Esempio n. 1
0
/**Function********************************************************************

  Synopsis    [Performs the recursive step for Cudd_addBddInterval.]

  Description [Performs the recursive step for Cudd_addBddInterval.
  Returns a pointer to the BDD if successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     [addBddDoThreshold addBddDoStrictThreshold]

******************************************************************************/
static DdNode *
addBddDoInterval(
  DdManager * dd,
  DdNode * f,
  DdNode * l,
  DdNode * u)
{
    DdNode *res, *T, *E;
    DdNode *fv, *fvn;
    int v;

    statLine(dd);
    /* Check terminal case. */
    if (cuddIsConstant(f)) {
	return(Cudd_NotCond(DD_TRUE(dd),cuddV(f) < cuddV(l) || cuddV(f) > cuddV(u)));
    }

    /* Check cache. */
    res = cuddCacheLookup(dd,DD_ADD_BDD_DO_INTERVAL_TAG,f,l,u);
    if (res != NULL) return(res);

    /* Recursive step. */
    v = f->index;
    fv = cuddT(f); fvn = cuddE(f);

    T = addBddDoInterval(dd,fv,l,u);
    if (T == NULL) return(NULL);
    cuddRef(T);

    E = addBddDoInterval(dd,fvn,l,u);
    if (E == NULL) {
	Cudd_RecursiveDeref(dd, T);
	return(NULL);
    }
    cuddRef(E);
    if (Cudd_IsComplement(T)) {
	res = (T == E) ? Cudd_Not(T) : cuddUniqueInter(dd,v,Cudd_Not(T),Cudd_Not(E));
	if (res == NULL) {
	    Cudd_RecursiveDeref(dd, T);
	    Cudd_RecursiveDeref(dd, E);
	    return(NULL);
	}
	res = Cudd_Not(res);
    } else {
	res = (T == E) ? T : cuddUniqueInter(dd,v,T,E);
	if (res == NULL) {
	    Cudd_RecursiveDeref(dd, T);
	    Cudd_RecursiveDeref(dd, E);
	    return(NULL);
	}
    }
    cuddDeref(T);
    cuddDeref(E);

    /* Store result. */
    cuddCacheInsert(dd,DD_ADD_BDD_DO_INTERVAL_TAG,f,l,u,res);

    return(res);

} /* end of addBddDoInterval */
Esempio n. 2
0
/**Function********************************************************************

  Synopsis [Takes the exclusive OR of two BDDs and simultaneously abstracts the
  variables in cube.]

  Description [Takes the exclusive OR of two BDDs and simultaneously abstracts
  the variables in cube. The variables are existentially abstracted.  Returns a
  pointer to the result is successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_bddAndAbstract]

******************************************************************************/
DdNode *
cuddBddXorExistAbstractRecur(
  DdManager * manager,
  DdNode * f,
  DdNode * g,
  DdNode * cube)
{
    DdNode *F, *fv, *fnv, *G, *gv, *gnv;
    DdNode *one, *zero, *r, *t, *e, *Cube;
    unsigned int topf, topg, topcube, top, index;

    statLine(manager);
    one = DD_ONE(manager);
    zero = Cudd_Not(one);

    /* Terminal cases. */
    if (f == g) {
	return(zero);
    }
    if (f == Cudd_Not(g)) {
	return(one);
    }
    if (cube == one) {
	return(cuddBddXorRecur(manager, f, g));
    }
    if (f == one) {
	return(cuddBddExistAbstractRecur(manager, Cudd_Not(g), cube));
    }
    if (g == one) {
	return(cuddBddExistAbstractRecur(manager, Cudd_Not(f), cube));
    }
    if (f == zero) {
	return(cuddBddExistAbstractRecur(manager, g, cube));
    }
    if (g == zero) {
	return(cuddBddExistAbstractRecur(manager, f, cube));
    }

    /* At this point f, g, and cube are not constant. */

    if (f > g) { /* Try to increase cache efficiency. */
	DdNode *tmp = f;
	f = g;
	g = tmp;
    }

    /* Check cache. */
    r = cuddCacheLookup(manager, DD_BDD_XOR_EXIST_ABSTRACT_TAG, f, g, cube);
    if (r != NULL) {
	return(r);
    }

    /* Here we can skip the use of cuddI, because the operands are known
    ** to be non-constant.
    */
    F = Cudd_Regular(f);
    topf = manager->perm[F->index];
    G = Cudd_Regular(g);
    topg = manager->perm[G->index];
    top = ddMin(topf, topg);
    topcube = manager->perm[cube->index];

    if (topcube < top) {
	return(cuddBddXorExistAbstractRecur(manager, f, g, cuddT(cube)));
    }
    /* Now, topcube >= top. */

    if (topf == top) {
	index = F->index;
	fv = cuddT(F);
	fnv = cuddE(F);
	if (Cudd_IsComplement(f)) {
	    fv = Cudd_Not(fv);
	    fnv = Cudd_Not(fnv);
	}
    } else {
	index = G->index;
	fv = fnv = f;
    }

    if (topg == top) {
	gv = cuddT(G);
	gnv = cuddE(G);
	if (Cudd_IsComplement(g)) {
	    gv = Cudd_Not(gv);
	    gnv = Cudd_Not(gnv);
	}
    } else {
	gv = gnv = g;
    }

    if (topcube == top) {
	Cube = cuddT(cube);
    } else {
	Cube = cube;
    }

    t = cuddBddXorExistAbstractRecur(manager, fv, gv, Cube);
    if (t == NULL) return(NULL);

    /* Special case: 1 OR anything = 1. Hence, no need to compute
    ** the else branch if t is 1.
    */
    if (t == one && topcube == top) {
	cuddCacheInsert(manager, DD_BDD_XOR_EXIST_ABSTRACT_TAG, f, g, cube, one);
	return(one);
    }
    cuddRef(t);

    e = cuddBddXorExistAbstractRecur(manager, fnv, gnv, Cube);
    if (e == NULL) {
	Cudd_IterDerefBdd(manager, t);
	return(NULL);
    }
    cuddRef(e);

    if (topcube == top) {	/* abstract */
	r = cuddBddAndRecur(manager, Cudd_Not(t), Cudd_Not(e));
	if (r == NULL) {
	    Cudd_IterDerefBdd(manager, t);
	    Cudd_IterDerefBdd(manager, e);
	    return(NULL);
	}
	r = Cudd_Not(r);
	cuddRef(r);
	Cudd_IterDerefBdd(manager, t);
	Cudd_IterDerefBdd(manager, e);
	cuddDeref(r);
    } else if (t == e) {
	r = t;
	cuddDeref(t);
	cuddDeref(e);
    } else {
	if (Cudd_IsComplement(t)) {
	    r = cuddUniqueInter(manager,(int)index,Cudd_Not(t),Cudd_Not(e));
	    if (r == NULL) {
		Cudd_IterDerefBdd(manager, t);
		Cudd_IterDerefBdd(manager, e);
		return(NULL);
	    }
	    r = Cudd_Not(r);
	} else {
	    r = cuddUniqueInter(manager,(int)index,t,e);
	    if (r == NULL) {
		Cudd_IterDerefBdd(manager, t);
		Cudd_IterDerefBdd(manager, e);
		return(NULL);
	    }
	}
	cuddDeref(e);
	cuddDeref(t);
    }
    cuddCacheInsert(manager, DD_BDD_XOR_EXIST_ABSTRACT_TAG, f, g, cube, r);
    return (r);

} /* end of cuddBddXorExistAbstractRecur */
Esempio n. 3
0
/**Function********************************************************************

  Synopsis    [Implements the recursive step of Cudd_bddIte.]

  Description [Implements the recursive step of Cudd_bddIte. Returns a
  pointer to the resulting BDD. NULL if the intermediate result blows
  up or if reordering occurs.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
DdNode *
cuddBddIteRecur(
  DdManager * dd,
  DdNode * f,
  DdNode * g,
  DdNode * h)
{
    DdNode       *one, *zero, *res;
    DdNode       *r, *Fv, *Fnv, *Gv, *Gnv, *H, *Hv, *Hnv, *t, *e;
    unsigned int topf, topg, toph, v;
    int          index = -1;
    int          comple;

    statLine(dd);
    /* Terminal cases. */

    /* One variable cases. */
    if (f == (one = DD_ONE(dd)))        /* ITE(1,G,H) = G */
        return(g);
    
    if (f == (zero = Cudd_Not(one)))    /* ITE(0,G,H) = H */
        return(h);
    
    /* From now on, f is known not to be a constant. */
    if (g == one || f == g) {   /* ITE(F,F,H) = ITE(F,1,H) = F + H */
        if (h == zero) {        /* ITE(F,1,0) = F */
            return(f);
        } else {
            res = cuddBddAndRecur(dd,Cudd_Not(f),Cudd_Not(h));
            return(Cudd_NotCond(res,res != NULL));
        }
    } else if (g == zero || f == Cudd_Not(g)) { /* ITE(F,!F,H) = ITE(F,0,H) = !F * H */
        if (h == one) {         /* ITE(F,0,1) = !F */
            return(Cudd_Not(f));
        } else {
            res = cuddBddAndRecur(dd,Cudd_Not(f),h);
            return(res);
        }
    }
    if (h == zero || f == h) {    /* ITE(F,G,F) = ITE(F,G,0) = F * G */
        res = cuddBddAndRecur(dd,f,g);
        return(res);
    } else if (h == one || f == Cudd_Not(h)) { /* ITE(F,G,!F) = ITE(F,G,1) = !F + G */
        res = cuddBddAndRecur(dd,f,Cudd_Not(g));
        return(Cudd_NotCond(res,res != NULL));
    }

