Esempio n. 1
0
/* Subroutine */ int cggglm_(integer *n, integer *m, integer *p, complex *a, 
	integer *lda, complex *b, integer *ldb, complex *d__, complex *x, 
	complex *y, complex *work, integer *lwork, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    CGGGLM solves a general Gauss-Markov linear model (GLM) problem:   

            minimize || y ||_2   subject to   d = A*x + B*y   
                x   

    where A is an N-by-M matrix, B is an N-by-P matrix, and d is a   
    given N-vector. It is assumed that M <= N <= M+P, and   

               rank(A) = M    and    rank( A B ) = N.   

    Under these assumptions, the constrained equation is always   
    consistent, and there is a unique solution x and a minimal 2-norm   
    solution y, which is obtained using a generalized QR factorization   
    of A and B.   

    In particular, if matrix B is square nonsingular, then the problem   
    GLM is equivalent to the following weighted linear least squares   
    problem   

                 minimize || inv(B)*(d-A*x) ||_2   
                     x   

    where inv(B) denotes the inverse of B.   

    Arguments   
    =========   

    N       (input) INTEGER   
            The number of rows of the matrices A and B.  N >= 0.   

    M       (input) INTEGER   
            The number of columns of the matrix A.  0 <= M <= N.   

    P       (input) INTEGER   
            The number of columns of the matrix B.  P >= N-M.   

    A       (input/output) COMPLEX array, dimension (LDA,M)   
            On entry, the N-by-M matrix A.   
            On exit, A is destroyed.   

    LDA     (input) INTEGER   
            The leading dimension of the array A. LDA >= max(1,N).   

    B       (input/output) COMPLEX array, dimension (LDB,P)   
            On entry, the N-by-P matrix B.   
            On exit, B is destroyed.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,N).   

    D       (input/output) COMPLEX array, dimension (N)   
            On entry, D is the left hand side of the GLM equation.   
            On exit, D is destroyed.   

    X       (output) COMPLEX array, dimension (M)   
    Y       (output) COMPLEX array, dimension (P)   
            On exit, X and Y are the solutions of the GLM problem.   

    WORK    (workspace/output) COMPLEX array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >= max(1,N+M+P).   
            For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,   
            where NB is an upper bound for the optimal blocksizes for   
            CGEQRF, CGERQF, CUNMQR and CUNMRQ.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   

    ===================================================================   


       Test the input parameters   

       Parameter adjustments */
    /* Table of constant values */
    static complex c_b2 = {1.f,0.f};
    static integer c__1 = 1;
    static integer c_n1 = -1;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
    complex q__1;
    /* Local variables */
    static integer lopt, i__;
    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
	    , complex *, integer *, complex *, integer *, complex *, complex *
	    , integer *), ccopy_(integer *, complex *, integer *, 
	    complex *, integer *), ctrsv_(char *, char *, char *, integer *, 
	    complex *, integer *, complex *, integer *);
    static integer nb, np;
    extern /* Subroutine */ int cggqrf_(integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, complex *, 
	    complex *, integer *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static integer nb1, nb2, nb3, nb4;
    extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *), cunmrq_(char *, 
	    char *, integer *, integer *, integer *, complex *, integer *, 
	    complex *, complex *, integer *, complex *, integer *, integer *);
    static integer lwkopt;
    static logical lquery;
#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --d__;
    --x;
    --y;
    --work;

    /* Function Body */
    *info = 0;
    np = min(*n,*p);
    nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, m, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb2 = ilaenv_(&c__1, "CGERQF", " ", n, m, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb3 = ilaenv_(&c__1, "CUNMQR", " ", n, m, p, &c_n1, (ftnlen)6, (ftnlen)1);
    nb4 = ilaenv_(&c__1, "CUNMRQ", " ", n, m, p, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
    nb = max(i__1,nb4);
    lwkopt = *m + np + max(*n,*p) * nb;
    work[1].r = (real) lwkopt, work[1].i = 0.f;
    lquery = *lwork == -1;
    if (*n < 0) {
	*info = -1;
    } else if (*m < 0 || *m > *n) {
	*info = -2;
    } else if (*p < 0 || *p < *n - *m) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = 1, i__2 = *n + *m + *p;
	if (*lwork < max(i__1,i__2) && ! lquery) {
	    *info = -12;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGGGLM", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Compute the GQR factorization of matrices A and B:   

              Q'*A = ( R11 ) M,    Q'*B*Z' = ( T11   T12 ) M   
                     (  0  ) N-M             (  0    T22 ) N-M   
                        M                     M+P-N  N-M   

       where R11 and T22 are upper triangular, and Q and Z are   
       unitary. */

    i__1 = *lwork - *m - np;
    cggqrf_(n, m, p, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[*m 
	    + 1], &work[*m + np + 1], &i__1, info);
    i__1 = *m + np + 1;
    lopt = work[i__1].r;

