Esempio n. 1
0
int
f2c_ctbsv(char* uplo, char* trans, char* diag, integer* N, integer* K,
          complex* A, integer* lda, 
          complex* X, integer* incX)
{
    ctbsv_(uplo, trans, diag,
           N, K, A, lda, X, incX);
    return 0;
}
Esempio n. 2
0
void
ctbsv(char uplo, char trans, char diag, int n, int k, complex *a, int lda, complex *x, int incx )
{
   ctbsv_( &uplo, &trans, &diag, &n, &k, a, &lda, x, &incx );
}
Esempio n. 3
0
 int cpbtrs_(char *uplo, int *n, int *kd, int *
	nrhs, complex *ab, int *ldab, complex *b, int *ldb, int *
	info)
{
    /* System generated locals */
    int ab_dim1, ab_offset, b_dim1, b_offset, i__1;

    /* Local variables */
    int j;
    extern int lsame_(char *, char *);
    extern  int ctbsv_(char *, char *, char *, int *, 
	    int *, complex *, int *, complex *, int *);
    int upper;
    extern  int xerbla_(char *, int *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CPBTRS solves a system of linear equations A*X = B with a Hermitian */
/*  positive definite band matrix A using the Cholesky factorization */
/*  A = U**H*U or A = L*L**H computed by CPBTRF. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangular factor stored in AB; */
/*          = 'L':  Lower triangular factor stored in AB. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  AB      (input) COMPLEX array, dimension (LDAB,N) */
/*          The triangular factor U or L from the Cholesky factorization */
/*          A = U**H*U or A = L*L**H of the band matrix A, stored in the */
/*          first KD+1 rows of the array.  The j-th column of U or L is */
/*          stored in the j-th column of the array AB as follows: */
/*          if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for MAX(1,j-kd)<=i<=j; */
/*          if UPLO ='L', AB(1+i-j,j)    = L(i,j) for j<=i<=MIN(n,j+kd). */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD+1. */

/*  B       (input/output) COMPLEX array, dimension (LDB,NRHS) */
/*          On entry, the right hand side matrix B. */
/*          On exit, the solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= MAX(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kd < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (*ldab < *kd + 1) {
	*info = -6;
    } else if (*ldb < MAX(1,*n)) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPBTRS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

    if (upper) {

/*        Solve A*X = B where A = U'*U. */

	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {

/*           Solve U'*X = B, overwriting B with X. */

	    ctbsv_("Upper", "Conjugate transpose", "Non-unit", n, kd, &ab[
		    ab_offset], ldab, &b[j * b_dim1 + 1], &c__1);

/*           Solve U*X = B, overwriting B with X. */

	    ctbsv_("Upper", "No transpose", "Non-unit", n, kd, &ab[ab_offset], 
		     ldab, &b[j * b_dim1 + 1], &c__1);
/* L10: */
	}
    } else {

/*        Solve A*X = B where A = L*L'. */

	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {

/*           Solve L*X = B, overwriting B with X. */

	    ctbsv_("Lower", "No transpose", "Non-unit", n, kd, &ab[ab_offset], 
		     ldab, &b[j * b_dim1 + 1], &c__1);

/*           Solve L'*X = B, overwriting B with X. */

	    ctbsv_("Lower", "Conjugate transpose", "Non-unit", n, kd, &ab[
		    ab_offset], ldab, &b[j * b_dim1 + 1], &c__1);
/* L20: */
	}
    }

    return 0;

/*     End of CPBTRS */

} /* cpbtrs_ */
Esempio n. 4
0
/* Subroutine */ int ctbtrs_(char *uplo, char *trans, char *diag, integer *n,
                             integer *kd, integer *nrhs, complex *ab, integer *ldab, complex *b,
                             integer *ldb, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, b_dim1, b_offset, i__1, i__2;

    /* Local variables */
    integer j;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int ctbsv_(char *, char *, char *, integer *,
                                       integer *, complex *, integer *, complex *, integer *);
    logical upper;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    logical nounit;


    /*  -- LAPACK routine (version 3.2) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     .. Scalar Arguments .. */
    /*     .. */
    /*     .. Array Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  CTBTRS solves a triangular system of the form */

    /*     A * X = B,  A**T * X = B,  or  A**H * X = B, */

    /*  where A is a triangular band matrix of order N, and B is an */
    /*  N-by-NRHS matrix.  A check is made to verify that A is nonsingular. */

    /*  Arguments */
    /*  ========= */

    /*  UPLO    (input) CHARACTER*1 */
    /*          = 'U':  A is upper triangular; */
    /*          = 'L':  A is lower triangular. */

    /*  TRANS   (input) CHARACTER*1 */
    /*          Specifies the form of the system of equations: */
    /*          = 'N':  A * X = B     (No transpose) */
    /*          = 'T':  A**T * X = B  (Transpose) */
    /*          = 'C':  A**H * X = B  (Conjugate transpose) */

    /*  DIAG    (input) CHARACTER*1 */
    /*          = 'N':  A is non-unit triangular; */
    /*          = 'U':  A is unit triangular. */

    /*  N       (input) INTEGER */
    /*          The order of the matrix A.  N >= 0. */

    /*  KD      (input) INTEGER */
    /*          The number of superdiagonals or subdiagonals of the */
    /*          triangular band matrix A.  KD >= 0. */

    /*  NRHS    (input) INTEGER */
    /*          The number of right hand sides, i.e., the number of columns */
    /*          of the matrix B.  NRHS >= 0. */

    /*  AB      (input) COMPLEX array, dimension (LDAB,N) */
    /*          The upper or lower triangular band matrix A, stored in the */
    /*          first kd+1 rows of AB.  The j-th column of A is stored */
    /*          in the j-th column of the array AB as follows: */
    /*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
    /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
    /*          If DIAG = 'U', the diagonal elements of A are not referenced */
    /*          and are assumed to be 1. */

    /*  LDAB    (input) INTEGER */
    /*          The leading dimension of the array AB.  LDAB >= KD+1. */

    /*  B       (input/output) COMPLEX array, dimension (LDB,NRHS) */
    /*          On entry, the right hand side matrix B. */
    /*          On exit, if INFO = 0, the solution matrix X. */

    /*  LDB     (input) INTEGER */
    /*          The leading dimension of the array B.  LDB >= max(1,N). */

    /*  INFO    (output) INTEGER */
    /*          = 0:  successful exit */
    /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
    /*          > 0:  if INFO = i, the i-th diagonal element of A is zero, */
    /*                indicating that the matrix is singular and the */
    /*                solutions X have not been computed. */

    /*  ===================================================================== */

    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Executable Statements .. */

    /*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    nounit = lsame_(diag, "N");
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
        *info = -1;
    } else if (! lsame_(trans, "N") && ! lsame_(trans,
               "T") && ! lsame_(trans, "C")) {
        *info = -2;
    } else if (! nounit && ! lsame_(diag, "U")) {
        *info = -3;
    } else if (*n < 0) {
        *info = -4;
    } else if (*kd < 0) {
        *info = -5;
    } else if (*nrhs < 0) {
        *info = -6;
    } else if (*ldab < *kd + 1) {
        *info = -8;
    } else if (*ldb < max(1,*n)) {
        *info = -10;
    }
    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("CTBTRS", &i__1);
        return 0;
    }

    /*     Quick return if possible */

    if (*n == 0) {
        return 0;
    }

    /*     Check for singularity. */

    if (nounit) {
        if (upper) {
            i__1 = *n;
            for (*info = 1; *info <= i__1; ++(*info)) {
                i__2 = *kd + 1 + *info * ab_dim1;
                if (ab[i__2].r == 0.f && ab[i__2].i == 0.f) {
                    return 0;
                }
                /* L10: */
            }
        } else {
            i__1 = *n;
            for (*info = 1; *info <= i__1; ++(*info)) {
                i__2 = *info * ab_dim1 + 1;
                if (ab[i__2].r == 0.f && ab[i__2].i == 0.f) {
                    return 0;
                }
                /* L20: */
            }
        }
    }
    *info = 0;

    /*     Solve A * X = B,  A**T * X = B,  or  A**H * X = B. */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
        ctbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &b[j * b_dim1
                + 1], &c__1);
        /* L30: */
    }

    return 0;

    /*     End of CTBTRS */

} /* ctbtrs_ */
Esempio n. 5
0
/* Subroutine */ int cgbtrs_(char *trans, integer *n, integer *kl, integer *
	ku, integer *nrhs, complex *ab, integer *ldab, integer *ipiv, complex 
	*b, integer *ldb, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, b_dim1, b_offset, i__1, i__2, i__3;
    complex q__1;

    /* Local variables */
    integer i__, j, l, kd, lm;
    logical lnoti;
    logical notran;

/*  -- LAPACK routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  CGBTRS solves a system of linear equations */
/*     A * X = B,  A**T * X = B,  or  A**H * X = B */
/*  with a general band matrix A using the LU factorization computed */
/*  by CGBTRF. */

/*  Arguments */
/*  ========= */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the form of the system of equations. */
/*          = 'N':  A * X = B     (No transpose) */
/*          = 'T':  A**T * X = B  (Transpose) */
/*          = 'C':  A**H * X = B  (Conjugate transpose) */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KL      (input) INTEGER */
/*          The number of subdiagonals within the band of A.  KL >= 0. */

/*  KU      (input) INTEGER */
/*          The number of superdiagonals within the band of A.  KU >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  AB      (input) COMPLEX array, dimension (LDAB,N) */
/*          Details of the LU factorization of the band matrix A, as */
/*          computed by CGBTRF.  U is stored as an upper triangular band */
/*          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
/*          the multipliers used during the factorization are stored in */
/*          rows KL+KU+2 to 2*KL+KU+1. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. */

/*  IPIV    (input) INTEGER array, dimension (N) */
/*          The pivot indices; for 1 <= i <= N, row i of the matrix was */
/*          interchanged with row IPIV(i). */

/*  B       (input/output) COMPLEX array, dimension (LDB,NRHS) */
/*          On entry, the right hand side matrix B. */
/*          On exit, the solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    notran = lsame_(trans, "N");
    if (! notran && ! lsame_(trans, "T") && ! lsame_(
	    trans, "C")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kl < 0) {
	*info = -3;
    } else if (*ku < 0) {
	*info = -4;
    } else if (*nrhs < 0) {
	*info = -5;
    } else if (*ldab < (*kl << 1) + *ku + 1) {
	*info = -7;
    } else if (*ldb < max(1,*n)) {
	*info = -10;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGBTRS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

    kd = *ku + *kl + 1;
    lnoti = *kl > 0;

    if (notran) {

/*        Solve  A*X = B. */

/*        Solve L*X = B, overwriting B with X. */

/*        L is represented as a product of permutations and unit lower */
/*        where each transformation L(i) is a rank-one modification of */
/*        the identity matrix. */

	if (lnoti) {
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		i__2 = *kl, i__3 = *n - j;
		lm = min(i__2,i__3);
		l = ipiv[j];
		if (l != j) {
		    cswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);
		}
		q__1.r = -1.f, q__1.i = -0.f;
		cgeru_(&lm, nrhs, &q__1, &ab[kd + 1 + j * ab_dim1], &c__1, &b[
			j + b_dim1], ldb, &b[j + 1 + b_dim1], ldb);
	    }
	}

	i__1 = *nrhs;
	for (i__ = 1; i__ <= i__1; ++i__) {

/*           Solve U*X = B, overwriting B with X. */

	    i__2 = *kl + *ku;
	    ctbsv_("Upper", "No transpose", "Non-unit", n, &i__2, &ab[
		    ab_offset], ldab, &b[i__ * b_dim1 + 1], &c__1);
	}