    /* Check remaining one variable case. */
    if (g == h) {               /* ITE(F,G,G) = G */
        return(g);
    } else if (g == Cudd_Not(h)) { /* ITE(F,G,!G) = F <-> G */
        res = cuddBddXorRecur(dd,f,h);
        return(res);
    }
    
    /* From here, there are no constants. */
    comple = bddVarToCanonicalSimple(dd, &f, &g, &h, &topf, &topg, &toph);

    /* f & g are now regular pointers */

    v = ddMin(topg, toph);

    /* A shortcut: ITE(F,G,H) = (v,G,H) if F = (v,1,0), v < top(G,H). */
    if (topf < v && cuddT(f) == one && cuddE(f) == zero) {
        r = cuddUniqueInter(dd, (int) f->index, g, h);
        return(Cudd_NotCond(r,comple && r != NULL));
    }

    /* Check cache. */
    r = cuddCacheLookup(dd, DD_BDD_ITE_TAG, f, g, h);
    if (r != NULL) {
        return(Cudd_NotCond(r,comple));
    }

    /* Compute cofactors. */
    if (topf <= v) {
        v = ddMin(topf, v);     /* v = top_var(F,G,H) */
        index = f->index;
        Fv = cuddT(f); Fnv = cuddE(f);
    } else {
        Fv = Fnv = f;
    }
    if (topg == v) {
        index = g->index;
        Gv = cuddT(g); Gnv = cuddE(g);
    } else {
        Gv = Gnv = g;
    }
    if (toph == v) {
        H = Cudd_Regular(h);
        index = H->index;
        Hv = cuddT(H); Hnv = cuddE(H);
        if (Cudd_IsComplement(h)) {
            Hv = Cudd_Not(Hv);
            Hnv = Cudd_Not(Hnv);
        }
    } else {
        Hv = Hnv = h;
    }

    /* Recursive step. */
    t = cuddBddIteRecur(dd,Fv,Gv,Hv);
    if (t == NULL) return(NULL);
    cuddRef(t);

    e = cuddBddIteRecur(dd,Fnv,Gnv,Hnv);
    if (e == NULL) {
        Cudd_IterDerefBdd(dd,t);
        return(NULL);
    }
    cuddRef(e);

    r = (t == e) ? t : cuddUniqueInter(dd,index,t,e);
    if (r == NULL) {
        Cudd_IterDerefBdd(dd,t);
        Cudd_IterDerefBdd(dd,e);
        return(NULL);
    }
    cuddDeref(t);
    cuddDeref(e);

    cuddCacheInsert(dd, DD_BDD_ITE_TAG, f, g, h, r);
    return(Cudd_NotCond(r,comple));

} /* end of cuddBddIteRecur */
Esempio n. 4
0
/**Function********************************************************************

  Synopsis    [Implements ITEconstant(f,g,h).]

  Description [Implements ITEconstant(f,g,h). Returns a pointer to the
  resulting BDD (which may or may not be constant) or DD_NON_CONSTANT.
  No new nodes are created.]

  SideEffects [None]

  SeeAlso     [Cudd_bddIte Cudd_bddIntersect Cudd_bddLeq Cudd_addIteConstant]

******************************************************************************/
DdNode *
Cudd_bddIteConstant(
  DdManager * dd,
  DdNode * f,
  DdNode * g,
  DdNode * h)
{
    DdNode       *r, *Fv, *Fnv, *Gv, *Gnv, *H, *Hv, *Hnv, *t, *e;
    DdNode       *one = DD_ONE(dd);
    DdNode       *zero = Cudd_Not(one);
    int          comple;
    unsigned int topf, topg, toph, v;

    statLine(dd);
    /* Trivial cases. */
    if (f == one)                       /* ITE(1,G,H) => G */
        return(g);
    
    if (f == zero)                      /* ITE(0,G,H) => H */
        return(h);
    
    /* f now not a constant. */
    bddVarToConst(f, &g, &h, one);      /* possibly convert g or h */
                                        /* to constants */

    if (g == h)                         /* ITE(F,G,G) => G */
        return(g);

    if (Cudd_IsConstant(g) && Cudd_IsConstant(h)) 
        return(DD_NON_CONSTANT);        /* ITE(F,1,0) or ITE(F,0,1) */
                                        /* => DD_NON_CONSTANT */
    
    if (g == Cudd_Not(h))
        return(DD_NON_CONSTANT);        /* ITE(F,G,G') => DD_NON_CONSTANT */
                                        /* if F != G and F != G' */
    
    comple = bddVarToCanonical(dd, &f, &g, &h, &topf, &topg, &toph);

    /* Cache lookup. */
    r = cuddConstantLookup(dd, DD_BDD_ITE_CONSTANT_TAG, f, g, h);
    if (r != NULL) {
        return(Cudd_NotCond(r,comple && r != DD_NON_CONSTANT));
    }

    v = ddMin(topg, toph);

    /* ITE(F,G,H) = (v,G,H) (non constant) if F = (v,1,0), v < top(G,H). */
    if (topf < v && cuddT(f) == one && cuddE(f) == zero) {
        return(DD_NON_CONSTANT);
    }

    /* Compute cofactors. */
    if (topf <= v) {
        v = ddMin(topf, v);             /* v = top_var(F,G,H) */
        Fv = cuddT(f); Fnv = cuddE(f);
    } else {
        Fv = Fnv = f;
    }

    if (topg == v) {
        Gv = cuddT(g); Gnv = cuddE(g);
    } else {
        Gv = Gnv = g;
    }

    if (toph == v) {
        H = Cudd_Regular(h);
        Hv = cuddT(H); Hnv = cuddE(H);
        if (Cudd_IsComplement(h)) {
            Hv = Cudd_Not(Hv);
            Hnv = Cudd_Not(Hnv);
        }
    } else {
        Hv = Hnv = h;
    }

    /* Recursion. */
    t = Cudd_bddIteConstant(dd, Fv, Gv, Hv);
    if (t == DD_NON_CONSTANT || !Cudd_IsConstant(t)) {
        cuddCacheInsert(dd, DD_BDD_ITE_CONSTANT_TAG, f, g, h, DD_NON_CONSTANT);
        return(DD_NON_CONSTANT);
    }
    e = Cudd_bddIteConstant(dd, Fnv, Gnv, Hnv);
    if (e == DD_NON_CONSTANT || !Cudd_IsConstant(e) || t != e) {
        cuddCacheInsert(dd, DD_BDD_ITE_CONSTANT_TAG, f, g, h, DD_NON_CONSTANT);
        return(DD_NON_CONSTANT);
    }
    cuddCacheInsert(dd, DD_BDD_ITE_CONSTANT_TAG, f, g, h, t);
    return(Cudd_NotCond(t,comple));

} /* end of Cudd_bddIteConstant */
Esempio n. 5
0
/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_addOuterSum.]

  Description [Performs the recursive step of Cudd_addOuterSum.
  Returns a pointer to the result if successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static DdNode *
cuddAddOuterSumRecur(
  DdManager *dd,
  DdNode *M,
  DdNode *r,
  DdNode *c)
{
    DdNode *P, *R, *Mt, *Me, *rt, *re, *ct, *ce, *Rt, *Re;
    int topM, topc, topr;
    int v, index;

    statLine(dd);
    /* Check special cases. */
    if (r == DD_PLUS_INFINITY(dd) || c == DD_PLUS_INFINITY(dd)) return(M); 

    if (cuddIsConstant(c) && cuddIsConstant(r)) {
	R = cuddUniqueConst(dd,Cudd_V(c)+Cudd_V(r));
	cuddRef(R);
	if (cuddIsConstant(M)) {
	    if (cuddV(R) <= cuddV(M)) {
		cuddDeref(R);
	        return(R);
	    } else {
	        Cudd_RecursiveDeref(dd,R);       
		return(M);
	    }
	} else {
	    P = Cudd_addApply(dd,Cudd_addMinimum,R,M);
	    cuddRef(P);
	    Cudd_RecursiveDeref(dd,R);
	    cuddDeref(P);
	    return(P);
	}
    }

    /* Check the cache. */
    R = cuddCacheLookup(dd,DD_ADD_OUT_SUM_TAG,M,r,c);
    if (R != NULL) return(R);

    topM = cuddI(dd,M->index); topr = cuddI(dd,r->index);
    topc = cuddI(dd,c->index);
    v = ddMin(topM,ddMin(topr,topc));

    /* Compute cofactors. */
    if (topM == v) { Mt = cuddT(M); Me = cuddE(M); } else { Mt = Me = M; }
    if (topr == v) { rt = cuddT(r); re = cuddE(r); } else { rt = re = r; }
    if (topc == v) { ct = cuddT(c); ce = cuddE(c); } else { ct = ce = c; }

    /* Recursively solve. */
    Rt = cuddAddOuterSumRecur(dd,Mt,rt,ct);
    if (Rt == NULL) return(NULL);
    cuddRef(Rt);
    Re = cuddAddOuterSumRecur(dd,Me,re,ce);
    if (Re == NULL) {
	Cudd_RecursiveDeref(dd, Rt);
	return(NULL);
    }
    cuddRef(Re);
    index = dd->invperm[v];
    R = (Rt == Re) ? Rt : cuddUniqueInter(dd,index,Rt,Re);
    if (R == NULL) {
	Cudd_RecursiveDeref(dd, Rt);
	Cudd_RecursiveDeref(dd, Re);
	return(NULL);
    }
    cuddDeref(Rt);
    cuddDeref(Re);

    /* Store the result in the cache. */
    cuddCacheInsert(dd,DD_ADD_OUT_SUM_TAG,M,r,c,R);

    return(R);

} /* end of cuddAddOuterSumRecur */
Esempio n. 6
0
/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_addTriangle.]