/*     Update left-hand-side vector d = Q'*d = ( d1 ) M   
                                               ( d2 ) N-M */

    i__1 = max(1,*n);
    i__2 = *lwork - *m - np;
    cunmqr_("Left", "Conjugate transpose", n, &c__1, m, &a[a_offset], lda, &
	    work[1], &d__[1], &i__1, &work[*m + np + 1], &i__2, info);
/* Computing MAX */
    i__3 = *m + np + 1;
    i__1 = lopt, i__2 = (integer) work[i__3].r;
    lopt = max(i__1,i__2);

/*     Solve T22*y2 = d2 for y2 */

    i__1 = *n - *m;
    ctrsv_("Upper", "No transpose", "Non unit", &i__1, &b_ref(*m + 1, *m + *p 
	    - *n + 1), ldb, &d__[*m + 1], &c__1);
    i__1 = *n - *m;
    ccopy_(&i__1, &d__[*m + 1], &c__1, &y[*m + *p - *n + 1], &c__1);

/*     Set y1 = 0 */

    i__1 = *m + *p - *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = i__;
	y[i__2].r = 0.f, y[i__2].i = 0.f;
/* L10: */
    }

/*     Update d1 = d1 - T12*y2 */

    i__1 = *n - *m;
    q__1.r = -1.f, q__1.i = 0.f;
    cgemv_("No transpose", m, &i__1, &q__1, &b_ref(1, *m + *p - *n + 1), ldb, 
	    &y[*m + *p - *n + 1], &c__1, &c_b2, &d__[1], &c__1);

/*     Solve triangular system: R11*x = d1 */

    ctrsv_("Upper", "No Transpose", "Non unit", m, &a[a_offset], lda, &d__[1],
	     &c__1);

/*     Copy D to X */

    ccopy_(m, &d__[1], &c__1, &x[1], &c__1);

/*     Backward transformation y = Z'*y   

   Computing MAX */
    i__1 = 1, i__2 = *n - *p + 1;
    i__3 = max(1,*p);
    i__4 = *lwork - *m - np;
    cunmrq_("Left", "Conjugate transpose", p, &c__1, &np, &b_ref(max(i__1,
	    i__2), 1), ldb, &work[*m + 1], &y[1], &i__3, &work[*m + np + 1], &
	    i__4, info);
/* Computing MAX */
    i__4 = *m + np + 1;
    i__2 = lopt, i__3 = (integer) work[i__4].r;
    i__1 = *m + np + max(i__2,i__3);
    work[1].r = (real) i__1, work[1].i = 0.f;

    return 0;

/*     End of CGGGLM */

} /* cggglm_ */
Esempio n. 2
0
/* Subroutine */ int cggrqf_(integer *m, integer *p, integer *n, complex *a, 
	integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, 
	complex *work, integer *lwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    CGGRQF computes a generalized RQ factorization of an M-by-N matrix A   
    and a P-by-N matrix B:   

                A = R*Q,        B = Z*T*Q,   

    where Q is an N-by-N unitary matrix, Z is a P-by-P unitary   
    matrix, and R and T assume one of the forms:   

    if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N,   
                     N-M  M                           ( R21 ) N   
                                                         N   

    where R12 or R21 is upper triangular, and   

    if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P,   
                    (  0  ) P-N                         P   N-P   
                       N   

    where T11 is upper triangular.   

    In particular, if B is square and nonsingular, the GRQ factorization   
    of A and B implicitly gives the RQ factorization of A*inv(B):   

                 A*inv(B) = (R*inv(T))*Z'   

    where inv(B) denotes the inverse of the matrix B, and Z' denotes the   
    conjugate transpose of the matrix Z.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    P       (input) INTEGER   
            The number of rows of the matrix B.  P >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrices A and B. N >= 0.   

    A       (input/output) COMPLEX array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, if M <= N, the upper triangle of the subarray   
            A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;   
            if M > N, the elements on and above the (M-N)-th subdiagonal   
            contain the M-by-N upper trapezoidal matrix R; the remaining   
            elements, with the array TAUA, represent the unitary   
            matrix Q as a product of elementary reflectors (see Further   
            Details).   

    LDA     (input) INTEGER   
            The leading dimension of the array A. LDA >= max(1,M).   

    TAUA    (output) COMPLEX array, dimension (min(M,N))   
            The scalar factors of the elementary reflectors which   
            represent the unitary matrix Q (see Further Details).   

    B       (input/output) COMPLEX array, dimension (LDB,N)   
            On entry, the P-by-N matrix B.   
            On exit, the elements on and above the diagonal of the array   
            contain the min(P,N)-by-N upper trapezoidal matrix T (T is   
            upper triangular if P >= N); the elements below the diagonal,   
            with the array TAUB, represent the unitary matrix Z as a   
            product of elementary reflectors (see Further Details).   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,P).   