    } else if (lsame_(trans, "T")) {

/*        Solve A**T * X = B. */

	i__1 = *nrhs;
	for (i__ = 1; i__ <= i__1; ++i__) {

/*           Solve U**T * X = B, overwriting B with X. */

	    i__2 = *kl + *ku;
	    ctbsv_("Upper", "Transpose", "Non-unit", n, &i__2, &ab[ab_offset], 
		     ldab, &b[i__ * b_dim1 + 1], &c__1);
	}

/*        Solve L**T * X = B, overwriting B with X. */

	if (lnoti) {
	    for (j = *n - 1; j >= 1; --j) {
/* Computing MIN */
		i__1 = *kl, i__2 = *n - j;
		lm = min(i__1,i__2);
		q__1.r = -1.f, q__1.i = -0.f;
		cgemv_("Transpose", &lm, nrhs, &q__1, &b[j + 1 + b_dim1], ldb, 
			 &ab[kd + 1 + j * ab_dim1], &c__1, &c_b1, &b[j + 
			b_dim1], ldb);
		l = ipiv[j];
		if (l != j) {
		    cswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);
		}
	    }
	}

    } else {

/*        Solve A**H * X = B. */

	i__1 = *nrhs;
	for (i__ = 1; i__ <= i__1; ++i__) {

/*           Solve U**H * X = B, overwriting B with X. */

	    i__2 = *kl + *ku;
	    ctbsv_("Upper", "Conjugate transpose", "Non-unit", n, &i__2, &ab[
		    ab_offset], ldab, &b[i__ * b_dim1 + 1], &c__1);
	}

/*        Solve L**H * X = B, overwriting B with X. */

	if (lnoti) {
	    for (j = *n - 1; j >= 1; --j) {
/* Computing MIN */
		i__1 = *kl, i__2 = *n - j;
		lm = min(i__1,i__2);
		clacgv_(nrhs, &b[j + b_dim1], ldb);
		q__1.r = -1.f, q__1.i = -0.f;
		cgemv_("Conjugate transpose", &lm, nrhs, &q__1, &b[j + 1 + 
			b_dim1], ldb, &ab[kd + 1 + j * ab_dim1], &c__1, &c_b1, 
			 &b[j + b_dim1], ldb);
		clacgv_(nrhs, &b[j + b_dim1], ldb);
		l = ipiv[j];
		if (l != j) {
		    cswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);
		}
	    }
	}
    }
    return 0;

/*     End of CGBTRS */

} /* cgbtrs_ */
Esempio n. 6
0
/* Subroutine */ int clatbs_(char *uplo, char *trans, char *diag, char *
	normin, integer *n, integer *kd, complex *ab, integer *ldab, complex *
	x, real *scale, real *cnorm, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
    real r__1, r__2, r__3, r__4;
    complex q__1, q__2, q__3, q__4;

    /* Builtin functions */
    double r_imag(complex *);
    void r_cnjg(complex *, complex *);

    /* Local variables */
    integer i__, j;
    real xj, rec, tjj;
    integer jinc, jlen;
    real xbnd;
    integer imax;
    real tmax;
    complex tjjs;
    real xmax, grow;
    integer maind;
    extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer 
	    *, complex *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    real tscal;
    complex uscal;
    integer jlast;
    extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer 
	    *, complex *, integer *);
    complex csumj;
    extern /* Subroutine */ int ctbsv_(char *, char *, char *, integer *, 
	    integer *, complex *, integer *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *
, complex *, integer *);
    logical upper;
    extern /* Subroutine */ int slabad_(real *, real *);
    extern integer icamax_(integer *, complex *, integer *);
    extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
	    *), xerbla_(char *, integer *);
    real bignum;
    extern integer isamax_(integer *, real *, integer *);
    extern doublereal scasum_(integer *, complex *, integer *);
    logical notran;
    integer jfirst;
    real smlnum;
    logical nounit;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CLATBS solves one of the triangular systems */

/*     A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b, */

/*  with scaling to prevent overflow, where A is an upper or lower */
/*  triangular band matrix.  Here A' denotes the transpose of A, x and b */
/*  are n-element vectors, and s is a scaling factor, usually less than */
/*  or equal to 1, chosen so that the components of x will be less than */
/*  the overflow threshold.  If the unscaled problem will not cause */
/*  overflow, the Level 2 BLAS routine CTBSV is called.  If the matrix A */
/*  is singular (A(j,j) = 0 for some j), then s is set to 0 and a */
/*  non-trivial solution to A*x = 0 is returned. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the matrix A is upper or lower triangular. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the operation applied to A. */
/*          = 'N':  Solve A * x = s*b     (No transpose) */
/*          = 'T':  Solve A**T * x = s*b  (Transpose) */
/*          = 'C':  Solve A**H * x = s*b  (Conjugate transpose) */

/*  DIAG    (input) CHARACTER*1 */
/*          Specifies whether or not the matrix A is unit triangular. */
/*          = 'N':  Non-unit triangular */
/*          = 'U':  Unit triangular */

/*  NORMIN  (input) CHARACTER*1 */
/*          Specifies whether CNORM has been set or not. */
/*          = 'Y':  CNORM contains the column norms on entry */
/*          = 'N':  CNORM is not set on entry.  On exit, the norms will */
/*                  be computed and stored in CNORM. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of subdiagonals or superdiagonals in the */
/*          triangular matrix A.  KD >= 0. */

/*  AB      (input) COMPLEX array, dimension (LDAB,N) */
/*          The upper or lower triangular band matrix A, stored in the */
/*          first KD+1 rows of the array. The j-th column of A is stored */
/*          in the j-th column of the array AB as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD+1. */

/*  X       (input/output) COMPLEX array, dimension (N) */
/*          On entry, the right hand side b of the triangular system. */
/*          On exit, X is overwritten by the solution vector x. */

/*  SCALE   (output) REAL */
/*          The scaling factor s for the triangular system */
/*             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b. */
/*          If SCALE = 0, the matrix A is singular or badly scaled, and */
/*          the vector x is an exact or approximate solution to A*x = 0. */

/*  CNORM   (input or output) REAL array, dimension (N) */

/*          If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
/*          contains the norm of the off-diagonal part of the j-th column */
/*          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal */
/*          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
/*          must be greater than or equal to the 1-norm. */

/*          If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
/*          returns the 1-norm of the offdiagonal part of the j-th column */
/*          of A. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -k, the k-th argument had an illegal value */

/*  Further Details */
/*  ======= ======= */

/*  A rough bound on x is computed; if that is less than overflow, CTBSV */
/*  is called, otherwise, specific code is used which checks for possible */
/*  overflow or divide-by-zero at every operation. */

/*  A columnwise scheme is used for solving A*x = b.  The basic algorithm */
/*  if A is lower triangular is */

/*       x[1:n] := b[1:n] */
/*       for j = 1, ..., n */
/*            x(j) := x(j) / A(j,j) */
/*            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
/*       end */

/*  Define bounds on the components of x after j iterations of the loop: */
/*     M(j) = bound on x[1:j] */
/*     G(j) = bound on x[j+1:n] */
/*  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}. */

/*  Then for iteration j+1 we have */
/*     M(j+1) <= G(j) / | A(j+1,j+1) | */
/*     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
/*            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */

/*  where CNORM(j+1) is greater than or equal to the infinity-norm of */
/*  column j+1 of A, not counting the diagonal.  Hence */

/*     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
/*                  1<=i<=j */
/*  and */

/*     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
/*                                   1<=i< j */

/*  Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTBSV if the */
/*  reciprocal of the largest M(j), j=1,..,n, is larger than */
/*  max(underflow, 1/overflow). */

/*  The bound on x(j) is also used to determine when a step in the */
/*  columnwise method can be performed without fear of overflow.  If */
/*  the computed bound is greater than a large constant, x is scaled to */
/*  prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
/*  1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */

/*  Similarly, a row-wise scheme is used to solve A**T *x = b  or */
/*  A**H *x = b.  The basic algorithm for A upper triangular is */

/*       for j = 1, ..., n */
/*            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) */
/*       end */

/*  We simultaneously compute two bounds */
/*       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j */
/*       M(j) = bound on x(i), 1<=i<=j */

/*  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we */
/*  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
/*  Then the bound on x(j) is */

/*       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */

/*            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
/*                      1<=i<=j */

/*  and we can safely call CTBSV if 1/M(n) and 1/G(n) are both greater */
/*  than max(underflow, 1/overflow). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function definitions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --x;
    --cnorm;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    notran = lsame_(trans, "N");
    nounit = lsame_(diag, "N");

/*     Test the input parameters. */

    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (! notran && ! lsame_(trans, "T") && ! 
	    lsame_(trans, "C")) {
	*info = -2;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -3;
    } else if (! lsame_(normin, "Y") && ! lsame_(normin, 
	     "N")) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*kd < 0) {
	*info = -6;
    } else if (*ldab < *kd + 1) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CLATBS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine machine dependent parameters to control overflow. */

    smlnum = slamch_("Safe minimum");
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);
    smlnum /= slamch_("Precision");
    bignum = 1.f / smlnum;
    *scale = 1.f;

    if (lsame_(normin, "N")) {

/*        Compute the 1-norm of each column, not including the diagonal. */

	if (upper) {

/*           A is upper triangular. */

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		i__2 = *kd, i__3 = j - 1;
		jlen = min(i__2,i__3);
		cnorm[j] = scasum_(&jlen, &ab[*kd + 1 - jlen + j * ab_dim1], &
			c__1);
/* L10: */
	    }
	} else {

/*           A is lower triangular. */

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		i__2 = *kd, i__3 = *n - j;
		jlen = min(i__2,i__3);
		if (jlen > 0) {
		    cnorm[j] = scasum_(&jlen, &ab[j * ab_dim1 + 2], &c__1);
		} else {
		    cnorm[j] = 0.f;
		}
/* L20: */
	    }
	}
    }

/*     Scale the column norms by TSCAL if the maximum element in CNORM is */
/*     greater than BIGNUM/2. */

    imax = isamax_(n, &cnorm[1], &c__1);
    tmax = cnorm[imax];
    if (tmax <= bignum * .5f) {
	tscal = 1.f;
    } else {
	tscal = .5f / (smlnum * tmax);
	sscal_(n, &tscal, &cnorm[1], &c__1);
    }