  Description [Performs the recursive step of Cudd_addTriangle. Returns
  a pointer to the result if successful; NULL otherwise.]

  SideEffects [None]

******************************************************************************/
static DdNode *
addTriangleRecur(
  DdManager * dd,
  DdNode * f,
  DdNode * g,
  int * vars,
  DdNode *cube)
{
    DdNode *fv, *fvn, *gv, *gvn, *t, *e, *res;
    CUDD_VALUE_TYPE value;
    int top, topf, topg, index;

    statLine(dd);
    if (f == DD_PLUS_INFINITY(dd) || g == DD_PLUS_INFINITY(dd)) {
	return(DD_PLUS_INFINITY(dd));
    }

    if (cuddIsConstant(f) && cuddIsConstant(g)) {
	value = cuddV(f) + cuddV(g);
	res = cuddUniqueConst(dd, value);
	return(res);
    }
    if (f < g) {
	DdNode *tmp = f;
	f = g;
	g = tmp;
    }

    if (f->ref != 1 || g->ref != 1) {
	res = cuddCacheLookup(dd, DD_ADD_TRIANGLE_TAG, f, g, cube);
	if (res != NULL) {
	    return(res);
	}
    }

    topf = cuddI(dd,f->index); topg = cuddI(dd,g->index);
    top = ddMin(topf,topg);

    if (top == topf) {fv = cuddT(f); fvn = cuddE(f);} else {fv = fvn = f;}
    if (top == topg) {gv = cuddT(g); gvn = cuddE(g);} else {gv = gvn = g;}

    t = addTriangleRecur(dd, fv, gv, vars, cube);
    if (t == NULL) return(NULL);
    cuddRef(t);
    e = addTriangleRecur(dd, fvn, gvn, vars, cube);
    if (e == NULL) {
	Cudd_RecursiveDeref(dd, t);
	return(NULL);
    }
    cuddRef(e);

    index = dd->invperm[top];
    if (vars[index] < 0) {
	res = (t == e) ? t : cuddUniqueInter(dd,index,t,e);
	if (res == NULL) {
	    Cudd_RecursiveDeref(dd, t);
	    Cudd_RecursiveDeref(dd, e);
	    return(NULL);
	}
	cuddDeref(t);
	cuddDeref(e);
    } else {
	res = cuddAddApplyRecur(dd,Cudd_addMinimum,t,e);
	if (res == NULL) {
	    Cudd_RecursiveDeref(dd, t);
	    Cudd_RecursiveDeref(dd, e);
	    return(NULL);
	}
	cuddRef(res);
	Cudd_RecursiveDeref(dd, t);
	Cudd_RecursiveDeref(dd, e);
	cuddDeref(res);
    }

    if (f->ref != 1 || g->ref != 1) {
	cuddCacheInsert(dd, DD_ADD_TRIANGLE_TAG, f, g, cube, res);
    }

    return(res);

} /* end of addTriangleRecur */
Esempio n. 7
0
/**Function********************************************************************

  Synopsis    [Replaces the negative variable assignment node in the ADD by the given value.]

  Description []

  SideEffects []

  SeeAlso     []

******************************************************************************/
DdNode * extraAddUpdateZeroCubeValue(
  DdManager * dd, 
  DdNode * aFunc,    /* the ADD to be updated */
  DdNode * bVars,
  DdNode * aNode )  /* the terminal node representing the required value */
{
	DdNode * aRes;
    statLine(dd); 

	/* terminal cases */
	if ( bVars == b1 )
	{
		assert( Cudd_IsConstant(aFunc) );
		return aNode;
	}

    /* check cache */
    if ( aRes = cuddCacheLookup(dd, DD_ADD_UPDATE_ZERO_CUBE_TAG, aFunc, bVars, aNode) )
	{ 
		s_CacheHit++;
   		return aRes;
	}
	else
	{
		DdNode * aFunc0, * aFunc1;    /* cofactors */
		DdNode * aRes0,  * aRes1;     /* partial results to be composed by ITE */

		s_CacheMiss++;

		if ( aFunc->index == bVars->index )
		{
			aFunc0 = cuddE( aFunc );
			aFunc1 = cuddT( aFunc );
		}
		else
			aFunc0 = aFunc1 = aFunc;


		aRes0  = extraAddUpdateZeroCubeValue( dd, aFunc0, cuddT(bVars), aNode );
		if ( aRes0 == NULL )
			return NULL;
		cuddRef( aRes0 );

		aRes1 = aFunc1;
//		cuddRef( aRes1 );

		/* only aRes0 and aRes1 are referenced at this point */

		/* consider the case when Res0 and Res1 are the same node */
		aRes = (aRes1 == aRes0) ? aRes1 : cuddUniqueInter( dd, bVars->index, aRes1, aRes0 );
		if (aRes == NULL) 
		{
//			Cudd_RecursiveDeref(dd, aRes1);
			Cudd_RecursiveDeref(dd, aRes0);
			return NULL;
		}
//		cuddDeref(aRes1);
		cuddDeref(aRes0);

		/* insert the result into cache */
		cuddCacheInsert(dd, DD_ADD_UPDATE_ZERO_CUBE_TAG, aFunc, bVars, aNode, aRes);
		return aRes;
	}
} /* end of extraAddUpdateZeroCubeValue */
Esempio n. 8
0
/**
  @brief Approximates the AND of two BDDs and simultaneously abstracts the
  variables in cube.

  @details The variables are existentially abstracted.

  @return a pointer to the result is successful; NULL otherwise.

  @sideeffect None

  @see Cudd_bddClippingAndAbstract

*/
static DdNode *
cuddBddClipAndAbsRecur(
  DdManager * manager,
  DdNode * f,
  DdNode * g,
  DdNode * cube,
  int  distance,
  int  direction)
{
    DdNode *F, *ft, *fe, *G, *gt, *ge;
    DdNode *one, *zero, *r, *t, *e, *Cube;
    int topf, topg, topcube, top;
    unsigned int index;
    ptruint cacheTag;

    statLine(manager);
    one = DD_ONE(manager);
    zero = Cudd_Not(one);

    /* Terminal cases. */
    if (f == zero || g == zero || f == Cudd_Not(g)) return(zero);
    if (f == one && g == one)	return(one);
    if (cube == one) {
	return(cuddBddClippingAndRecur(manager, f, g, distance, direction));
    }
    if (f == one || f == g) {
	return (cuddBddExistAbstractRecur(manager, g, cube));
    }
    if (g == one) {
	return (cuddBddExistAbstractRecur(manager, f, cube));
    }
    if (distance == 0) return(Cudd_NotCond(one,(direction == 0)));

    /* At this point f, g, and cube are not constant. */
    distance--;

    /* Check cache. */
    if (f > g) { /* Try to increase cache efficiency. */
	DdNode *tmp = f;
	f = g; g = tmp;
    }
    F = Cudd_Regular(f);
    G = Cudd_Regular(g);
    cacheTag = direction ? DD_BDD_CLIPPING_AND_ABSTRACT_UP_TAG :
	DD_BDD_CLIPPING_AND_ABSTRACT_DOWN_TAG;
    if (F->ref != 1 || G->ref != 1) {
	r = cuddCacheLookup(manager, cacheTag,
			    f, g, cube);
	if (r != NULL) {
	    return(r);
	}
    }

    checkWhetherToGiveUp(manager);

    /* Here we can skip the use of cuddI, because the operands are known
    ** to be non-constant.
    */
    topf = manager->perm[F->index];
    topg = manager->perm[G->index];
    top = ddMin(topf, topg);
    topcube = manager->perm[cube->index];

    if (topcube < top) {
	return(cuddBddClipAndAbsRecur(manager, f, g, cuddT(cube),
				      distance, direction));
    }
    /* Now, topcube >= top. */

    if (topf == top) {
	index = F->index;
	ft = cuddT(F);
	fe = cuddE(F);
	if (Cudd_IsComplement(f)) {
	    ft = Cudd_Not(ft);
	    fe = Cudd_Not(fe);
	}
    } else {
	index = G->index;
	ft = fe = f;
    }

    if (topg == top) {
	gt = cuddT(G);
	ge = cuddE(G);
	if (Cudd_IsComplement(g)) {
	    gt = Cudd_Not(gt);
	    ge = Cudd_Not(ge);
	}
    } else {
	gt = ge = g;
    }

    if (topcube == top) {
	Cube = cuddT(cube);
    } else {
	Cube = cube;
    }

    t = cuddBddClipAndAbsRecur(manager, ft, gt, Cube, distance, direction);
    if (t == NULL) return(NULL);

    /* Special case: 1 OR anything = 1. Hence, no need to compute
    ** the else branch if t is 1.
    */
    if (t == one && topcube == top) {
	if (F->ref != 1 || G->ref != 1)
	    cuddCacheInsert(manager, cacheTag, f, g, cube, one);
	return(one);
    }
    cuddRef(t);

    e = cuddBddClipAndAbsRecur(manager, fe, ge, Cube, distance, direction);
    if (e == NULL) {
	Cudd_RecursiveDeref(manager, t);
	return(NULL);
    }
    cuddRef(e);

    if (topcube == top) {	/* abstract */
	r = cuddBddClippingAndRecur(manager, Cudd_Not(t), Cudd_Not(e),
				    distance, (direction == 0));
	if (r == NULL) {
	    Cudd_RecursiveDeref(manager, t);
	    Cudd_RecursiveDeref(manager, e);
	    return(NULL);
	}
	r = Cudd_Not(r);
	cuddRef(r);
	Cudd_RecursiveDeref(manager, t);
	Cudd_RecursiveDeref(manager, e);
	cuddDeref(r);
    } else if (t == e) {
	r = t;
	cuddDeref(t);
	cuddDeref(e);
    } else {
	if (Cudd_IsComplement(t)) {
	    r = cuddUniqueInter(manager,(int)index,Cudd_Not(t),Cudd_Not(e));
	    if (r == NULL) {
		Cudd_RecursiveDeref(manager, t);
		Cudd_RecursiveDeref(manager, e);
		return(NULL);
	    }
	    r = Cudd_Not(r);
	} else {
	    r = cuddUniqueInter(manager,(int)index,t,e);
	    if (r == NULL) {
		Cudd_RecursiveDeref(manager, t);
		Cudd_RecursiveDeref(manager, e);
		return(NULL);
	    }
	}
	cuddDeref(e);
	cuddDeref(t);
    }
    if (F->ref != 1 || G->ref != 1)
	cuddCacheInsert(manager, cacheTag, f, g, cube, r);
    return (r);

} /* end of cuddBddClipAndAbsRecur */
Esempio n. 9
0
/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_addNonSimCompose.]

