k = 1; k <= i__4; ++k) {
					work[indwrk + k] = d__[ibegin + k] + 
						work[indlld + k];
/* L60: */
				    }
				    i__4 = newsiz;
				    for (k = 1; k <= i__4; ++k) {
					iwork[iindwk + k - 1] = 1;
/* L70: */
				    }
				    i__4 = newlst;
				    for (k = newfrs; k <= i__4; ++k) {
					isuppz[(ibegin + k << 1) - 3] = 1;
					isuppz[(ibegin + k << 1) - 2] = in;
/* L80: */
				    }
				    temp[0] = in;
				    cstein_(&in, &work[indwrk], &work[indld + 
					    1], &newsiz, &work[newfrs], &
					    iwork[iindwk], temp, &z___ref(
					    ibegin, newftt), ldz, &work[
					    indwrk + in], &iwork[iindwk + in],
					     &iwork[iindwk + (in << 1)], &
					    iinfo);
				    if (iinfo != 0) {
					*info = 2;
					return 0;
				    }
				    ndone += newsiz;
				}
			    }
			}
		    } else {
			mgscls = FALSE_;
		    }
		    if (newsiz == 1 || mgscls) {
			ktot = newftt;
			i__4 = newlst;
			for (k = newfrs; k <= i__4; ++k) {
			    iter = 0;
L90:
			    lambda = work[k];
			    clar1v_(&in, &c__1, &in, &lambda, &d__[ibegin], &
				    l[ibegin], &work[indld + 1], &work[indlld 
				    + 1], &gersch[(oldien << 1) + 1], &
				    z___ref(ibegin, ktot), &ztz, &mingma, &
				    iwork[iindr + ktot], &isuppz[(ktot << 1) 
				    - 1], &work[indwrk]);
			    latime_1.ops += 4.f;
			    tmp1 = 1.f / ztz;
			    nrminv = sqrt(tmp1);
			    resid = dabs(mingma) * nrminv;
			    rqcorr = mingma * tmp1;
			    if (k == in) {
				gap = work[indgap + k - 1];
			    } else if (k == 1) {
				gap = work[indgap + k];
			    } else {
/* Computing MIN */
				r__1 = work[indgap + k - 1], r__2 = work[
					indgap + k];
				gap = dmin(r__1,r__2);
			    }
			    ++iter;
			    latime_1.ops += 3.f;
			    if (resid > *tol * gap && dabs(rqcorr) > eps * 
				    4.f * dabs(lambda)) {
				latime_1.ops += 1.f;
				work[k] = lambda + rqcorr;
				if (iter < maxitr) {
				    goto L90;
				}
			    }
			    iwork[ktot] = 1;
			    if (newsiz == 1) {
				++ndone;
			    }
			    latime_1.ops += (real) (in << 1);
			    csscal_(&in, &nrminv, &z___ref(ibegin, ktot), &
				    c__1);
			    ++ktot;
/* L100: */
			}
			if (newsiz > 1) {
			    itmp1 = isuppz[(newftt << 1) - 1];
			    itmp2 = isuppz[newftt * 2];
			    ktot = oldien + newlst;
			    i__4 = ktot;
			    for (p = newftt + 1; p <= i__4; ++p) {
				i__5 = p - 1;
				for (q = newftt; q <= i__5; ++q) {
				    latime_1.ops += (real) (in * 10);
				    cdotu_(&q__2, &in, &z___ref(ibegin, p), &
					    c__1, &z___ref(ibegin, q), &c__1);
				    q__1.r = -q__2.r, q__1.i = -q__2.i;
				    tmp1 = q__1.r;
				    q__1.r = tmp1, q__1.i = 0.f;
				    caxpy_(&in, &q__1, &z___ref(ibegin, q), &
					    c__1, &z___ref(ibegin, p), &c__1);
/* L110: */
				}
				latime_1.ops += (real) ((in << 3) + 1);
				tmp1 = 1.f / scnrm2_(&in, &z___ref(ibegin, p),
					 &c__1);
				csscal_(&in, &tmp1, &z___ref(ibegin, p), &
					c__1);
/* Computing MIN */
				i__5 = itmp1, i__6 = isuppz[(p << 1) - 1];
				itmp1 = min(i__5,i__6);
/* Computing MAX */
				i__5 = itmp2, i__6 = isuppz[p * 2];
				itmp2 = max(i__5,i__6);
/* L120: */
			    }
			    i__4 = ktot;
			    for (p = newftt; p <= i__4; ++p) {
				isuppz[(p << 1) - 1] = itmp1;
				isuppz[p * 2] = itmp2;
/* L130: */
			    }
			    ndone += newsiz;
			}
		    }
		    newfrs = j + 1;
L140:
		    ;
		}
/* L150: */
	    }
	    ++ndepth;
	    goto L40;
	}
	j = ibegin << 1;
	i__2 = iend;
	for (i__ = ibegin; i__ <= i__2; ++i__) {
	    isuppz[j - 1] += oldien;
	    isuppz[j] += oldien;
	    j += 2;
/* L160: */
	}
	ibegin = iend + 1;
L170:
	;
    }

    return 0;

/*     End of CLARRV */

} /* clarrv_ */