Esempio n. 1
0
KScalar     stats_inbreeding_depression (KConfig K)

// Compute inbreeding depression (1 - self/outcross) from
// the load class data for selfed and outcrossed progeny.

{
    const char * thisfunction = "stats_inbreeding_depression";
    KInt i, j, g;
    KArray a, via_fgam, via_mgam;
    KVector1 thismgam, thisfgam, allmgam, allfgam;
    KScalar w_self, w_out, ibd, thisibd;
    if (K->genotypes != 1) {
        not_implemented(thisfunction, "genotypes != 1");
    }
    ibd = 0.0;
    apply_gametes_full(K, allmgam, allfgam, K->x);
    for (i=0; i <= K->MI; i++) {
        for (j=0; j <= K->MJ; j++) {
            for (g=0; g < K->genotypes; g++) {
                /* compute fitness of selfed and outcrossed
                ** progeny of this load class by creating dummy
                ** arrays representing the progeny resulting
                ** from matings involving just these load classes.
                **
                ** Selfing is straightforward.
                **
                ** For outcrossing, matings involving both female
                ** and male gametes must be considered.  This is
                ** done by mating female gametes produced by this
                ** load class with the population male gametes,
                ** and the male gametes produced by this load
                ** class with  the population female gametes.
                */
                if (K->x[i][j][g] == 0.0)
                    continue;
                /* fill_KArray(K, a1, 0.0);
                ** a1[i][j][g] = K->x[i][j][g];
                ** apply_self_progeny(K, a2, a1);
                */
                apply_self_progeny_stats(K, a, K->x[i][j][g], i, j, g);
                w_self = cumulative_fitness(K, a);
                apply_gametes_stats(K, thismgam, thisfgam, K->x[i][j][g], i, j, g);
                /* apply_gametes(K, allmgam, allfgam, K->x); */
                apply_zygotes(K, via_fgam, allmgam, thisfgam);
                apply_zygotes(K, via_mgam, thismgam, allfgam);
                w_out = cumulative_fitness(K, via_fgam) +
                        cumulative_fitness(K, via_mgam);
                w_out *= 0.5;
                thisibd = 1.0 - (w_self / w_out);
                ibd += thisibd * K->x[i][j][g];
            }
        }
    }
    return ibd;
}
void GeneticAlgorithm<Model>::Run(
    const GeneticFitnessFunction<Model>& fitness_function,
    GeneticSearchStrategy<Model>& searcher,
    size_t population_size,
    size_t breeds_per_generation) {

    // A lambda for sorting the population based on fitness via std::sort.
    auto fitness_sort =
    [](const member_t& a, const member_t& b) {
        return a.fitness() > b.fitness();
    };

    // Randomly selects an index based off of a given probability distribution.
    // The CDF does not need to be normalized, just monotonically increasing.
    auto select_index =
    [](const std::vector<double>& cdf) {
        double p = (double)rand() / RAND_MAX * cdf.back();
        int i = 0;
        while (p > cdf[i]) i++;
        return i;
    };

    // Given the population, construct a cumulative distribution function based
    // on the fitness of the members. Despite the name, the CDF is not
    // normalized.
    auto compute_fitness_cdf =
        [&fitness_sort](const population_t& population,
    std::vector<double>& fitness_cdf) {
        fitness_cdf.resize(population.size());
        auto minmax_members = std::minmax_element(
                                  std::begin(population), std::end(population), fitness_sort);
        double min_fitness = minmax_members.second->fitness();
        double max_fitness = minmax_members.first->fitness();
        double range = max_fitness - min_fitness;
        double offset = (range == 0)
                        ?  1 - min_fitness : -min_fitness;

        int index = 0;
        for (const auto& tmp : population) {
            fitness_cdf[index] = (index == 0) ?  tmp.fitness() + offset
                                 : fitness_cdf[index-1] + tmp.fitness() + offset;
            index++;
        }
    };

    // Initialize the population.
    {
        std::lock_guard<std::mutex> lock(generation_lock_);
        population_.clear();
        population_.reserve(population_size + breeds_per_generation);
        for (size_t i = 0; i < population_size; i++) {
            member_t member(std::move(searcher.Introduce(fitness_function)), 0);
            fitness_function(member);
            population_.push_back(std::move(member));
        }
        std::sort(std::begin(population_), std::end(population_), fitness_sort);
    }

    std::vector<double> cumulative_fitness(population_size, 0);
    std::vector<double> new_cumulative_fitness(
        population_size + breeds_per_generation, 0);
    std::vector<size_t> selection_indices(population_size, 0);

    generation_num_ = 0;

    // Main loop of the genetic algorithm.
    do {
        std::lock_guard<std::mutex> lock(generation_lock_);
        running_ = true;
        generation_num_++;

        compute_fitness_cdf(population_, cumulative_fitness);

        // Construct the new population members from the existing ones.
        for (size_t i = 0; i < breeds_per_generation; i++) {
            int index1 = select_index(cumulative_fitness);
            int index2 = index1;
            while (index1 == index2) {
                index2 = select_index(cumulative_fitness);
            }

            do {
                member_t member(std::move(searcher.Crossover(population_[index1],
                                          population_[index2])));
                searcher.Mutate(member);

                // Only add if the model is valid.
                if (fitness_function(member)) {
                    population_.push_back(std::move(member));
                    break;
                }
            } while (true);
        }

        // If we extra members hanging around from the previous generation, select
        // the best population member and fill out the population using the fitness
        // to weight selection.
        if (population_.size() > population_size) {
            compute_fitness_cdf(population_, new_cumulative_fitness);

            selection_indices[0] = 0;
            for (size_t i = 1; i < population_size; i++) {
                bool unique = false;
                size_t index = 0;

                while (!unique) {
                    index = select_index(new_cumulative_fitness);
                    unique = true;
                    for (int j = i - 1; j >= 0; j--) {
                        if (selection_indices[j] == index) {
                            unique = false;
                            break;
                        }
                    }
                }
                selection_indices[i] = index;
            }

            // Sort the selection indices in ascending order, so we can select them in
            // the population in one pass.
            std::sort(std::begin(selection_indices), std::end(selection_indices));

            // Construct the new population based on the selections.
            for (size_t i = 0; i < population_size; i++) {
                if (i == selection_indices[i]) continue;
                std::swap(population_[i], population_[selection_indices[i]]);
            }
            population_.erase(std::begin(population_) + population_size,
                              std::end(population_));
        }

        std::sort(std::begin(population_), std::end(population_), fitness_sort);
    } while (searcher.ShouldContinue(population_, generation_num_));

    running_ = false;
}