  Description []

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static DdNode *
cuddAddNonSimComposeRecur(
  DdManager * dd,
  DdNode * f,
  DdNode ** vector,
  DdNode * key,
  DdNode * cube,
  int  lastsub)
{
    DdNode *f1, *f0, *key1, *key0, *cube1, *var;
    DdNode *T,*E;
    DdNode *r;
    unsigned int top, topf, topk, topc;
    unsigned int index;
    int i;
    DdNode **vect1;
    DdNode **vect0;

    statLine(dd);
    /* If we are past the deepest substitution, return f. */
    if (cube == DD_ONE(dd) || cuddIsConstant(f)) {
	return(f);
    }

    /* If problem already solved, look up answer and return. */
    r = cuddCacheLookup(dd,DD_ADD_NON_SIM_COMPOSE_TAG,f,key,cube);
    if (r != NULL) {
	return(r);
    }

    /* Find top variable. we just need to look at f, key, and cube,
    ** because all the varibles in the gi are in key.
    */
    topf = cuddI(dd,f->index);
    topk = cuddI(dd,key->index);
    top = ddMin(topf,topk);
    topc = cuddI(dd,cube->index);
    top = ddMin(top,topc);
    index = dd->invperm[top];

    /* Compute the cofactors. */
    if (topf == top) {
	f1 = cuddT(f);
	f0 = cuddE(f);
    } else {
	f1 = f0 = f;
    }
    if (topc == top) {
	cube1 = cuddT(cube);
	/* We want to eliminate vector[index] from key. Otherwise
	** cache performance is severely affected. Hence we
	** existentially quantify the variable with index "index" from key.
	*/
	var = Cudd_addIthVar(dd, (int) index);
	if (var == NULL) {
	    return(NULL);
	}
	cuddRef(var);
	key1 = cuddAddExistAbstractRecur(dd, key, var);
	if (key1 == NULL) {
	    Cudd_RecursiveDeref(dd,var);
	    return(NULL);
	}
	cuddRef(key1);
	Cudd_RecursiveDeref(dd,var);
	key0 = key1;
    } else {
	cube1 = cube;
	if (topk == top) {
	    key1 = cuddT(key);
	    key0 = cuddE(key);
	} else {
	    key1 = key0 = key;
	}
	cuddRef(key1);
    }

    /* Allocate two new vectors for the cofactors of vector. */
    vect1 = ALLOC(DdNode *,lastsub);
    if (vect1 == NULL) {
	dd->errorCode = CUDD_MEMORY_OUT;
	Cudd_RecursiveDeref(dd,key1);
	return(NULL);
    }
    vect0 = ALLOC(DdNode *,lastsub);
    if (vect0 == NULL) {
	dd->errorCode = CUDD_MEMORY_OUT;
	Cudd_RecursiveDeref(dd,key1);
	FREE(vect1);
	return(NULL);
    }

    /* Cofactor the gi. Eliminate vect1[index] and vect0[index], because
    ** we do not need them.
    */
    for (i = 0; i < lastsub; i++) {
	DdNode *gi = vector[i];
	if (gi == NULL) {
	    vect1[i] = vect0[i] = NULL;
	} else if (gi->index == index) {
	    vect1[i] = cuddT(gi);
	    vect0[i] = cuddE(gi);
	} else {
	    vect1[i] = vect0[i] = gi;
	}
    }
    vect1[index] = vect0[index] = NULL;

    /* Recur on children. */
    T = cuddAddNonSimComposeRecur(dd,f1,vect1,key1,cube1,lastsub);
    FREE(vect1);
    if (T == NULL) {
	Cudd_RecursiveDeref(dd,key1);
	FREE(vect0);
	return(NULL);
    }
    cuddRef(T);
    E = cuddAddNonSimComposeRecur(dd,f0,vect0,key0,cube1,lastsub);
    FREE(vect0);
    if (E == NULL) {
	Cudd_RecursiveDeref(dd,key1);
	Cudd_RecursiveDeref(dd,T);
	return(NULL);
    }
    cuddRef(E);
    Cudd_RecursiveDeref(dd,key1);

    /* Retrieve the 0-1 ADD for the current top variable from vector,
    ** and call cuddAddIteRecur with the T and E we just created.
    */
    r = cuddAddIteRecur(dd,vector[index],T,E);
    if (r == NULL) {
	Cudd_RecursiveDeref(dd,T);
	Cudd_RecursiveDeref(dd,E);
	return(NULL);
    }
    cuddRef(r);
    Cudd_RecursiveDeref(dd,T);
    Cudd_RecursiveDeref(dd,E);
    cuddDeref(r);

    /* Store answer to trim recursion. */
    cuddCacheInsert(dd,DD_ADD_NON_SIM_COMPOSE_TAG,f,key,cube,r);

    return(r);

} /* end of cuddAddNonSimComposeRecur */
Esempio n. 10
0
/**Function********************************************************************

  Synopsis    [Implements the recursive step of Cudd_addIte(f,g,h).]

  Description [Implements the recursive step of Cudd_addIte(f,g,h).
  Returns a pointer to the resulting ADD if successful; NULL
  otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_addIte]

******************************************************************************/
DdNode *
cuddAddIteRecur(
  DdManager * dd,
  DdNode * f,
  DdNode * g,
  DdNode * h)
{
    DdNode *one,*zero;
    DdNode *r,*Fv,*Fnv,*Gv,*Gnv,*Hv,*Hnv,*t,*e;
    unsigned int topf,topg,toph,v;
    int index;

    statLine(dd);
    /* Trivial cases. */

    /* One variable cases. */
    if (f == (one = DD_ONE(dd))) {	/* ITE(1,G,H) = G */
        return(g);
    }
    if (f == (zero = DD_ZERO(dd))) {	/* ITE(0,G,H) = H */
        return(h);
    }

    /* From now on, f is known to not be a constant. */
    addVarToConst(f,&g,&h,one,zero);

    /* Check remaining one variable cases. */
    if (g == h) {			/* ITE(F,G,G) = G */
        return(g);
    }

    if (g == one) {			/* ITE(F,1,0) = F */
        if (h == zero) return(f);
    }

    topf = cuddI(dd,f->index);
    topg = cuddI(dd,g->index);
    toph = cuddI(dd,h->index);
    v = ddMin(topg,toph);

    /* A shortcut: ITE(F,G,H) = (x,G,H) if F=(x,1,0), x < top(G,H). */
    if (topf < v && cuddT(f) == one && cuddE(f) == zero) {
	r = cuddUniqueInter(dd,(int)f->index,g,h);
	return(r);
    }
    if (topf < v && cuddT(f) == zero && cuddE(f) == one) {
	r = cuddUniqueInter(dd,(int)f->index,h,g);
	return(r);
    }

    /* Check cache. */
    r = cuddCacheLookup(dd,DD_ADD_ITE_TAG,f,g,h);
    if (r != NULL) {
        return(r);
    }

    /* Compute cofactors. */
    if (topf <= v) {
	v = ddMin(topf,v);	/* v = top_var(F,G,H) */
	index = f->index;
        Fv = cuddT(f); Fnv = cuddE(f);
    } else {
        Fv = Fnv = f;
    }
    if (topg == v) {
	index = g->index;
        Gv = cuddT(g); Gnv = cuddE(g);
    } else {
        Gv = Gnv = g;
    }
    if (toph == v) {
	index = h->index;
        Hv = cuddT(h); Hnv = cuddE(h);
    } else {
        Hv = Hnv = h;
    }
    
    /* Recursive step. */
    t = cuddAddIteRecur(dd,Fv,Gv,Hv);
    if (t == NULL) return(NULL);
    cuddRef(t);

    e = cuddAddIteRecur(dd,Fnv,Gnv,Hnv);
    if (e == NULL) {
	Cudd_RecursiveDeref(dd,t);
	return(NULL);
    }
    cuddRef(e);

    r = (t == e) ? t : cuddUniqueInter(dd,index,t,e);
    if (r == NULL) {
	Cudd_RecursiveDeref(dd,t);
	Cudd_RecursiveDeref(dd,e);
	return(NULL);
    }
    cuddDeref(t);
    cuddDeref(e);

    cuddCacheInsert(dd,DD_ADD_ITE_TAG,f,g,h,r);

    return(r);

} /* end of cuddAddIteRecur */
Esempio n. 11
0
/**Function********************************************************************

  Synopsis    [Implements ITEconstant for ADDs.]