/*     Compute a bound on the computed solution vector to see if the */
/*     Level 2 BLAS routine CTBSV can be used. */

    xmax = 0.f;
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = j;
	r__3 = xmax, r__4 = (r__1 = x[i__2].r / 2.f, dabs(r__1)) + (r__2 = 
		r_imag(&x[j]) / 2.f, dabs(r__2));
	xmax = dmax(r__3,r__4);
/* L30: */
    }
    xbnd = xmax;
    if (notran) {

/*        Compute the growth in A * x = b. */

	if (upper) {
	    jfirst = *n;
	    jlast = 1;
	    jinc = -1;
	    maind = *kd + 1;
	} else {
	    jfirst = 1;
	    jlast = *n;
	    jinc = 1;
	    maind = 1;
	}

	if (tscal != 1.f) {
	    grow = 0.f;
	    goto L60;
	}

	if (nounit) {

/*           A is non-unit triangular. */

/*           Compute GROW = 1/G(j) and XBND = 1/M(j). */
/*           Initially, G(0) = max{x(i), i=1,...,n}. */

	    grow = .5f / dmax(xbnd,smlnum);
	    xbnd = grow;
	    i__1 = jlast;
	    i__2 = jinc;
	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {

/*              Exit the loop if the growth factor is too small. */

		if (grow <= smlnum) {
		    goto L60;
		}

		i__3 = maind + j * ab_dim1;
		tjjs.r = ab[i__3].r, tjjs.i = ab[i__3].i;
		tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs), 
			dabs(r__2));

		if (tjj >= smlnum) {

/*                 M(j) = G(j-1) / abs(A(j,j)) */

/* Computing MIN */
		    r__1 = xbnd, r__2 = dmin(1.f,tjj) * grow;
		    xbnd = dmin(r__1,r__2);
		} else {

/*                 M(j) could overflow, set XBND to 0. */

		    xbnd = 0.f;
		}

		if (tjj + cnorm[j] >= smlnum) {

/*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */

		    grow *= tjj / (tjj + cnorm[j]);
		} else {

/*                 G(j) could overflow, set GROW to 0. */

		    grow = 0.f;
		}
/* L40: */
	    }
	    grow = xbnd;
	} else {

/*           A is unit triangular. */

/*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. */

/* Computing MIN */
	    r__1 = 1.f, r__2 = .5f / dmax(xbnd,smlnum);
	    grow = dmin(r__1,r__2);
	    i__2 = jlast;
	    i__1 = jinc;
	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {

/*              Exit the loop if the growth factor is too small. */

		if (grow <= smlnum) {
		    goto L60;
		}

/*              G(j) = G(j-1)*( 1 + CNORM(j) ) */

		grow *= 1.f / (cnorm[j] + 1.f);
/* L50: */
	    }
	}
L60:

	;
    } else {

/*        Compute the growth in A**T * x = b  or  A**H * x = b. */

	if (upper) {
	    jfirst = 1;
	    jlast = *n;
	    jinc = 1;
	    maind = *kd + 1;
	} else {
	    jfirst = *n;
	    jlast = 1;
	    jinc = -1;
	    maind = 1;
	}

	if (tscal != 1.f) {
	    grow = 0.f;
	    goto L90;
	}

	if (nounit) {

/*           A is non-unit triangular. */

/*           Compute GROW = 1/G(j) and XBND = 1/M(j). */
/*           Initially, M(0) = max{x(i), i=1,...,n}. */

	    grow = .5f / dmax(xbnd,smlnum);
	    xbnd = grow;
	    i__1 = jlast;
	    i__2 = jinc;
	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {

/*              Exit the loop if the growth factor is too small. */

		if (grow <= smlnum) {
		    goto L90;
		}

/*              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */

		xj = cnorm[j] + 1.f;
/* Computing MIN */
		r__1 = grow, r__2 = xbnd / xj;
		grow = dmin(r__1,r__2);

		i__3 = maind + j * ab_dim1;
		tjjs.r = ab[i__3].r, tjjs.i = ab[i__3].i;
		tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs), 
			dabs(r__2));

		if (tjj >= smlnum) {

/*                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */

		    if (xj > tjj) {
			xbnd *= tjj / xj;
		    }
		} else {

/*                 M(j) could overflow, set XBND to 0. */

		    xbnd = 0.f;
		}
/* L70: */
	    }
	    grow = dmin(grow,xbnd);
	} else {

/*           A is unit triangular. */

/*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. */

/* Computing MIN */
	    r__1 = 1.f, r__2 = .5f / dmax(xbnd,smlnum);
	    grow = dmin(r__1,r__2);
	    i__2 = jlast;
	    i__1 = jinc;
	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {

/*              Exit the loop if the growth factor is too small. */

		if (grow <= smlnum) {
		    goto L90;
		}

/*              G(j) = ( 1 + CNORM(j) )*G(j-1) */

		xj = cnorm[j] + 1.f;
		grow /= xj;
/* L80: */
	    }
	}
L90:
	;
    }

    if (grow * tscal > smlnum) {

/*        Use the Level 2 BLAS solve if the reciprocal of the bound on */
/*        elements of X is not too small. */

	ctbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &x[1], &c__1);
    } else {

/*        Use a Level 1 BLAS solve, scaling intermediate results. */

	if (xmax > bignum * .5f) {

/*           Scale X so that its components are less than or equal to */
/*           BIGNUM in absolute value. */

	    *scale = bignum * .5f / xmax;
	    csscal_(n, scale, &x[1], &c__1);
	    xmax = bignum;
	} else {
	    xmax *= 2.f;
	}

	if (notran) {

/*           Solve A * x = b */

	    i__1 = jlast;
	    i__2 = jinc;
	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {

/*              Compute x(j) = b(j) / A(j,j), scaling x if necessary. */

		i__3 = j;
		xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j]), 
			dabs(r__2));
		if (nounit) {
		    i__3 = maind + j * ab_dim1;
		    q__1.r = tscal * ab[i__3].r, q__1.i = tscal * ab[i__3].i;
		    tjjs.r = q__1.r, tjjs.i = q__1.i;
		} else {
		    tjjs.r = tscal, tjjs.i = 0.f;
		    if (tscal == 1.f) {
			goto L105;
		    }
		}
		tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs), 
			dabs(r__2));
		if (tjj > smlnum) {

/*                    abs(A(j,j)) > SMLNUM: */

		    if (tjj < 1.f) {
			if (xj > tjj * bignum) {

/*                          Scale x by 1/b(j). */

			    rec = 1.f / xj;
			    csscal_(n, &rec, &x[1], &c__1);
			    *scale *= rec;
			    xmax *= rec;
			}
		    }
		    i__3 = j;
		    cladiv_(&q__1, &x[j], &tjjs);
		    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
		    i__3 = j;
		    xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j]
			    ), dabs(r__2));
		} else if (tjj > 0.f) {

/*                    0 < abs(A(j,j)) <= SMLNUM: */

		    if (xj > tjj * bignum) {

/*                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
/*                       to avoid overflow when dividing by A(j,j). */

			rec = tjj * bignum / xj;
			if (cnorm[j] > 1.f) {

/*                          Scale by 1/CNORM(j) to avoid overflow when */
/*                          multiplying x(j) times column j. */

			    rec /= cnorm[j];
			}
			csscal_(n, &rec, &x[1], &c__1);
			*scale *= rec;
			xmax *= rec;
		    }
		    i__3 = j;
		    cladiv_(&q__1, &x[j], &tjjs);
		    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
		    i__3 = j;
		    xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j]
			    ), dabs(r__2));
		} else {

/*                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
/*                    scale = 0, and compute a solution to A*x = 0. */

		    i__3 = *n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = i__;
			x[i__4].r = 0.f, x[i__4].i = 0.f;
/* L100: */
		    }
		    i__3 = j;
		    x[i__3].r = 1.f, x[i__3].i = 0.f;
		    xj = 1.f;
		    *scale = 0.f;
		    xmax = 0.f;
		}
L105:

/*              Scale x if necessary to avoid overflow when adding a */
/*              multiple of column j of A. */

		if (xj > 1.f) {
		    rec = 1.f / xj;
		    if (cnorm[j] > (bignum - xmax) * rec) {

/*                    Scale x by 1/(2*abs(x(j))). */

			rec *= .5f;
			csscal_(n, &rec, &x[1], &c__1);
			*scale *= rec;
		    }
		} else if (xj * cnorm[j] > bignum - xmax) {

/*                 Scale x by 1/2. */

		    csscal_(n, &c_b36, &x[1], &c__1);
		    *scale *= .5f;
		}

		if (upper) {
		    if (j > 1) {

/*                    Compute the update */
/*                       x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) - */
/*                                             x(j)* A(max(1,j-kd):j-1,j) */

/* Computing MIN */
			i__3 = *kd, i__4 = j - 1;
			jlen = min(i__3,i__4);
			i__3 = j;
			q__2.r = -x[i__3].r, q__2.i = -x[i__3].i;
			q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
			caxpy_(&jlen, &q__1, &ab[*kd + 1 - jlen + j * ab_dim1]
, &c__1, &x[j - jlen], &c__1);
			i__3 = j - 1;
			i__ = icamax_(&i__3, &x[1], &c__1);
			i__3 = i__;
			xmax = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = 
				r_imag(&x[i__]), dabs(r__2));
		    }
		} else if (j < *n) {

/*                 Compute the update */
/*                    x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) - */
/*                                          x(j) * A(j+1:min(j+kd,n),j) */

/* Computing MIN */
		    i__3 = *kd, i__4 = *n - j;
		    jlen = min(i__3,i__4);
		    if (jlen > 0) {
			i__3 = j;
			q__2.r = -x[i__3].r, q__2.i = -x[i__3].i;
			q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
			caxpy_(&jlen, &q__1, &ab[j * ab_dim1 + 2], &c__1, &x[
				j + 1], &c__1);
		    }
		    i__3 = *n - j;
		    i__ = j + icamax_(&i__3, &x[j + 1], &c__1);
		    i__3 = i__;
		    xmax = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[
			    i__]), dabs(r__2));
		}
/* L110: */
	    }

	} else if (lsame_(trans, "T")) {

/*           Solve A**T * x = b */

	    i__2 = jlast;
	    i__1 = jinc;
	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {

/*              Compute x(j) = b(j) - sum A(k,j)*x(k). */
/*                                    k<>j */

		i__3 = j;
		xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j]), 
			dabs(r__2));
		uscal.r = tscal, uscal.i = 0.f;
		rec = 1.f / dmax(xmax,1.f);
		if (cnorm[j] > (bignum - xj) * rec) {

/*                 If x(j) could overflow, scale x by 1/(2*XMAX). */

		    rec *= .5f;
		    if (nounit) {
			i__3 = maind + j * ab_dim1;
			q__1.r = tscal * ab[i__3].r, q__1.i = tscal * ab[i__3]
				.i;
			tjjs.r = q__1.r, tjjs.i = q__1.i;
		    } else {
			tjjs.r = tscal, tjjs.i = 0.f;
		    }
		    tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs),
			     dabs(r__2));
		    if (tjj > 1.f) {