  Description [Implements ITEconstant for ADDs.  f must be a 0-1 ADD.
  Returns a pointer to the resulting ADD (which may or may not be
  constant) or DD_NON_CONSTANT. No new nodes are created. This function
  can be used, for instance, to check that g has a constant value
  (specified by h) whenever f is 1. If the constant value is unknown,
  then one should use Cudd_addEvalConst.]

  SideEffects [None]

  SeeAlso     [Cudd_addIte Cudd_addEvalConst Cudd_bddIteConstant]

******************************************************************************/
DdNode *
Cudd_addIteConstant(
  DdManager * dd,
  DdNode * f,
  DdNode * g,
  DdNode * h)
{
    DdNode *one,*zero;
    DdNode *Fv,*Fnv,*Gv,*Gnv,*Hv,*Hnv,*r,*t,*e;
    unsigned int topf,topg,toph,v;

    statLine(dd);
    /* Trivial cases. */
    if (f == (one = DD_ONE(dd))) {	/* ITE(1,G,H) = G */
        return(g);
    }
    if (f == (zero = DD_ZERO(dd))) {	/* ITE(0,G,H) = H */
        return(h);
    }

    /* From now on, f is known not to be a constant. */
    addVarToConst(f,&g,&h,one,zero);

    /* Check remaining one variable cases. */
    if (g == h) { 			/* ITE(F,G,G) = G */
        return(g);
    }
    if (cuddIsConstant(g) && cuddIsConstant(h)) {
        return(DD_NON_CONSTANT);
    }

    topf = cuddI(dd,f->index);
    topg = cuddI(dd,g->index);
    toph = cuddI(dd,h->index);
    v = ddMin(topg,toph);

    /* ITE(F,G,H) = (x,G,H) (non constant) if F = (x,1,0), x < top(G,H). */
    if (topf < v && cuddIsConstant(cuddT(f)) && cuddIsConstant(cuddE(f))) {
	return(DD_NON_CONSTANT);
    }

    /* Check cache. */
    r = cuddConstantLookup(dd,DD_ADD_ITE_CONSTANT_TAG,f,g,h);
    if (r != NULL) {
        return(r);
    }

    /* Compute cofactors. */
    if (topf <= v) {
	v = ddMin(topf,v);	/* v = top_var(F,G,H) */
        Fv = cuddT(f); Fnv = cuddE(f);
    } else {
        Fv = Fnv = f;
    }
    if (topg == v) {
        Gv = cuddT(g); Gnv = cuddE(g);
    } else {
        Gv = Gnv = g;
    }
    if (toph == v) {
        Hv = cuddT(h); Hnv = cuddE(h);
    } else {
        Hv = Hnv = h;
    }
    
    /* Recursive step. */
    t = Cudd_addIteConstant(dd,Fv,Gv,Hv);
    if (t == DD_NON_CONSTANT || !cuddIsConstant(t)) {
	cuddCacheInsert(dd, DD_ADD_ITE_CONSTANT_TAG, f, g, h, DD_NON_CONSTANT);
	return(DD_NON_CONSTANT);
    }
    e = Cudd_addIteConstant(dd,Fnv,Gnv,Hnv);
    if (e == DD_NON_CONSTANT || !cuddIsConstant(e) || t != e) {
	cuddCacheInsert(dd, DD_ADD_ITE_CONSTANT_TAG, f, g, h, DD_NON_CONSTANT);
	return(DD_NON_CONSTANT);
    }
    cuddCacheInsert(dd, DD_ADD_ITE_CONSTANT_TAG, f, g, h, t);
    return(t);

} /* end of Cudd_addIteConstant */
Esempio n. 12
0
DdNode *
cuddAddTernaryApplyWithDataRecur(
  DdManager * dd,
  DD_TAOPD op,
  DdNode * f,
  DdNode * g,
  DdNode * h,
  void * data)
{
    DdNode *res,
	   *fv, *fvn, *gv, *gvn, *hv, *hvn,
	   *T, *E;
    unsigned int ford, gord, hord;
    unsigned int index;
    ptruint cacheOp;

    /* Check terminal cases. Op may swap f and g to increase the
     * cache hit rate.
     */
    statLine(dd);
    res = (*op)(dd,&f,&g,&h, data);
    if (res != NULL) return(res);

    /* Check cache. */
    cacheOp = (ptruint)global_bloody_counter_ternary;
    res = cuddCacheLookup(dd,cacheOp,f,g,h);
    if (res != NULL) return(res);

    /* Recursive step. */
    ford = cuddI(dd,f->index);
    gord = cuddI(dd,g->index);
    hord = cuddI(dd,h->index);

    if ((ford <= gord) && (ford <= hord)) {
	index = f->index;
	fv = cuddT(f);
	fvn = cuddE(f);
    } else {
	fv = fvn = f;
    }

    if ((gord <= ford) && (gord <= hord)) {
	index = g->index;
	gv = cuddT(g);
	gvn = cuddE(g);
    } else {
	gv = gvn = g;
    }

    if ((hord <= ford) && (hord <= gord)) {
	index = h->index;
	hv = cuddT(h);
	hvn = cuddE(h);
    } else {
	hv = hvn = h;
    }

    T = cuddAddTernaryApplyWithDataRecur(dd,op,fv,gv,hv, data);
    if (T == NULL) return(NULL);
    cuddRef(T);

    E = cuddAddTernaryApplyWithDataRecur(dd,op,fvn,gvn,hvn, data);
    if (E == NULL) {
	Cudd_RecursiveDeref(dd,T);
	return(NULL);
    }
    cuddRef(E);

    res = (T == E) ? T : cuddUniqueInter(dd,(int)index,T,E);
    if (res == NULL) {
	Cudd_RecursiveDeref(dd, T);
	Cudd_RecursiveDeref(dd, E);
	return(NULL);
    }
    cuddDeref(T);
    cuddDeref(E);

    /* Store result. */
    cuddCacheInsert(dd,cacheOp,f,g,h,res);

    return(res);

} /* end of cuddAddTernaryApplyWithDataRecur */
Esempio n. 13
0
/**Function********************************************************************

  Synopsis    [Implements the recursive step of Cudd_addIteGeneral(f,g,h).]

  Description [Implements the recursive step of Cudd_addIteGeneral(f,g,h),
  meaning that g and h are not supposed to be 0-1 ADDs but may have more terminals.
  Applying arithmetic addition in the terminal case. Returns a pointer to the 
  resulting ADD if successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_addIte]

******************************************************************************/
DdNode * extraAddIteRecurGeneral( DdManager * dd, DdNode * bX, DdNode * aF, DdNode * aG )
{
	DdNode * aRes;
	statLine( dd );

	assert( !Cudd_IsConstant(bX) );
	assert(  cuddE(bX) == b0 && cuddT(bX) == b1 ); /* the elementary variable */

    /* check cache */
    if ( aRes = cuddCacheLookup(dd, DD_ADD_ITE_GENERAL_TAG, bX, aF, aG) )
    	return aRes;
	else
	{
		DdNode * aF0, * aF1, * aG0, * aG1;
		int LevelF, LevelG, LevelX, LevelTop;

		LevelF = cuddI(dd,aF->index);
		LevelG = cuddI(dd,aG->index);
		LevelX = dd->perm[bX->index];
		LevelTop = ddMin(LevelF, LevelG);
		LevelTop = ddMin(LevelX, LevelTop);

		if ( LevelF == LevelTop )
		{
			aF0 = cuddE(aF);
			aF1 = cuddT(aF);
		}
		else
			aF0 = aF1 = aF;

		if ( LevelG == LevelTop )
		{
			aG0 = cuddE(aG);
			aG1 = cuddT(aG);
		}
		else
			aG0 = aG1 = aG;

		if ( LevelX == LevelTop )
		{
			assert( LevelX < LevelF );
			assert( LevelX < LevelG );

			/* consider the case when Res0 and Res1 are the same node */
			aRes = (aF == aG) ? aF : cuddUniqueInter( dd, bX->index, aF, aG );
			if (aRes == NULL) 
				return NULL;
		}
		else
		{
			DdNode * aRes0,  * aRes1;     /* partial results to be composed by ITE */

			aRes0  = extraAddIteRecurGeneral( dd, bX, aF0, aG0 );
			if ( aRes0 == NULL )
				return NULL;
			cuddRef( aRes0 );

			aRes1  = extraAddIteRecurGeneral( dd, bX, aF1, aG1 );
			if ( aRes1 == NULL )
			{
				Cudd_RecursiveDeref(dd, aRes0);
				return NULL;
			}
			cuddRef( aRes1 );

			/* only aRes0 and aRes1 are referenced at this point */

			/* consider the case when Res0 and Res1 are the same node */
			aRes = (aRes1 == aRes0) ? aRes1 : cuddUniqueInter( dd, dd->invperm[LevelTop], aRes1, aRes0 );
			if (aRes == NULL) 
			{
				Cudd_RecursiveDeref(dd, aRes1);
				Cudd_RecursiveDeref(dd, aRes0);
				return NULL;
			}
			cuddDeref(aRes1);
			cuddDeref(aRes0);
		}

		cuddCacheInsert( dd, DD_ADD_ITE_GENERAL_TAG, bX, aF, aG, aRes );
		return aRes;
	}
}	/* end of extraAddIteRecurGeneral */
Esempio n. 14
0
/**Function********************************************************************

  Synopsis [Takes the AND of two BDDs and simultaneously abstracts the
  variables in cube.]