/*                       Divide by A(j,j) when scaling x if A(j,j) > 1. */

/* Computing MIN */
			r__1 = 1.f, r__2 = rec * tjj;
			rec = dmin(r__1,r__2);
			cladiv_(&q__1, &uscal, &tjjs);
			uscal.r = q__1.r, uscal.i = q__1.i;
		    }
		    if (rec < 1.f) {
			csscal_(n, &rec, &x[1], &c__1);
			*scale *= rec;
			xmax *= rec;
		    }
		}

		csumj.r = 0.f, csumj.i = 0.f;
		if (uscal.r == 1.f && uscal.i == 0.f) {

/*                 If the scaling needed for A in the dot product is 1, */
/*                 call CDOTU to perform the dot product. */

		    if (upper) {
/* Computing MIN */
			i__3 = *kd, i__4 = j - 1;
			jlen = min(i__3,i__4);
			cdotu_(&q__1, &jlen, &ab[*kd + 1 - jlen + j * ab_dim1]
, &c__1, &x[j - jlen], &c__1);
			csumj.r = q__1.r, csumj.i = q__1.i;
		    } else {
/* Computing MIN */
			i__3 = *kd, i__4 = *n - j;
			jlen = min(i__3,i__4);
			if (jlen > 1) {
			    cdotu_(&q__1, &jlen, &ab[j * ab_dim1 + 2], &c__1, 
				    &x[j + 1], &c__1);
			    csumj.r = q__1.r, csumj.i = q__1.i;
			}
		    }
		} else {

/*                 Otherwise, use in-line code for the dot product. */

		    if (upper) {
/* Computing MIN */
			i__3 = *kd, i__4 = j - 1;
			jlen = min(i__3,i__4);
			i__3 = jlen;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = *kd + i__ - jlen + j * ab_dim1;
			    q__3.r = ab[i__4].r * uscal.r - ab[i__4].i * 
				    uscal.i, q__3.i = ab[i__4].r * uscal.i + 
				    ab[i__4].i * uscal.r;
			    i__5 = j - jlen - 1 + i__;
			    q__2.r = q__3.r * x[i__5].r - q__3.i * x[i__5].i, 
				    q__2.i = q__3.r * x[i__5].i + q__3.i * x[
				    i__5].r;
			    q__1.r = csumj.r + q__2.r, q__1.i = csumj.i + 
				    q__2.i;
			    csumj.r = q__1.r, csumj.i = q__1.i;
/* L120: */
			}
		    } else {
/* Computing MIN */
			i__3 = *kd, i__4 = *n - j;
			jlen = min(i__3,i__4);
			i__3 = jlen;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = i__ + 1 + j * ab_dim1;
			    q__3.r = ab[i__4].r * uscal.r - ab[i__4].i * 
				    uscal.i, q__3.i = ab[i__4].r * uscal.i + 
				    ab[i__4].i * uscal.r;
			    i__5 = j + i__;
			    q__2.r = q__3.r * x[i__5].r - q__3.i * x[i__5].i, 
				    q__2.i = q__3.r * x[i__5].i + q__3.i * x[
				    i__5].r;
			    q__1.r = csumj.r + q__2.r, q__1.i = csumj.i + 
				    q__2.i;
			    csumj.r = q__1.r, csumj.i = q__1.i;
/* L130: */
			}
		    }
		}

		q__1.r = tscal, q__1.i = 0.f;
		if (uscal.r == q__1.r && uscal.i == q__1.i) {

/*                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
/*                 was not used to scale the dotproduct. */

		    i__3 = j;
		    i__4 = j;
		    q__1.r = x[i__4].r - csumj.r, q__1.i = x[i__4].i - 
			    csumj.i;
		    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
		    i__3 = j;
		    xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j]
			    ), dabs(r__2));
		    if (nounit) {

/*                    Compute x(j) = x(j) / A(j,j), scaling if necessary. */

			i__3 = maind + j * ab_dim1;
			q__1.r = tscal * ab[i__3].r, q__1.i = tscal * ab[i__3]
				.i;
			tjjs.r = q__1.r, tjjs.i = q__1.i;
		    } else {
			tjjs.r = tscal, tjjs.i = 0.f;
			if (tscal == 1.f) {
			    goto L145;
			}
		    }
		    tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs),
			     dabs(r__2));
		    if (tjj > smlnum) {

/*                       abs(A(j,j)) > SMLNUM: */

			if (tjj < 1.f) {
			    if (xj > tjj * bignum) {

/*                             Scale X by 1/abs(x(j)). */

				rec = 1.f / xj;
				csscal_(n, &rec, &x[1], &c__1);
				*scale *= rec;
				xmax *= rec;
			    }
			}
			i__3 = j;
			cladiv_(&q__1, &x[j], &tjjs);
			x[i__3].r = q__1.r, x[i__3].i = q__1.i;
		    } else if (tjj > 0.f) {

/*                       0 < abs(A(j,j)) <= SMLNUM: */

			if (xj > tjj * bignum) {

/*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */

			    rec = tjj * bignum / xj;
			    csscal_(n, &rec, &x[1], &c__1);
			    *scale *= rec;
			    xmax *= rec;
			}
			i__3 = j;
			cladiv_(&q__1, &x[j], &tjjs);
			x[i__3].r = q__1.r, x[i__3].i = q__1.i;
		    } else {

/*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
/*                       scale = 0 and compute a solution to A**T *x = 0. */

			i__3 = *n;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = i__;
			    x[i__4].r = 0.f, x[i__4].i = 0.f;
/* L140: */
			}
			i__3 = j;
			x[i__3].r = 1.f, x[i__3].i = 0.f;
			*scale = 0.f;
			xmax = 0.f;
		    }
L145:
		    ;
		} else {

/*                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
/*                 product has already been divided by 1/A(j,j). */

		    i__3 = j;
		    cladiv_(&q__2, &x[j], &tjjs);
		    q__1.r = q__2.r - csumj.r, q__1.i = q__2.i - csumj.i;
		    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
		}
/* Computing MAX */
		i__3 = j;
		r__3 = xmax, r__4 = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = 
			r_imag(&x[j]), dabs(r__2));
		xmax = dmax(r__3,r__4);
/* L150: */
	    }

	} else {

/*           Solve A**H * x = b */

	    i__1 = jlast;
	    i__2 = jinc;
	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {

/*              Compute x(j) = b(j) - sum A(k,j)*x(k). */
/*                                    k<>j */

		i__3 = j;
		xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j]), 
			dabs(r__2));
		uscal.r = tscal, uscal.i = 0.f;
		rec = 1.f / dmax(xmax,1.f);
		if (cnorm[j] > (bignum - xj) * rec) {

/*                 If x(j) could overflow, scale x by 1/(2*XMAX). */

		    rec *= .5f;
		    if (nounit) {
			r_cnjg(&q__2, &ab[maind + j * ab_dim1]);
			q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
			tjjs.r = q__1.r, tjjs.i = q__1.i;
		    } else {
			tjjs.r = tscal, tjjs.i = 0.f;
		    }
		    tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs),
			     dabs(r__2));
		    if (tjj > 1.f) {

/*                       Divide by A(j,j) when scaling x if A(j,j) > 1. */

/* Computing MIN */
			r__1 = 1.f, r__2 = rec * tjj;
			rec = dmin(r__1,r__2);
			cladiv_(&q__1, &uscal, &tjjs);
			uscal.r = q__1.r, uscal.i = q__1.i;
		    }
		    if (rec < 1.f) {
			csscal_(n, &rec, &x[1], &c__1);
			*scale *= rec;
			xmax *= rec;
		    }
		}

		csumj.r = 0.f, csumj.i = 0.f;
		if (uscal.r == 1.f && uscal.i == 0.f) {

/*                 If the scaling needed for A in the dot product is 1, */
/*                 call CDOTC to perform the dot product. */

		    if (upper) {
/* Computing MIN */
			i__3 = *kd, i__4 = j - 1;
			jlen = min(i__3,i__4);
			cdotc_(&q__1, &jlen, &ab[*kd + 1 - jlen + j * ab_dim1]
, &c__1, &x[j - jlen], &c__1);
			csumj.r = q__1.r, csumj.i = q__1.i;
		    } else {
/* Computing MIN */
			i__3 = *kd, i__4 = *n - j;
			jlen = min(i__3,i__4);
			if (jlen > 1) {
			    cdotc_(&q__1, &jlen, &ab[j * ab_dim1 + 2], &c__1, 
				    &x[j + 1], &c__1);
			    csumj.r = q__1.r, csumj.i = q__1.i;
			}
		    }
		} else {

/*                 Otherwise, use in-line code for the dot product. */

		    if (upper) {
/* Computing MIN */
			i__3 = *kd, i__4 = j - 1;
			jlen = min(i__3,i__4);
			i__3 = jlen;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    r_cnjg(&q__4, &ab[*kd + i__ - jlen + j * ab_dim1])
				    ;
			    q__3.r = q__4.r * uscal.r - q__4.i * uscal.i, 
				    q__3.i = q__4.r * uscal.i + q__4.i * 
				    uscal.r;
			    i__4 = j - jlen - 1 + i__;
			    q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, 
				    q__2.i = q__3.r * x[i__4].i + q__3.i * x[
				    i__4].r;
			    q__1.r = csumj.r + q__2.r, q__1.i = csumj.i + 
				    q__2.i;
			    csumj.r = q__1.r, csumj.i = q__1.i;
/* L160: */
			}
		    } else {
/* Computing MIN */
			i__3 = *kd, i__4 = *n - j;
			jlen = min(i__3,i__4);
			i__3 = jlen;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    r_cnjg(&q__4, &ab[i__ + 1 + j * ab_dim1]);
			    q__3.r = q__4.r * uscal.r - q__4.i * uscal.i, 
				    q__3.i = q__4.r * uscal.i + q__4.i * 
				    uscal.r;
			    i__4 = j + i__;
			    q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, 
				    q__2.i = q__3.r * x[i__4].i + q__3.i * x[
				    i__4].r;
			    q__1.r = csumj.r + q__2.r, q__1.i = csumj.i + 
				    q__2.i;
			    csumj.r = q__1.r, csumj.i = q__1.i;
/* L170: */
			}
		    }
		}

		q__1.r = tscal, q__1.i = 0.f;
		if (uscal.r == q__1.r && uscal.i == q__1.i) {

/*                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
/*                 was not used to scale the dotproduct. */

		    i__3 = j;
		    i__4 = j;
		    q__1.r = x[i__4].r - csumj.r, q__1.i = x[i__4].i - 
			    csumj.i;
		    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
		    i__3 = j;
		    xj = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[j]
			    ), dabs(r__2));
		    if (nounit) {

/*                    Compute x(j) = x(j) / A(j,j), scaling if necessary. */

			r_cnjg(&q__2, &ab[maind + j * ab_dim1]);
			q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
			tjjs.r = q__1.r, tjjs.i = q__1.i;
		    } else {
			tjjs.r = tscal, tjjs.i = 0.f;
			if (tscal == 1.f) {
			    goto L185;
			}
		    }
		    tjj = (r__1 = tjjs.r, dabs(r__1)) + (r__2 = r_imag(&tjjs),
			     dabs(r__2));
		    if (tjj > smlnum) {

/*                       abs(A(j,j)) > SMLNUM: */

			if (tjj < 1.f) {
			    if (xj > tjj * bignum) {

/*                             Scale X by 1/abs(x(j)). */

				rec = 1.f / xj;
				csscal_(n, &rec, &x[1], &c__1);
				*scale *= rec;
				xmax *= rec;
			    }
			}
			i__3 = j;
			cladiv_(&q__1, &x[j], &tjjs);
			x[i__3].r = q__1.r, x[i__3].i = q__1.i;
		    } else if (tjj > 0.f) {

/*                       0 < abs(A(j,j)) <= SMLNUM: */

			if (xj > tjj * bignum) {

/*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */

			    rec = tjj * bignum / xj;
			    csscal_(n, &rec, &x[1], &c__1);
			    *scale *= rec;
			    xmax *= rec;
			}
			i__3 = j;
			cladiv_(&q__1, &x[j], &tjjs);
			x[i__3].r = q__1.r, x[i__3].i = q__1.i;
		    } else {

/*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
/*                       scale = 0 and compute a solution to A**H *x = 0. */

			i__3 = *n;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = i__;
			    x[i__4].r = 0.f, x[i__4].i = 0.f;
/* L180: */
			}
			i__3 = j;
			x[i__3].r = 1.f, x[i__3].i = 0.f;
			*scale = 0.f;
			xmax = 0.f;
		    }
L185:
		    ;
		} else {

/*                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
/*                 product has already been divided by 1/A(j,j). */

		    i__3 = j;
		    cladiv_(&q__2, &x[j], &tjjs);
		    q__1.r = q__2.r - csumj.r, q__1.i = q__2.i - csumj.i;
		    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
		}
/* Computing MAX */
		i__3 = j;
		r__3 = xmax, r__4 = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = 
			r_imag(&x[j]), dabs(r__2));
		xmax = dmax(r__3,r__4);
/* L190: */
	    }
	}
	*scale /= tscal;
    }

/*     Scale the column norms by 1/TSCAL for return. */

    if (tscal != 1.f) {
	r__1 = 1.f / tscal;
	sscal_(n, &r__1, &cnorm[1], &c__1);
    }

    return 0;

/*     End of CLATBS */

} /* clatbs_ */
Esempio n. 7
0
/* Subroutine */ int cchktb_(logical *dotype, integer *nn, integer *nval, 
	integer *nns, integer *nsval, real *thresh, logical *tsterr, integer *
	nmax, complex *ab, complex *ainv, complex *b, complex *x, complex *
	xact, complex *work, real *rwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO='\002,a1,\002', TRANS='\002,a1,\002"
	    "',                        DIAG='\002,a1,\002', N=\002,i5,\002, K"
	    "D=\002,i5,\002, NRHS=\002,i5,\002, type \002,i2,\002, test(\002,"
	    "i2,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002', "
	    "'\002,a1,\002',\002,i5,\002,\002,i5,\002,  ... ), type \002,i2"
	    ",\002, test(\002,i2,\002)=\002,g12.5)";
    static char fmt_9997[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002', "
	    "'\002,a1,\002', '\002,a1,\002',\002,i5,\002,\002,i5,\002, ...  )"
	    ",  type \002,i2,\002, test(\002,i1,\002)=\002,g12.5)";

    /* System generated locals */
    address a__1[3], a__2[4];
    integer i__1, i__2, i__3, i__4, i__5, i__6[3], i__7[4];
    char ch__1[3], ch__2[4];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen), s_cat(char *,
	     char **, integer *, integer *, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, n, kd, ik, in, nk, lda, ldab;
    char diag[1];
    integer imat, info;
    char path[3];
    integer irhs, nrhs;
    char norm[1], uplo[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer idiag;
    extern /* Subroutine */ int cget04_(integer *, integer *, complex *, 
	    integer *, complex *, integer *, real *, real *);
    real scale;
    integer nfail, iseed[4];
    extern /* Subroutine */ int ctbt02_(char *, char *, char *, integer *, 
	    integer *, integer *, complex *, integer *, complex *, integer *, 
	    complex *, integer *, complex *, real *, real *), ctbt03_(char *, char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, real *, real *, real *, complex *
, integer *, complex *, integer *, complex *, real *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int ctbt05_(char *, char *, char *, integer *, 
	    integer *, integer *, complex *, integer *, complex *, integer *, 
	    complex *, integer *, complex *, integer *, real *, real *, real *
), ctbt06_(real *, real *, char *, char *, 
	     integer *, integer *, complex *, integer *, real *, real *);
    real rcond;
    integer nimat;
    real anorm;
    integer itran;
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *), ctbsv_(char *, char *, char *, integer *, 
	    integer *, complex *, integer *, complex *, integer *);
    char trans[1];
    integer iuplo, nerrs;
    char xtype[1];
    integer nimat2;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    extern doublereal clantb_(char *, char *, char *, integer *, integer *, 
	    complex *, integer *, real *);
    real rcondc;
    extern /* Subroutine */ int clatbs_(char *, char *, char *, char *, 
	    integer *, integer *, complex *, integer *, complex *, real *, 
	    real *, integer *), clattb_(
	    integer *, char *, char *, char *, integer *, integer *, integer *
, complex *, integer *, complex *, complex *, real *, integer *), clacpy_(char *, integer *, integer *, 
	    complex *, integer *, complex *, integer *), clarhs_(char 
	    *, char *, char *, char *, integer *, integer *, integer *, 
	    integer *, integer *, complex *, integer *, complex *, integer *, 
	    complex *, integer *, integer *, integer *), claset_(char *, integer *, integer *, complex *, 
	    complex *, complex *, integer *);
    real rcondi;
    extern /* Subroutine */ int ctbcon_(char *, char *, char *, integer *, 
	    integer *, complex *, integer *, real *, complex *, real *, 
	    integer *);
    extern doublereal clantr_(char *, char *, char *, integer *, integer *, 
	    complex *, integer *, real *);
    real rcondo;
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer 
	    *, integer *), ctbrfs_(char *, char *, char *, integer *, 
	    integer *, integer *, complex *, integer *, complex *, integer *, 
	    complex *, integer *, real *, real *, complex *, real *, integer *
);
    real ainvnm;
    extern /* Subroutine */ int cerrtr_(char *, integer *), ctbtrs_(
	    char *, char *, char *, integer *, integer *, integer *, complex *
, integer *, complex *, integer *, integer *);
    real result[8];

    /* Fortran I/O blocks */
    static cilist io___39 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9997, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CCHKTB tests CTBTRS, -RFS, and -CON, and CLATBS. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The leading dimension of the work arrays. */
/*          NMAX >= the maximum value of N in NVAL. */

/*  AB      (workspace) COMPLEX array, dimension (NMAX*NMAX) */

/*  AINV    (workspace) COMPLEX array, dimension (NMAX*NMAX) */

/*  B       (workspace) COMPLEX array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) COMPLEX array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) COMPLEX array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) COMPLEX array, dimension */
/*                      (NMAX*max(3,NSMAX)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NSMAX)) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --ab;
    --nsval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "TB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	cerrtr_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL */

	n = nval[in];
	lda = max(1,n);
	*(unsigned char *)xtype = 'N';
	nimat = 9;
	nimat2 = 17;
	if (n <= 0) {
	    nimat = 1;
	    nimat2 = 10;
	}

/* Computing MIN */
	i__2 = n + 1;
	nk = min(i__2,4);
	i__2 = nk;
	for (ik = 1; ik <= i__2; ++ik) {

/*           Do for KD = 0, N, (3N-1)/4, and (N+1)/4. This order makes */
/*           it easier to skip redundant values for small values of N. */

	    if (ik == 1) {
		kd = 0;
	    } else if (ik == 2) {
		kd = max(n,0);
	    } else if (ik == 3) {
		kd = (n * 3 - 1) / 4;
	    } else if (ik == 4) {
		kd = (n + 1) / 4;
	    }
	    ldab = kd + 1;

	    i__3 = nimat;
	    for (imat = 1; imat <= i__3; ++imat) {

/*              Do the tests only if DOTYPE( IMAT ) is true. */

		if (! dotype[imat]) {
		    goto L90;
		}

		for (iuplo = 1; iuplo <= 2; ++iuplo) {

/*                 Do first for UPLO = 'U', then for UPLO = 'L' */

		    *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 
			    1];

/*                 Call CLATTB to generate a triangular test matrix. */

		    s_copy(srnamc_1.srnamt, "CLATTB", (ftnlen)32, (ftnlen)6);
		    clattb_(&imat, uplo, "No transpose", diag, iseed, &n, &kd, 
			     &ab[1], &ldab, &x[1], &work[1], &rwork[1], &info);

/*                 Set IDIAG = 1 for non-unit matrices, 2 for unit. */

		    if (lsame_(diag, "N")) {
			idiag = 1;
		    } else {
			idiag = 2;
		    }

/*                 Form the inverse of A so we can get a good estimate */
/*                 of RCONDC = 1/(norm(A) * norm(inv(A))). */

		    claset_("Full", &n, &n, &c_b14, &c_b15, &ainv[1], &lda);
		    if (lsame_(uplo, "U")) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    ctbsv_(uplo, "No transpose", diag, &j, &kd, &ab[1]
, &ldab, &ainv[(j - 1) * lda + 1], &c__1);
/* L20: */
			}
		    } else {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    i__5 = n - j + 1;
			    ctbsv_(uplo, "No transpose", diag, &i__5, &kd, &
				    ab[(j - 1) * ldab + 1], &ldab, &ainv[(j - 
				    1) * lda + j], &c__1);
/* L30: */
			}
		    }

/*                 Compute the 1-norm condition number of A. */

		    anorm = clantb_("1", uplo, diag, &n, &kd, &ab[1], &ldab, &
			    rwork[1]);
		    ainvnm = clantr_("1", uplo, diag, &n, &n, &ainv[1], &lda, 
			    &rwork[1]);
		    if (anorm <= 0.f || ainvnm <= 0.f) {
			rcondo = 1.f;
		    } else {
			rcondo = 1.f / anorm / ainvnm;
		    }

/*                 Compute the infinity-norm condition number of A. */

		    anorm = clantb_("I", uplo, diag, &n, &kd, &ab[1], &ldab, &
			    rwork[1]);
		    ainvnm = clantr_("I", uplo, diag, &n, &n, &ainv[1], &lda, 
			    &rwork[1]);
		    if (anorm <= 0.f || ainvnm <= 0.f) {
			rcondi = 1.f;
		    } else {
			rcondi = 1.f / anorm / ainvnm;
		    }

		    i__4 = *nns;
		    for (irhs = 1; irhs <= i__4; ++irhs) {
			nrhs = nsval[irhs];
			*(unsigned char *)xtype = 'N';

			for (itran = 1; itran <= 3; ++itran) {

/*                    Do for op(A) = A, A**T, or A**H. */

			    *(unsigned char *)trans = *(unsigned char *)&
				    transs[itran - 1];
			    if (itran == 1) {
				*(unsigned char *)norm = 'O';
				rcondc = rcondo;
			    } else {
				*(unsigned char *)norm = 'I';
				rcondc = rcondi;
			    }