  Description [Takes the AND of two BDDs and simultaneously abstracts
  the variables in cube. The variables are existentially abstracted.
  Returns a pointer to the result is successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_bddAndAbstract]

******************************************************************************/
DdNode *
cuddBddAndAbstractRecur(
  DdManager * manager,
  DdNode * f,
  DdNode * g,
  DdNode * cube)
{
    DdNode *F, *ft, *fe, *G, *gt, *ge;
    DdNode *one, *zero, *r, *t, *e;
    unsigned int topf, topg, topcube, top, index;

    statLine(manager);
    one = DD_ONE(manager);
    zero = Cudd_Not(one);

    /* Terminal cases. */
    if (f == zero || g == zero || f == Cudd_Not(g)) return(zero);
    if (f == one && g == one)   return(one);

    if (cube == one) {
        return(cuddBddAndRecur(manager, f, g));
    }
    if (f == one || f == g) {
        return(cuddBddExistAbstractRecur(manager, g, cube));
    }
    if (g == one) {
        return(cuddBddExistAbstractRecur(manager, f, cube));
    }
    /* At this point f, g, and cube are not constant. */

    if (f > g) { /* Try to increase cache efficiency. */
        DdNode *tmp = f;
        f = g;
        g = tmp;
    }

    /* Here we can skip the use of cuddI, because the operands are known
    ** to be non-constant.
    */
    F = Cudd_Regular(f);
    G = Cudd_Regular(g);
    topf = manager->perm[F->index];
    topg = manager->perm[G->index];
    top = ddMin(topf, topg);
    topcube = manager->perm[cube->index];

    while (topcube < top) {
        cube = cuddT(cube);
        if (cube == one) {
            return(cuddBddAndRecur(manager, f, g));
        }
        topcube = manager->perm[cube->index];
    }
    /* Now, topcube >= top. */

    /* Check cache. */
    if (F->ref != 1 || G->ref != 1) {
        r = cuddCacheLookup(manager, DD_BDD_AND_ABSTRACT_TAG, f, g, cube);
        if (r != NULL) {
            return(r);
        }
    }

    if ( manager->TimeStop && manager->TimeStop < clock() )
        return NULL;

    if (topf == top) {
        index = F->index;
        ft = cuddT(F);
        fe = cuddE(F);
        if (Cudd_IsComplement(f)) {
            ft = Cudd_Not(ft);
            fe = Cudd_Not(fe);
        }
    } else {
        index = G->index;
        ft = fe = f;
    }

    if (topg == top) {
        gt = cuddT(G);
        ge = cuddE(G);
        if (Cudd_IsComplement(g)) {
            gt = Cudd_Not(gt);
            ge = Cudd_Not(ge);
        }
    } else {
        gt = ge = g;
    }

    if (topcube == top) {       /* quantify */
        DdNode *Cube = cuddT(cube);
        t = cuddBddAndAbstractRecur(manager, ft, gt, Cube);
        if (t == NULL) return(NULL);
        /* Special case: 1 OR anything = 1. Hence, no need to compute
        ** the else branch if t is 1. Likewise t + t * anything == t.
        ** Notice that t == fe implies that fe does not depend on the
        ** variables in Cube. Likewise for t == ge.
        */
        if (t == one || t == fe || t == ge) {
            if (F->ref != 1 || G->ref != 1)
                cuddCacheInsert(manager, DD_BDD_AND_ABSTRACT_TAG,
                                f, g, cube, t);
            return(t);
        }
        cuddRef(t);
        /* Special case: t + !t * anything == t + anything. */
        if (t == Cudd_Not(fe)) {
            e = cuddBddExistAbstractRecur(manager, ge, Cube);
        } else if (t == Cudd_Not(ge)) {
            e = cuddBddExistAbstractRecur(manager, fe, Cube);
        } else {
            e = cuddBddAndAbstractRecur(manager, fe, ge, Cube);
        }
        if (e == NULL) {
            Cudd_IterDerefBdd(manager, t);
            return(NULL);
        }
        if (t == e) {
            r = t;
            cuddDeref(t);
        } else {
            cuddRef(e);
            r = cuddBddAndRecur(manager, Cudd_Not(t), Cudd_Not(e));
            if (r == NULL) {
                Cudd_IterDerefBdd(manager, t);
                Cudd_IterDerefBdd(manager, e);
                return(NULL);
            }
            r = Cudd_Not(r);
            cuddRef(r);
            Cudd_DelayedDerefBdd(manager, t);
            Cudd_DelayedDerefBdd(manager, e);
            cuddDeref(r);
        }
    } else {
        t = cuddBddAndAbstractRecur(manager, ft, gt, cube);
        if (t == NULL) return(NULL);
        cuddRef(t);
        e = cuddBddAndAbstractRecur(manager, fe, ge, cube);
        if (e == NULL) {
            Cudd_IterDerefBdd(manager, t);
            return(NULL);
        }
        if (t == e) {
            r = t;
            cuddDeref(t);
        } else {
            cuddRef(e);
            if (Cudd_IsComplement(t)) {
                r = cuddUniqueInter(manager, (int) index,
                                    Cudd_Not(t), Cudd_Not(e));
                if (r == NULL) {
                    Cudd_IterDerefBdd(manager, t);
                    Cudd_IterDerefBdd(manager, e);
                    return(NULL);
                }
                r = Cudd_Not(r);
            } else {
                r = cuddUniqueInter(manager,(int)index,t,e);
                if (r == NULL) {
                    Cudd_IterDerefBdd(manager, t);
                    Cudd_IterDerefBdd(manager, e);
                    return(NULL);
                }
            }
            cuddDeref(e);
            cuddDeref(t);
        }
    }

    if (F->ref != 1 || G->ref != 1)
        cuddCacheInsert(manager, DD_BDD_AND_ABSTRACT_TAG, f, g, cube, r);
    return (r);

} /* end of cuddBddAndAbstractRecur */
Esempio n. 15
0
/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_bddCompose.]

  Description [Performs the recursive step of Cudd_bddCompose.
  Exploits the fact that the composition of f' with g
  produces the complement of the composition of f with g to better
  utilize the cache.  Returns the composed BDD if successful; NULL
  otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_bddCompose]

******************************************************************************/
DdNode *
cuddBddComposeRecur(
  DdManager * dd,
  DdNode * f,
  DdNode * g,
  DdNode * proj)
{
    DdNode	*F, *G, *f1, *f0, *g1, *g0, *r, *t, *e;
    unsigned int v, topf, topg, topindex;
    int		comple;

    statLine(dd);
    v = dd->perm[proj->index];
    F = Cudd_Regular(f);
    topf = cuddI(dd,F->index);

    /* Terminal case. Subsumes the test for constant f. */
    if (topf > v) return(f);

    /* We solve the problem for a regular pointer, and then complement
    ** the result if the pointer was originally complemented.
    */
    comple = Cudd_IsComplement(f);

    /* Check cache. */
    r = cuddCacheLookup(dd,DD_BDD_COMPOSE_RECUR_TAG,F,g,proj);
    if (r != NULL) {
	return(Cudd_NotCond(r,comple));
    }

    if (topf == v) {
	/* Compose. */
	f1 = cuddT(F);
	f0 = cuddE(F);
	r = cuddBddIteRecur(dd, g, f1, f0);
	if (r == NULL) return(NULL);
    } else {
	/* Compute cofactors of f and g. Remember the index of the top
	** variable.
	*/
	G = Cudd_Regular(g);
	topg = cuddI(dd,G->index);
	if (topf > topg) {
	    topindex = G->index;
	    f1 = f0 = F;
	} else {
	    topindex = F->index;
	    f1 = cuddT(F);
	    f0 = cuddE(F);
	}
	if (topg > topf) {
	    g1 = g0 = g;
	} else {
	    g1 = cuddT(G);
	    g0 = cuddE(G);
	    if (g != G) {
		g1 = Cudd_Not(g1);
		g0 = Cudd_Not(g0);
	    }
	}
	/* Recursive step. */
	t = cuddBddComposeRecur(dd, f1, g1, proj);
	if (t == NULL) return(NULL);
	cuddRef(t);
	e = cuddBddComposeRecur(dd, f0, g0, proj);
	if (e == NULL) {
	    Cudd_IterDerefBdd(dd, t);
	    return(NULL);
	}
	cuddRef(e);

	r = cuddBddIteRecur(dd, dd->vars[topindex], t, e);
	if (r == NULL) {
	    Cudd_IterDerefBdd(dd, t);
	    Cudd_IterDerefBdd(dd, e);
	    return(NULL);
	}
	cuddRef(r);
	Cudd_IterDerefBdd(dd, t); /* t & e not necessarily part of r */
	Cudd_IterDerefBdd(dd, e);
	cuddDeref(r);
    }

    cuddCacheInsert(dd,DD_BDD_COMPOSE_RECUR_TAG,F,g,proj,r);

    return(Cudd_NotCond(r,comple));

} /* end of cuddBddComposeRecur */
Esempio n. 16
0
/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_zddIte.]