/* +    TEST 1 */
/*                    Solve and compute residual for op(A)*x = b. */

			    s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)32, (
				    ftnlen)6);
			    clarhs_(path, xtype, uplo, trans, &n, &n, &kd, &
				    idiag, &nrhs, &ab[1], &ldab, &xact[1], &
				    lda, &b[1], &lda, iseed, &info);
			    *(unsigned char *)xtype = 'C';
			    clacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "CTBTRS", (ftnlen)32, (
				    ftnlen)6);
			    ctbtrs_(uplo, trans, diag, &n, &kd, &nrhs, &ab[1], 
				     &ldab, &x[1], &lda, &info);

/*                    Check error code from CTBTRS. */

			    if (info != 0) {
/* Writing concatenation */
				i__6[0] = 1, a__1[0] = uplo;
				i__6[1] = 1, a__1[1] = trans;
				i__6[2] = 1, a__1[2] = diag;
				s_cat(ch__1, a__1, i__6, &c__3, (ftnlen)3);
				alaerh_(path, "CTBTRS", &info, &c__0, ch__1, &
					n, &n, &kd, &kd, &nrhs, &imat, &nfail, 
					 &nerrs, nout);
			    }

			    ctbt02_(uplo, trans, diag, &n, &kd, &nrhs, &ab[1], 
				     &ldab, &x[1], &lda, &b[1], &lda, &work[1]
, &rwork[1], result);

/* +    TEST 2 */
/*                    Check solution from generated exact solution. */

			    cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[1]);

/* +    TESTS 3, 4, and 5 */
/*                    Use iterative refinement to improve the solution */
/*                    and compute error bounds. */

			    s_copy(srnamc_1.srnamt, "CTBRFS", (ftnlen)32, (
				    ftnlen)6);
			    ctbrfs_(uplo, trans, diag, &n, &kd, &nrhs, &ab[1], 
				     &ldab, &b[1], &lda, &x[1], &lda, &rwork[
				    1], &rwork[nrhs + 1], &work[1], &rwork[(
				    nrhs << 1) + 1], &info);

/*                    Check error code from CTBRFS. */

			    if (info != 0) {
/* Writing concatenation */
				i__6[0] = 1, a__1[0] = uplo;
				i__6[1] = 1, a__1[1] = trans;
				i__6[2] = 1, a__1[2] = diag;
				s_cat(ch__1, a__1, i__6, &c__3, (ftnlen)3);
				alaerh_(path, "CTBRFS", &info, &c__0, ch__1, &
					n, &n, &kd, &kd, &nrhs, &imat, &nfail, 
					 &nerrs, nout);
			    }

			    cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[2]);
			    ctbt05_(uplo, trans, diag, &n, &kd, &nrhs, &ab[1], 
				     &ldab, &b[1], &lda, &x[1], &lda, &xact[1]
, &lda, &rwork[1], &rwork[nrhs + 1], &
				    result[3]);

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    for (k = 1; k <= 5; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					alahd_(nout, path);
				    }
				    io___39.ciunit = *nout;
				    s_wsfe(&io___39);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, diag, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&kd, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&nrhs, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(real));
				    e_wsfe();
				    ++nfail;
				}
/* L40: */
			    }
			    nrun += 5;
/* L50: */
			}
/* L60: */
		    }

/* +    TEST 6 */
/*                    Get an estimate of RCOND = 1/CNDNUM. */

		    for (itran = 1; itran <= 2; ++itran) {
			if (itran == 1) {
			    *(unsigned char *)norm = 'O';
			    rcondc = rcondo;
			} else {
			    *(unsigned char *)norm = 'I';
			    rcondc = rcondi;
			}
			s_copy(srnamc_1.srnamt, "CTBCON", (ftnlen)32, (ftnlen)
				6);
			ctbcon_(norm, uplo, diag, &n, &kd, &ab[1], &ldab, &
				rcond, &work[1], &rwork[1], &info);

/*                    Check error code from CTBCON. */

			if (info != 0) {
/* Writing concatenation */
			    i__6[0] = 1, a__1[0] = norm;
			    i__6[1] = 1, a__1[1] = uplo;
			    i__6[2] = 1, a__1[2] = diag;
			    s_cat(ch__1, a__1, i__6, &c__3, (ftnlen)3);
			    alaerh_(path, "CTBCON", &info, &c__0, ch__1, &n, &
				    n, &kd, &kd, &c_n1, &imat, &nfail, &nerrs, 
				     nout);
			}

			ctbt06_(&rcond, &rcondc, uplo, diag, &n, &kd, &ab[1], 
				&ldab, &rwork[1], &result[5]);

/*                    Print the test ratio if it is .GE. THRESH. */

			if (result[5] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___41.ciunit = *nout;
			    s_wsfe(&io___41);
			    do_fio(&c__1, "CTBCON", (ftnlen)6);
			    do_fio(&c__1, norm, (ftnlen)1);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, diag, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&kd, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&c__6, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&result[5], (ftnlen)sizeof(
				    real));
			    e_wsfe();
			    ++nfail;
			}
			++nrun;
/* L70: */
		    }
/* L80: */
		}
L90:
		;
	    }

/*           Use pathological test matrices to test CLATBS. */

	    i__3 = nimat2;
	    for (imat = 10; imat <= i__3; ++imat) {

/*              Do the tests only if DOTYPE( IMAT ) is true. */

		if (! dotype[imat]) {
		    goto L120;
		}

		for (iuplo = 1; iuplo <= 2; ++iuplo) {

/*                 Do first for UPLO = 'U', then for UPLO = 'L' */

		    *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 
			    1];
		    for (itran = 1; itran <= 3; ++itran) {

/*                    Do for op(A) = A, A**T, and A**H. */

			*(unsigned char *)trans = *(unsigned char *)&transs[
				itran - 1];

/*                    Call CLATTB to generate a triangular test matrix. */

			s_copy(srnamc_1.srnamt, "CLATTB", (ftnlen)32, (ftnlen)
				6);
			clattb_(&imat, uplo, trans, diag, iseed, &n, &kd, &ab[
				1], &ldab, &x[1], &work[1], &rwork[1], &info);

/* +    TEST 7 */
/*                    Solve the system op(A)*x = b */

			s_copy(srnamc_1.srnamt, "CLATBS", (ftnlen)32, (ftnlen)
				6);
			ccopy_(&n, &x[1], &c__1, &b[1], &c__1);
			clatbs_(uplo, trans, diag, "N", &n, &kd, &ab[1], &
				ldab, &b[1], &scale, &rwork[1], &info);

/*                    Check error code from CLATBS. */

			if (info != 0) {
/* Writing concatenation */
			    i__7[0] = 1, a__2[0] = uplo;
			    i__7[1] = 1, a__2[1] = trans;
			    i__7[2] = 1, a__2[2] = diag;
			    i__7[3] = 1, a__2[3] = "N";
			    s_cat(ch__2, a__2, i__7, &c__4, (ftnlen)4);
			    alaerh_(path, "CLATBS", &info, &c__0, ch__2, &n, &
				    n, &kd, &kd, &c_n1, &imat, &nfail, &nerrs, 
				     nout);
			}

			ctbt03_(uplo, trans, diag, &n, &kd, &c__1, &ab[1], &
				ldab, &scale, &rwork[1], &c_b90, &b[1], &lda, 
				&x[1], &lda, &work[1], &result[6]);

/* +    TEST 8 */
/*                    Solve op(A)*x = b again with NORMIN = 'Y'. */

			ccopy_(&n, &x[1], &c__1, &b[1], &c__1);
			clatbs_(uplo, trans, diag, "Y", &n, &kd, &ab[1], &
				ldab, &b[1], &scale, &rwork[1], &info);

/*                    Check error code from CLATBS. */

			if (info != 0) {
/* Writing concatenation */
			    i__7[0] = 1, a__2[0] = uplo;
			    i__7[1] = 1, a__2[1] = trans;
			    i__7[2] = 1, a__2[2] = diag;
			    i__7[3] = 1, a__2[3] = "Y";
			    s_cat(ch__2, a__2, i__7, &c__4, (ftnlen)4);
			    alaerh_(path, "CLATBS", &info, &c__0, ch__2, &n, &
				    n, &kd, &kd, &c_n1, &imat, &nfail, &nerrs, 
				     nout);
			}

			ctbt03_(uplo, trans, diag, &n, &kd, &c__1, &ab[1], &
				ldab, &scale, &rwork[1], &c_b90, &b[1], &lda, 
				&x[1], &lda, &work[1], &result[7]);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			if (result[6] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___43.ciunit = *nout;
			    s_wsfe(&io___43);
			    do_fio(&c__1, "CLATBS", (ftnlen)6);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, diag, (ftnlen)1);
			    do_fio(&c__1, "N", (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&kd, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(
				    real));
			    e_wsfe();
			    ++nfail;
			}
			if (result[7] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___44.ciunit = *nout;
			    s_wsfe(&io___44);
			    do_fio(&c__1, "CLATBS", (ftnlen)6);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, diag, (ftnlen)1);
			    do_fio(&c__1, "Y", (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&kd, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(
				    real));
			    e_wsfe();
			    ++nfail;
			}
			nrun += 2;
/* L100: */
		    }
/* L110: */
		}
L120:
		;
	    }
/* L130: */
	}
/* L140: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of CCHKTB */

} /* cchktb_ */
Esempio n. 8
0
/* Subroutine */ int cgbtrs_(char *trans, integer *n, integer *kl, integer *
	ku, integer *nrhs, complex *ab, integer *ldab, integer *ipiv, complex 
	*b, integer *ldb, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CGBTRS solves a system of linear equations   
       A * X = B,  A**T * X = B,  or  A**H * X = B   
    with a general band matrix A using the LU factorization computed   
    by CGBTRF.   

    Arguments   
    =========   

    TRANS   (input) CHARACTER*1   
            Specifies the form of the system of equations.   
            = 'N':  A * X = B     (No transpose)   
            = 'T':  A**T * X = B  (Transpose)   
            = 'C':  A**H * X = B  (Conjugate transpose)   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KL      (input) INTEGER   
            The number of subdiagonals within the band of A.  KL >= 0.   

    KU      (input) INTEGER   
            The number of superdiagonals within the band of A.  KU >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrix B.  NRHS >= 0.   

    AB      (input) COMPLEX array, dimension (LDAB,N)   
            Details of the LU factorization of the band matrix A, as   
            computed by CGBTRF.  U is stored as an upper triangular band   
            matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and   
            the multipliers used during the factorization are stored in   
            rows KL+KU+2 to 2*KL+KU+1.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.   

    IPIV    (input) INTEGER array, dimension (N)   
            The pivot indices; for 1 <= i <= N, row i of the matrix was   
            interchanged with row IPIV(i).   

    B       (input/output) COMPLEX array, dimension (LDB,NRHS)   
            On entry, the right hand side matrix B.   
            On exit, the solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static complex c_b1 = {1.f,0.f};
    static integer c__1 = 1;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, b_dim1, b_offset, i__1, i__2, i__3;
    complex q__1;
    /* Local variables */
    static integer i__, j, l;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
	    , complex *, integer *, complex *, integer *, complex *, complex *
	    , integer *), cgeru_(integer *, integer *, complex *, 
	    complex *, integer *, complex *, integer *, complex *, integer *),
	     cswap_(integer *, complex *, integer *, complex *, integer *), 
	    ctbsv_(char *, char *, char *, integer *, integer *, complex *, 
	    integer *, complex *, integer *);
    static logical lnoti;
    static integer kd, lm;
    extern /* Subroutine */ int clacgv_(integer *, complex *, integer *), 
	    xerbla_(char *, integer *);
    static logical notran;
#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]
#define ab_subscr(a_1,a_2) (a_2)*ab_dim1 + a_1
#define ab_ref(a_1,a_2) ab[ab_subscr(a_1,a_2)]


    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    notran = lsame_(trans, "N");
    if (! notran && ! lsame_(trans, "T") && ! lsame_(
	    trans, "C")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kl < 0) {
	*info = -3;
    } else if (*ku < 0) {
	*info = -4;
    } else if (*nrhs < 0) {
	*info = -5;
    } else if (*ldab < (*kl << 1) + *ku + 1) {
	*info = -7;
    } else if (*ldb < max(1,*n)) {
	*info = -10;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGBTRS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

    kd = *ku + *kl + 1;
    lnoti = *kl > 0;

    if (notran) {

/*        Solve  A*X = B.   

          Solve L*X = B, overwriting B with X.   

          L is represented as a product of permutations and unit lower   
          triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1),   
          where each transformation L(i) is a rank-one modification of   
          the identity matrix. */

	if (lnoti) {
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		i__2 = *kl, i__3 = *n - j;
		lm = min(i__2,i__3);
		l = ipiv[j];
		if (l != j) {
		    cswap_(nrhs, &b_ref(l, 1), ldb, &b_ref(j, 1), ldb);
		}
		q__1.r = -1.f, q__1.i = 0.f;
		cgeru_(&lm, nrhs, &q__1, &ab_ref(kd + 1, j), &c__1, &b_ref(j, 
			1), ldb, &b_ref(j + 1, 1), ldb);
/* L10: */
	    }
	}

	i__1 = *nrhs;
	for (i__ = 1; i__ <= i__1; ++i__) {

/*           Solve U*X = B, overwriting B with X. */

	    i__2 = *kl + *ku;
	    ctbsv_("Upper", "No transpose", "Non-unit", n, &i__2, &ab[
		    ab_offset], ldab, &b_ref(1, i__), &c__1);
/* L20: */
	}

    } else if (lsame_(trans, "T")) {

/*        Solve A**T * X = B. */

	i__1 = *nrhs;
	for (i__ = 1; i__ <= i__1; ++i__) {

/*           Solve U**T * X = B, overwriting B with X. */

	    i__2 = *kl + *ku;
	    ctbsv_("Upper", "Transpose", "Non-unit", n, &i__2, &ab[ab_offset],
		     ldab, &b_ref(1, i__), &c__1);
/* L30: */
	}

/*        Solve L**T * X = B, overwriting B with X. */

	if (lnoti) {
	    for (j = *n - 1; j >= 1; --j) {
/* Computing MIN */
		i__1 = *kl, i__2 = *n - j;
		lm = min(i__1,i__2);
		q__1.r = -1.f, q__1.i = 0.f;
		cgemv_("Transpose", &lm, nrhs, &q__1, &b_ref(j + 1, 1), ldb, &
			ab_ref(kd + 1, j), &c__1, &c_b1, &b_ref(j, 1), ldb);
		l = ipiv[j];
		if (l != j) {
		    cswap_(nrhs, &b_ref(l, 1), ldb, &b_ref(j, 1), ldb);
		}
/* L40: */
	    }
	}

    } else {

/*        Solve A**H * X = B. */

	i__1 = *nrhs;
	for (i__ = 1; i__ <= i__1; ++i__) {

/*           Solve U**H * X = B, overwriting B with X. */

	    i__2 = *kl + *ku;
	    ctbsv_("Upper", "Conjugate transpose", "Non-unit", n, &i__2, &ab[
		    ab_offset], ldab, &b_ref(1, i__), &c__1);
/* L50: */
	}

/*        Solve L**H * X = B, overwriting B with X. */

	if (lnoti) {
	    for (j = *n - 1; j >= 1; --j) {
/* Computing MIN */
		i__1 = *kl, i__2 = *n - j;
		lm = min(i__1,i__2);
		clacgv_(nrhs, &b_ref(j, 1), ldb);
		q__1.r = -1.f, q__1.i = 0.f;
		cgemv_("Conjugate transpose", &lm, nrhs, &q__1, &b_ref(j + 1, 
			1), ldb, &ab_ref(kd + 1, j), &c__1, &c_b1, &b_ref(j, 
			1), ldb);
		clacgv_(nrhs, &b_ref(j, 1), ldb);
		l = ipiv[j];
		if (l != j) {
		    cswap_(nrhs, &b_ref(l, 1), ldb, &b_ref(j, 1), ldb);
		}
/* L60: */
	    }
	}
    }
    return 0;

/*     End of CGBTRS */

} /* cgbtrs_ */
Esempio n. 9
0
 int ctbrfs_(char *uplo, char *trans, char *diag, int *n, 
	int *kd, int *nrhs, complex *ab, int *ldab, complex *b, 
	int *ldb, complex *x, int *ldx, float *ferr, float *berr, 
	complex *work, float *rwork, int *info)
{
    /* System generated locals */
    int ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, 
	    i__2, i__3, i__4, i__5;
    float r__1, r__2, r__3, r__4;
    complex q__1;

    /* Builtin functions */
    double r_imag(complex *);

    /* Local variables */
    int i__, j, k;
    float s, xk;
    int nz;
    float eps;
    int kase;
    float safe1, safe2;
    extern int lsame_(char *, char *);
    int isave[3];
    extern  int ctbmv_(char *, char *, char *, int *, 
	    int *, complex *, int *, complex *, int *), ccopy_(int *, complex *, int *, complex *
, int *), ctbsv_(char *, char *, char *, int *, int *, 
	     complex *, int *, complex *, int *), caxpy_(int *, complex *, complex *, int *, 
	    complex *, int *);
    int upper;
    extern  int clacn2_(int *, complex *, complex *, float 
	    *, int *, int *);
    extern double slamch_(char *);
    float safmin;
    extern  int xerbla_(char *, int *);
    int notran;
    char transn[1], transt[1];
    int nounit;
    float lstres;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CTBRFS provides error bounds and backward error estimates for the */
/*  solution to a system of linear equations with a triangular band */
/*  coefficient matrix. */

/*  The solution matrix X must be computed by CTBTRS or some other */
/*  means before entering this routine.  CTBRFS does not do iterative */
/*  refinement because doing so cannot improve the backward error. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  A is upper triangular; */
/*          = 'L':  A is lower triangular. */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the form of the system of equations: */
/*          = 'N':  A * X = B     (No transpose) */
/*          = 'T':  A**T * X = B  (Transpose) */
/*          = 'C':  A**H * X = B  (Conjugate transpose) */

/*  DIAG    (input) CHARACTER*1 */
/*          = 'N':  A is non-unit triangular; */
/*          = 'U':  A is unit triangular. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals or subdiagonals of the */
/*          triangular band matrix A.  KD >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  AB      (input) COMPLEX array, dimension (LDAB,N) */
/*          The upper or lower triangular band matrix A, stored in the */
/*          first kd+1 rows of the array. The j-th column of A is stored */
/*          in the j-th column of the array AB as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for MAX(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=MIN(n,j+kd). */
/*          If DIAG = 'U', the diagonal elements of A are not referenced */
/*          and are assumed to be 1. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD+1. */

/*  B       (input) COMPLEX array, dimension (LDB,NRHS) */
/*          The right hand side matrix B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= MAX(1,N). */

/*  X       (input) COMPLEX array, dimension (LDX,NRHS) */
/*          The solution matrix X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= MAX(1,N). */

/*  FERR    (output) REAL array, dimension (NRHS) */
/*          The estimated forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j).  The estimate is as reliable as */
/*          the estimate for RCOND, and is almost always a slight */
/*          overestimate of the true error. */

/*  BERR    (output) REAL array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in */
/*          any element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) COMPLEX array, dimension (2*N) */

/*  RWORK   (workspace) REAL array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function definitions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    notran = lsame_(trans, "N");
    nounit = lsame_(diag, "N");

    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (! notran && ! lsame_(trans, "T") && ! 
	    lsame_(trans, "C")) {
	*info = -2;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*kd < 0) {
	*info = -5;
    } else if (*nrhs < 0) {
	*info = -6;
    } else if (*ldab < *kd + 1) {
	*info = -8;
    } else if (*ldb < MAX(1,*n)) {
	*info = -10;
    } else if (*ldx < MAX(1,*n)) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CTBRFS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ferr[j] = 0.f;
	    berr[j] = 0.f;
/* L10: */
	}
	return 0;
    }

    if (notran) {
	*(unsigned char *)transn = 'N';
	*(unsigned char *)transt = 'C';
    } else {
	*(unsigned char *)transn = 'C';
	*(unsigned char *)transt = 'N';
    }

/*     NZ = maximum number of nonzero elements in each row of A, plus 1 */

    nz = *kd + 2;
    eps = slamch_("Epsilon");
    safmin = slamch_("Safe minimum");
    safe1 = nz * safmin;
    safe2 = safe1 / eps;

/*     Do for each right hand side */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {

/*        Compute residual R = B - op(A) * X, */
/*        where op(A) = A, A**T, or A**H, depending on TRANS. */

	ccopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1);
	ctbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], &
		c__1);
	q__1.r = -1.f, q__1.i = -0.f;
	caxpy_(n, &q__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);