  Description []

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
DdNode *
cuddZddIte(
  DdManager * dd,
  DdNode * f,
  DdNode * g,
  DdNode * h)
{
    DdNode *tautology, *empty;
    DdNode *r,*Gv,*Gvn,*Hv,*Hvn,*t,*e;
    unsigned int topf,topg,toph,v,top;
    int index;

    statLine(dd);
    /* Trivial cases. */
    /* One variable cases. */
    if (f == (empty = DD_ZERO(dd))) {	/* ITE(0,G,H) = H */
	return(h);
    }
    topf = cuddIZ(dd,f->index);
    topg = cuddIZ(dd,g->index);
    toph = cuddIZ(dd,h->index);
    v = ddMin(topg,toph);
    top  = ddMin(topf,v);

    tautology = (top == CUDD_MAXINDEX) ? DD_ONE(dd) : dd->univ[top];
    if (f == tautology) {			/* ITE(1,G,H) = G */
    	return(g);
    }

    /* From now on, f is known to not be a constant. */
    zddVarToConst(f,&g,&h,tautology,empty);

    /* Check remaining one variable cases. */
    if (g == h) {			/* ITE(F,G,G) = G */
	return(g);
    }

    if (g == tautology) {			/* ITE(F,1,0) = F */
	if (h == empty) return(f);
    }

    /* Check cache. */
    r = cuddCacheLookupZdd(dd,DD_ZDD_ITE_TAG,f,g,h);
    if (r != NULL) {
	return(r);
    }

    /* Recompute these because they may have changed in zddVarToConst. */
    topg = cuddIZ(dd,g->index);
    toph = cuddIZ(dd,h->index);
    v = ddMin(topg,toph);

    if (topf < v) {
	r = cuddZddIte(dd,cuddE(f),g,h);
	if (r == NULL) return(NULL);
    } else if (topf > v) {
	if (topg > v) {
	    Gvn = g;
	    index = h->index;
	} else {
	    Gvn = cuddE(g);
	    index = g->index;
	}
	if (toph > v) {
	    Hv = empty; Hvn = h;
	} else {
	    Hv = cuddT(h); Hvn = cuddE(h);
	}
	e = cuddZddIte(dd,f,Gvn,Hvn);
	if (e == NULL) return(NULL);
	cuddRef(e);
	r = cuddZddGetNode(dd,index,Hv,e);
	if (r == NULL) {
	    Cudd_RecursiveDerefZdd(dd,e);
	    return(NULL);
	}
	cuddDeref(e);
    } else {
	index = f->index;
	if (topg > v) {
	    Gv = empty; Gvn = g;
	} else {
	    Gv = cuddT(g); Gvn = cuddE(g);
	}
	if (toph > v) {
	    Hv = empty; Hvn = h;
	} else {
	    Hv = cuddT(h); Hvn = cuddE(h);
	}
	e = cuddZddIte(dd,cuddE(f),Gvn,Hvn);
	if (e == NULL) return(NULL);
	cuddRef(e);
	t = cuddZddIte(dd,cuddT(f),Gv,Hv);
	if (t == NULL) {
	    Cudd_RecursiveDerefZdd(dd,e);
	    return(NULL);
	}
	cuddRef(t);
	r = cuddZddGetNode(dd,index,t,e);
	if (r == NULL) {
	    Cudd_RecursiveDerefZdd(dd,e);
	    Cudd_RecursiveDerefZdd(dd,t);
	    return(NULL);
	}
	cuddDeref(t);
	cuddDeref(e);
    }

    cuddCacheInsert(dd,DD_ZDD_ITE_TAG,f,g,h,r);

    return(r);

} /* end of cuddZddIte */
Esempio n. 17
0
/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_addCompose.]

  Description [Performs the recursive step of Cudd_addCompose.
  Returns the composed BDD if successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_addCompose]

******************************************************************************/
DdNode *
cuddAddComposeRecur(
  DdManager * dd,
  DdNode * f,
  DdNode * g,
  DdNode * proj)
{
    DdNode *f1, *f0, *g1, *g0, *r, *t, *e;
    unsigned int v, topf, topg, topindex;

    statLine(dd);
    v = dd->perm[proj->index];
    topf = cuddI(dd,f->index);

    /* Terminal case. Subsumes the test for constant f. */
    if (topf > v) return(f);

    /* Check cache. */
    r = cuddCacheLookup(dd,DD_ADD_COMPOSE_RECUR_TAG,f,g,proj);
    if (r != NULL) {
	return(r);
    }

    if (topf == v) {
	/* Compose. */
	f1 = cuddT(f);
	f0 = cuddE(f);
	r = cuddAddIteRecur(dd, g, f1, f0);
	if (r == NULL) return(NULL);
    } else {
	/* Compute cofactors of f and g. Remember the index of the top
	** variable.
	*/
	topg = cuddI(dd,g->index);
	if (topf > topg) {
	    topindex = g->index;
	    f1 = f0 = f;
	} else {
	    topindex = f->index;
	    f1 = cuddT(f);
	    f0 = cuddE(f);
	}
	if (topg > topf) {
	    g1 = g0 = g;
	} else {
	    g1 = cuddT(g);
	    g0 = cuddE(g);
	}
	/* Recursive step. */
	t = cuddAddComposeRecur(dd, f1, g1, proj);
	if (t == NULL) return(NULL);
	cuddRef(t);
	e = cuddAddComposeRecur(dd, f0, g0, proj);
	if (e == NULL) {
	    Cudd_RecursiveDeref(dd, t);
	    return(NULL);
	}
	cuddRef(e);

	if (t == e) {
	    r = t;
	} else {
	    r = cuddUniqueInter(dd, (int) topindex, t, e);
	    if (r == NULL) {
		Cudd_RecursiveDeref(dd, t);
		Cudd_RecursiveDeref(dd, e);
		return(NULL);
	    }
	}
	cuddDeref(t);
	cuddDeref(e);
    }

    cuddCacheInsert(dd,DD_ADD_COMPOSE_RECUR_TAG,f,g,proj,r);

    return(r);

} /* end of cuddAddComposeRecur */
Esempio n. 18
0
/**Function********************************************************************

  Synopsis    [Performs a recursive step of Extra_zddGetSymmetricVars.]

  Description [Returns the set of ZDD singletons, containing those positive
  ZDD variables that correspond to BDD variables x, for which it is true 
  that bF(x=0) == bG(x=1).]

  SideEffects []

  SeeAlso     []

******************************************************************************/
DdNode * extraZddGetSymmetricVars( 
  DdManager * dd,    /* the DD manager */
  DdNode * bF,       /* the first function  - originally, the positive cofactor */
  DdNode * bG,       /* the second function - originally, the negative cofactor */
  DdNode * bVars)    /* the set of variables, on which F and G depend */
{
    DdNode * zRes;
    DdNode * bFR = Cudd_Regular(bF); 
    DdNode * bGR = Cudd_Regular(bG); 

    if ( cuddIsConstant(bFR) && cuddIsConstant(bGR) )
    {
        if ( bF == bG )
            return extraZddGetSingletons( dd, bVars );
        else 
            return z0;
    }
    assert( bVars != b1 );

    if ( (zRes = cuddCacheLookupZdd(dd, DD_GET_SYMM_VARS_TAG, bF, bG, bVars)) )
        return zRes;
    else
    {
        DdNode * zRes0, * zRes1;             
        DdNode * zPlus, * zTemp;
        DdNode * bF0, * bF1;             
        DdNode * bG0, * bG1;             
        DdNode * bVarsNew;
    
        int LevelF = cuddI(dd,bFR->index);
        int LevelG = cuddI(dd,bGR->index);
        int LevelFG;

        if ( LevelF < LevelG )
            LevelFG = LevelF;
        else
            LevelFG = LevelG;

        // at least one of the arguments is not a constant
        assert( LevelFG < dd->size );

        // every variable in bF and bG should be also in bVars, therefore LevelFG cannot be above LevelV
        // if LevelFG is below LevelV, scroll through the vars in bVars to the same level as LevelFG
        for ( bVarsNew = bVars; LevelFG > dd->perm[bVarsNew->index]; bVarsNew = cuddT(bVarsNew) );
        assert( LevelFG == dd->perm[bVarsNew->index] );

        // cofactor the functions
        if ( LevelF == LevelFG )
        {
            if ( bFR != bF ) // bF is complemented 
            {
                bF0 = Cudd_Not( cuddE(bFR) );
                bF1 = Cudd_Not( cuddT(bFR) );
            }
            else
            {
                bF0 = cuddE(bFR);
                bF1 = cuddT(bFR);
            }
        }
        else 
            bF0 = bF1 = bF;

        if ( LevelG == LevelFG )
        {
            if ( bGR != bG ) // bG is complemented 
            {
                bG0 = Cudd_Not( cuddE(bGR) );
                bG1 = Cudd_Not( cuddT(bGR) );
            }
            else
            {
                bG0 = cuddE(bGR);
                bG1 = cuddT(bGR);
            }
        }
        else 
            bG0 = bG1 = bG;

        // solve subproblems
        zRes0 = extraZddGetSymmetricVars( dd, bF0, bG0, cuddT(bVarsNew) );
        if ( zRes0 == NULL ) 
            return NULL;
        cuddRef( zRes0 );

        // if there is not symmetries in the negative cofactor
        // there is no need to test the positive cofactor
        if ( zRes0 == z0 )
            zRes = zRes0;  // zRes takes reference
        else
        {
            zRes1 = extraZddGetSymmetricVars( dd, bF1, bG1, cuddT(bVarsNew) );
            if ( zRes1 == NULL ) 
            {
                Cudd_RecursiveDerefZdd( dd, zRes0 );
                return NULL;
            }
            cuddRef( zRes1 );

            // only those variables should belong to the resulting set 
            // for which the property is true for both cofactors
            zRes = cuddZddIntersect( dd, zRes0, zRes1 );
            if ( zRes == NULL )
            {
                Cudd_RecursiveDerefZdd( dd, zRes0 );
                Cudd_RecursiveDerefZdd( dd, zRes1 );
                return NULL;
            }
            cuddRef( zRes );
            Cudd_RecursiveDerefZdd( dd, zRes0 );
            Cudd_RecursiveDerefZdd( dd, zRes1 );
        }