/*        Compute componentwise relative backward error from formula */

/*        MAX(i) ( ABS(R(i)) / ( ABS(op(A))*ABS(X) + ABS(B) )(i) ) */

/*        where ABS(Z) is the componentwise absolute value of the matrix */
/*        or vector Z.  If the i-th component of the denominator is less */
/*        than SAFE2, then SAFE1 is added to the i-th components of the */
/*        numerator and denominator before dividing. */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    i__3 = i__ + j * b_dim1;
	    rwork[i__] = (r__1 = b[i__3].r, ABS(r__1)) + (r__2 = r_imag(&b[
		    i__ + j * b_dim1]), ABS(r__2));
/* L20: */
	}

	if (notran) {

/*           Compute ABS(A)*ABS(X) + ABS(B). */

	    if (upper) {
		if (nounit) {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			i__3 = k + j * x_dim1;
			xk = (r__1 = x[i__3].r, ABS(r__1)) + (r__2 = r_imag(&
				x[k + j * x_dim1]), ABS(r__2));
/* Computing MAX */
			i__3 = 1, i__4 = k - *kd;
			i__5 = k;
			for (i__ = MAX(i__3,i__4); i__ <= i__5; ++i__) {
			    i__3 = *kd + 1 + i__ - k + k * ab_dim1;
			    rwork[i__] += ((r__1 = ab[i__3].r, ABS(r__1)) + (
				    r__2 = r_imag(&ab[*kd + 1 + i__ - k + k * 
				    ab_dim1]), ABS(r__2))) * xk;
/* L30: */
			}
/* L40: */
		    }
		} else {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			i__5 = k + j * x_dim1;
			xk = (r__1 = x[i__5].r, ABS(r__1)) + (r__2 = r_imag(&
				x[k + j * x_dim1]), ABS(r__2));
/* Computing MAX */
			i__5 = 1, i__3 = k - *kd;
			i__4 = k - 1;
			for (i__ = MAX(i__5,i__3); i__ <= i__4; ++i__) {
			    i__5 = *kd + 1 + i__ - k + k * ab_dim1;
			    rwork[i__] += ((r__1 = ab[i__5].r, ABS(r__1)) + (
				    r__2 = r_imag(&ab[*kd + 1 + i__ - k + k * 
				    ab_dim1]), ABS(r__2))) * xk;
/* L50: */
			}
			rwork[k] += xk;
/* L60: */
		    }
		}
	    } else {
		if (nounit) {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			i__4 = k + j * x_dim1;
			xk = (r__1 = x[i__4].r, ABS(r__1)) + (r__2 = r_imag(&
				x[k + j * x_dim1]), ABS(r__2));
/* Computing MIN */
			i__5 = *n, i__3 = k + *kd;
			i__4 = MIN(i__5,i__3);
			for (i__ = k; i__ <= i__4; ++i__) {
			    i__5 = i__ + 1 - k + k * ab_dim1;
			    rwork[i__] += ((r__1 = ab[i__5].r, ABS(r__1)) + (
				    r__2 = r_imag(&ab[i__ + 1 - k + k * 
				    ab_dim1]), ABS(r__2))) * xk;
/* L70: */
			}
/* L80: */
		    }
		} else {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			i__4 = k + j * x_dim1;
			xk = (r__1 = x[i__4].r, ABS(r__1)) + (r__2 = r_imag(&
				x[k + j * x_dim1]), ABS(r__2));
/* Computing MIN */
			i__5 = *n, i__3 = k + *kd;
			i__4 = MIN(i__5,i__3);
			for (i__ = k + 1; i__ <= i__4; ++i__) {
			    i__5 = i__ + 1 - k + k * ab_dim1;
			    rwork[i__] += ((r__1 = ab[i__5].r, ABS(r__1)) + (
				    r__2 = r_imag(&ab[i__ + 1 - k + k * 
				    ab_dim1]), ABS(r__2))) * xk;
/* L90: */
			}
			rwork[k] += xk;
/* L100: */
		    }
		}
	    }
	} else {

/*           Compute ABS(A**H)*ABS(X) + ABS(B). */

	    if (upper) {
		if (nounit) {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			s = 0.f;
/* Computing MAX */
			i__4 = 1, i__5 = k - *kd;
			i__3 = k;
			for (i__ = MAX(i__4,i__5); i__ <= i__3; ++i__) {
			    i__4 = *kd + 1 + i__ - k + k * ab_dim1;
			    i__5 = i__ + j * x_dim1;
			    s += ((r__1 = ab[i__4].r, ABS(r__1)) + (r__2 = 
				    r_imag(&ab[*kd + 1 + i__ - k + k * 
				    ab_dim1]), ABS(r__2))) * ((r__3 = x[i__5]
				    .r, ABS(r__3)) + (r__4 = r_imag(&x[i__ + 
				    j * x_dim1]), ABS(r__4)));
/* L110: */
			}
			rwork[k] += s;
/* L120: */
		    }
		} else {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			i__3 = k + j * x_dim1;
			s = (r__1 = x[i__3].r, ABS(r__1)) + (r__2 = r_imag(&
				x[k + j * x_dim1]), ABS(r__2));
/* Computing MAX */
			i__3 = 1, i__4 = k - *kd;
			i__5 = k - 1;
			for (i__ = MAX(i__3,i__4); i__ <= i__5; ++i__) {
			    i__3 = *kd + 1 + i__ - k + k * ab_dim1;
			    i__4 = i__ + j * x_dim1;
			    s += ((r__1 = ab[i__3].r, ABS(r__1)) + (r__2 = 
				    r_imag(&ab[*kd + 1 + i__ - k + k * 
				    ab_dim1]), ABS(r__2))) * ((r__3 = x[i__4]
				    .r, ABS(r__3)) + (r__4 = r_imag(&x[i__ + 
				    j * x_dim1]), ABS(r__4)));
/* L130: */
			}
			rwork[k] += s;
/* L140: */
		    }
		}
	    } else {
		if (nounit) {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			s = 0.f;
/* Computing MIN */
			i__3 = *n, i__4 = k + *kd;
			i__5 = MIN(i__3,i__4);
			for (i__ = k; i__ <= i__5; ++i__) {
			    i__3 = i__ + 1 - k + k * ab_dim1;
			    i__4 = i__ + j * x_dim1;
			    s += ((r__1 = ab[i__3].r, ABS(r__1)) + (r__2 = 
				    r_imag(&ab[i__ + 1 - k + k * ab_dim1]), 
				    ABS(r__2))) * ((r__3 = x[i__4].r, ABS(
				    r__3)) + (r__4 = r_imag(&x[i__ + j * 
				    x_dim1]), ABS(r__4)));
/* L150: */
			}
			rwork[k] += s;
/* L160: */
		    }
		} else {
		    i__2 = *n;
		    for (k = 1; k <= i__2; ++k) {
			i__5 = k + j * x_dim1;
			s = (r__1 = x[i__5].r, ABS(r__1)) + (r__2 = r_imag(&
				x[k + j * x_dim1]), ABS(r__2));
/* Computing MIN */
			i__3 = *n, i__4 = k + *kd;
			i__5 = MIN(i__3,i__4);
			for (i__ = k + 1; i__ <= i__5; ++i__) {
			    i__3 = i__ + 1 - k + k * ab_dim1;
			    i__4 = i__ + j * x_dim1;
			    s += ((r__1 = ab[i__3].r, ABS(r__1)) + (r__2 = 
				    r_imag(&ab[i__ + 1 - k + k * ab_dim1]), 
				    ABS(r__2))) * ((r__3 = x[i__4].r, ABS(
				    r__3)) + (r__4 = r_imag(&x[i__ + j * 
				    x_dim1]), ABS(r__4)));
/* L170: */
			}
			rwork[k] += s;
/* L180: */
		    }
		}
	    }
	}
	s = 0.f;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (rwork[i__] > safe2) {
/* Computing MAX */
		i__5 = i__;
		r__3 = s, r__4 = ((r__1 = work[i__5].r, ABS(r__1)) + (r__2 = 
			r_imag(&work[i__]), ABS(r__2))) / rwork[i__];
		s = MAX(r__3,r__4);
	    } else {
/* Computing MAX */
		i__5 = i__;
		r__3 = s, r__4 = ((r__1 = work[i__5].r, ABS(r__1)) + (r__2 = 
			r_imag(&work[i__]), ABS(r__2)) + safe1) / (rwork[i__]
			 + safe1);
		s = MAX(r__3,r__4);
	    }
/* L190: */
	}
	berr[j] = s;

/*        Bound error from formula */

/*        norm(X - XTRUE) / norm(X) .le. FERR = */
/*        norm( ABS(inv(op(A)))* */
/*           ( ABS(R) + NZ*EPS*( ABS(op(A))*ABS(X)+ABS(B) ))) / norm(X) */

/*        where */
/*          norm(Z) is the magnitude of the largest component of Z */
/*          inv(op(A)) is the inverse of op(A) */
/*          ABS(Z) is the componentwise absolute value of the matrix or */
/*             vector Z */
/*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
/*          EPS is machine epsilon */

/*        The i-th component of ABS(R)+NZ*EPS*(ABS(op(A))*ABS(X)+ABS(B)) */
/*        is incremented by SAFE1 if the i-th component of */
/*        ABS(op(A))*ABS(X) + ABS(B) is less than SAFE2. */

/*        Use CLACN2 to estimate the infinity-norm of the matrix */
/*           inv(op(A)) * diag(W), */
/*        where W = ABS(R) + NZ*EPS*( ABS(op(A))*ABS(X)+ABS(B) ))) */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (rwork[i__] > safe2) {
		i__5 = i__;
		rwork[i__] = (r__1 = work[i__5].r, ABS(r__1)) + (r__2 = 
			r_imag(&work[i__]), ABS(r__2)) + nz * eps * rwork[
			i__];
	    } else {
		i__5 = i__;
		rwork[i__] = (r__1 = work[i__5].r, ABS(r__1)) + (r__2 = 
			r_imag(&work[i__]), ABS(r__2)) + nz * eps * rwork[
			i__] + safe1;
	    }
/* L200: */
	}

	kase = 0;
L210:
	clacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
	if (kase != 0) {
	    if (kase == 1) {

/*              Multiply by diag(W)*inv(op(A)**H). */

		ctbsv_(uplo, transt, diag, n, kd, &ab[ab_offset], ldab, &work[
			1], &c__1);
		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__5 = i__;
		    i__3 = i__;
		    i__4 = i__;
		    q__1.r = rwork[i__3] * work[i__4].r, q__1.i = rwork[i__3] 
			    * work[i__4].i;
		    work[i__5].r = q__1.r, work[i__5].i = q__1.i;
/* L220: */
		}
	    } else {

/*              Multiply by inv(op(A))*diag(W). */

		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__5 = i__;
		    i__3 = i__;
		    i__4 = i__;
		    q__1.r = rwork[i__3] * work[i__4].r, q__1.i = rwork[i__3] 
			    * work[i__4].i;
		    work[i__5].r = q__1.r, work[i__5].i = q__1.i;
/* L230: */
		}
		ctbsv_(uplo, transn, diag, n, kd, &ab[ab_offset], ldab, &work[
			1], &c__1);
	    }
	    goto L210;
	}

/*        Normalize error. */

	lstres = 0.f;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
	    i__5 = i__ + j * x_dim1;
	    r__3 = lstres, r__4 = (r__1 = x[i__5].r, ABS(r__1)) + (r__2 = 
		    r_imag(&x[i__ + j * x_dim1]), ABS(r__2));
	    lstres = MAX(r__3,r__4);
/* L240: */
	}
	if (lstres != 0.f) {
	    ferr[j] /= lstres;
	}

/* L250: */
    }

    return 0;

/*     End of CTBRFS */

} /* ctbrfs_ */