        // add one more singleton if the property is true for this variable
        if ( bF0 == bG1 )
        {
            zPlus = cuddZddGetNode( dd, 2*bVarsNew->index, z1, z0 );
            if ( zPlus == NULL ) 
            {
                Cudd_RecursiveDerefZdd( dd, zRes );
                return NULL;
            }
            cuddRef( zPlus );

            // add these variable pairs to the result
            zRes = cuddZddUnion( dd, zTemp = zRes, zPlus );
            if ( zRes == NULL )
            {
                Cudd_RecursiveDerefZdd( dd, zTemp );
                Cudd_RecursiveDerefZdd( dd, zPlus );
                return NULL;
            }
            cuddRef( zRes );
            Cudd_RecursiveDerefZdd( dd, zTemp );
            Cudd_RecursiveDerefZdd( dd, zPlus );
        }

        if ( bF == bG && bVars != bVarsNew )
        { 
            // if the functions are equal, so are their cofactors
            // add those variables from V that are above F and G 

            DdNode * bVarsExtra;

            assert( LevelFG > dd->perm[bVars->index] );

            // create the BDD of the extra variables
            bVarsExtra = cuddBddExistAbstractRecur( dd, bVars, bVarsNew );
            if ( bVarsExtra == NULL )
            {
                Cudd_RecursiveDerefZdd( dd, zRes );
                return NULL;
            }
            cuddRef( bVarsExtra );

            zPlus = extraZddGetSingletons( dd, bVarsExtra );
            if ( zPlus == NULL )
            {
                Cudd_RecursiveDeref( dd, bVarsExtra );
                Cudd_RecursiveDerefZdd( dd, zRes );
                return NULL;
            }
            cuddRef( zPlus );
            Cudd_RecursiveDeref( dd, bVarsExtra );

            // add these to the result
            zRes = cuddZddUnion( dd, zTemp = zRes, zPlus );
            if ( zRes == NULL )
            {
                Cudd_RecursiveDerefZdd( dd, zTemp );
                Cudd_RecursiveDerefZdd( dd, zPlus );
                return NULL;
            }
            cuddRef( zRes );
            Cudd_RecursiveDerefZdd( dd, zTemp );
            Cudd_RecursiveDerefZdd( dd, zPlus );
        }
        cuddDeref( zRes );

        cuddCacheInsert( dd, DD_GET_SYMM_VARS_TAG, bF, bG, bVars, zRes );
        return zRes;
    }
}   /* end of extraZddGetSymmetricVars */
Esempio n. 19
0
/**Function********************************************************************

  Synopsis    [Performs the reordering-sensitive step of Extra_bddHaarInverse().]

  Description [Generates in a bottom-up fashion an ADD for the inverse Haar.]

  SideEffects [The third cached argument (bSteps) is the BDD of the elementary variable
  whose index equal to the number of lazy steps made thus far plus one. On the top-most
  level it is 0, next it is 1, etc.]

  SeeAlso     []

******************************************************************************/
DdNode * extraBddHaarInverse( 
  DdManager * dd,    /* the manager */
  DdNode * aFunc,    /* the function whose spectrum is being computed */
  DdNode * aSteps,   /* the index of this variable indicates the number of previous lazy recursive calls */
  DdNode * bVars,    /* the variables, on which the function depends */
  DdNode * bVarsAll, /* the set of all variables, which will never change through the calls */
  int      nVarsAll, /* the number of vars in the set */
  int    * InverseMap ) /* the variable map mapping the var index into its inverse var index */
{
	DdNode * aRes;
	DdNode * bCacheCube;
    statLine(dd); 

	/* terminal cases */
	if ( bVars == b1 )
	{ // return a terminal node with a value equal to cuddV(aFunc) * 2^(nSteps-1)
		if ( cuddV(aSteps) == 0.0 )
			return cuddUniqueConst( dd, cuddV(aFunc) ); 
		else
			return cuddUniqueConst( dd, cuddV(aFunc) * Extra_Power2( (int)(cuddV(aSteps)-1) ) ); 
	}

    /* check cache */
    /* the last two arguments are derivitives, therefore there are useless for caching */
	/* the other two arguments (bVars and bVarsAll) can be combined into one argument */
	bCacheCube = extraCachingCube( dd, bVarsAll, bVars );  Cudd_Ref( bCacheCube );
    if ( aRes = cuddCacheLookup(dd, DD_ADD_HAAR_INVERSE_TAG, aFunc, aSteps, bCacheCube) )
	{
		Cudd_RecursiveDeref( dd, bCacheCube );
   		return aRes;
	}
	else
	{
		DdNode * aFunc0, * aFunc1;   /* cofactors of the function */
		DdNode * aInvH0, * aInvH1;   /* partial solutions of the problem */
		DdNode * aRes0,  * aRes1;    /* partial results to be composed by ITE */
		DdNode * aStepNext;

		/* aFunc cannot depend on a variable that is not in bVars */
		assert( cuddI(dd,aFunc->index) >= cuddI(dd,bVars->index) );

		/* cofactor the ADD */
		if ( aFunc->index == bVars->index )
		{
			aFunc0 = cuddE(aFunc);
			aFunc1 = cuddT(aFunc);
		}
		else /* bVars is higher in the variable order */
			aFunc0 = aFunc1 = aFunc;


		if ( cuddV(aSteps) > 0.0 ) /* meaning that it is a lazy call */
		{
			/* solve subproblems */
			aStepNext = cuddUniqueConst( dd, cuddV(aSteps)+1 );
			if ( aStepNext == NULL )
				return NULL;
			cuddRef( aStepNext );

			aInvH0 = extraBddHaarInverse( dd, aFunc0, aStepNext, cuddT(bVars), bVarsAll, nVarsAll, InverseMap );
			if ( aInvH0 == NULL )
			{
				Cudd_RecursiveDeref( dd, aStepNext );
				return NULL;
			}
			cuddRef( aInvH0 );

			aInvH1 = extraBddHaarInverse( dd, aFunc1, aStepNext, cuddT(bVars), bVarsAll, nVarsAll, InverseMap );
			if ( aInvH1 == NULL )
			{
				Cudd_RecursiveDeref( dd, aStepNext );
				Cudd_RecursiveDeref( dd, aInvH0 );
				return NULL;
			}
			cuddRef( aInvH1 );
			Cudd_RecursiveDeref( dd, aStepNext );

			aRes0 = aInvH0;
			aRes1 = aInvH1;
		}
		else // if ( cuddV(aSteps) == 0.0 )
		{
			/* solve subproblems */
			aInvH0 = extraBddHaarInverse( dd, aFunc0, aSteps, cuddT(bVars), bVarsAll, nVarsAll, InverseMap );
			if ( aInvH0 == NULL )
				return NULL;
			cuddRef( aInvH0 );

			aStepNext = cuddUniqueConst( dd, 1.0 );
			if ( aStepNext == NULL )
			{
				Cudd_RecursiveDeref( dd, aInvH0 );
				return NULL;
			}
			cuddRef( aStepNext );

			aInvH1 = extraBddHaarInverse( dd, aFunc1, aStepNext, cuddT(bVars), bVarsAll, nVarsAll, InverseMap );
			if ( aInvH1 == NULL )
			{
				Cudd_RecursiveDeref( dd, aStepNext );
				Cudd_RecursiveDeref( dd, aInvH0 );
				return NULL;
			}
			cuddRef( aInvH1 );
			Cudd_RecursiveDeref( dd, aStepNext );


			/* compute  aRes0 = aWalsh0 + aWalsh1 */
			aRes0 = cuddAddApplyRecur( dd, Cudd_addPlus, aInvH0, aInvH1 );
			if ( aRes0 == NULL )
			{
				Cudd_RecursiveDeref( dd, aInvH0 );
				Cudd_RecursiveDeref( dd, aInvH1 );
				return NULL;
			}
			cuddRef( aRes0 );

			/* compute  aRes1 = aWalsh0 - aWalsh1 */
			aRes1 = cuddAddApplyRecur( dd, Cudd_addMinus, aInvH0, aInvH1 );
			if ( aRes1 == NULL )
			{
				Cudd_RecursiveDeref( dd, aInvH0 );
				Cudd_RecursiveDeref( dd, aInvH1 );
				Cudd_RecursiveDeref( dd, aRes0 );
				return NULL;
			}
			cuddRef( aRes1 );

			Cudd_RecursiveDeref(dd, aInvH0);
			Cudd_RecursiveDeref(dd, aInvH1);
		}

		/* only aRes0 and aRes1 are referenced at this point */

		/* consider the case when Res0 and Res1 are the same node */
		aRes = extraAddIteRecurGeneral( dd, dd->vars[ InverseMap[bVars->index] ], aRes1, aRes0 );
		if (aRes == NULL) 
		{
			Cudd_RecursiveDeref(dd, aRes1);
			Cudd_RecursiveDeref(dd, aRes0);
			return NULL;
		}
		cuddRef( aRes );
		Cudd_RecursiveDeref(dd, aRes1);
		Cudd_RecursiveDeref(dd, aRes0);
		cuddDeref( aRes );

		/* insert the result into cache */
		cuddCacheInsert(dd, DD_ADD_HAAR_INVERSE_TAG, aFunc, aSteps, bCacheCube, aRes);
		Cudd_RecursiveDeref( dd, bCacheCube );
		return aRes;
	}
} /* end of extraBddHaarInverse */