    TAUB    (output) COMPLEX array, dimension (min(P,N))   
            The scalar factors of the elementary reflectors which   
            represent the unitary matrix Z (see Further Details).   

    WORK    (workspace/output) COMPLEX array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >= max(1,N,M,P).   
            For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),   
            where NB1 is the optimal blocksize for the RQ factorization   
            of an M-by-N matrix, NB2 is the optimal blocksize for the   
            QR factorization of a P-by-N matrix, and NB3 is the optimal   
            blocksize for a call of CUNMRQ.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO=-i, the i-th argument had an illegal value.   

    Further Details   
    ===============   

    The matrix Q is represented as a product of elementary reflectors   

       Q = H(1) H(2) . . . H(k), where k = min(m,n).   

    Each H(i) has the form   

       H(i) = I - taua * v * v'   

    where taua is a complex scalar, and v is a complex vector with   
    v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in   
    A(m-k+i,1:n-k+i-1), and taua in TAUA(i).   
    To form Q explicitly, use LAPACK subroutine CUNGRQ.   
    To use Q to update another matrix, use LAPACK subroutine CUNMRQ.   

    The matrix Z is represented as a product of elementary reflectors   

       Z = H(1) H(2) . . . H(k), where k = min(p,n).   

    Each H(i) has the form   

       H(i) = I - taub * v * v'   

    where taub is a complex scalar, and v is a complex vector with   
    v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),   
    and taub in TAUB(i).   
    To form Z explicitly, use LAPACK subroutine CUNGQR.   
    To use Z to update another matrix, use LAPACK subroutine CUNMQR.   

    =====================================================================   


       Test the input parameters   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
    /* Local variables */
    static integer lopt, nb;
    extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *, integer *), cgerqf_(
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static integer nb1, nb2, nb3;
    extern /* Subroutine */ int cunmrq_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *);
    static integer lwkopt;
    static logical lquery;
#define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --taua;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --taub;
    --work;

    /* Function Body */
    *info = 0;
    nb1 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb2 = ilaenv_(&c__1, "CGEQRF", " ", p, n, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb3 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, p, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
    i__1 = max(nb1,nb2);
    nb = max(i__1,nb3);
/* Computing MAX */
    i__1 = max(*n,*m);
    lwkopt = max(i__1,*p) * nb;
    work[1].r = (real) lwkopt, work[1].i = 0.f;
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*p < 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,*p)) {
	*info = -8;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m), i__1 = max(i__1,*p);
	if (*lwork < max(i__1,*n) && ! lquery) {
	    *info = -11;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGGRQF", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     RQ factorization of M-by-N matrix A: A = R*Q */

    cgerqf_(m, n, &a[a_offset], lda, &taua[1], &work[1], lwork, info);
    lopt = work[1].r;

/*     Update B := B*Q'   

   Computing MAX */
    i__1 = 1, i__2 = *m - *n + 1;
    i__3 = min(*m,*n);
    cunmrq_("Right", "Conjugate Transpose", p, n, &i__3, &a_ref(max(i__1,i__2)
	    , 1), lda, &taua[1], &b[b_offset], ldb, &work[1], lwork, info);
/* Computing MAX */
    i__1 = lopt, i__2 = (integer) work[1].r;
    lopt = max(i__1,i__2);

/*     QR factorization of P-by-N matrix B: B = Z*T */

    cgeqrf_(p, n, &b[b_offset], ldb, &taub[1], &work[1], lwork, info);
/* Computing MAX */
    i__2 = lopt, i__3 = (integer) work[1].r;
    i__1 = max(i__2,i__3);
    work[1].r = (real) i__1, work[1].i = 0.f;

    return 0;

/*     End of CGGRQF */

} /* cggrqf_ */
Esempio n. 3
0
/* Subroutine */ int cggrqf_(integer *m, integer *p, integer *n, complex *a, 
	integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, 
	complex *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;

    /* Local variables */
    integer nb, nb1, nb2, nb3, lopt;
    extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *, integer *), cgerqf_(
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int cunmrq_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *);
    integer lwkopt;
    logical lquery;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CGGRQF computes a generalized RQ factorization of an M-by-N matrix A */
/*  and a P-by-N matrix B: */

/*              A = R*Q,        B = Z*T*Q, */

/*  where Q is an N-by-N unitary matrix, Z is a P-by-P unitary */
/*  matrix, and R and T assume one of the forms: */

/*  if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N, */
/*                   N-M  M                           ( R21 ) N */
/*                                                       N */

/*  where R12 or R21 is upper triangular, and */

/*  if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P, */
/*                  (  0  ) P-N                         P   N-P */
/*                     N */

/*  where T11 is upper triangular. */

/*  In particular, if B is square and nonsingular, the GRQ factorization */
/*  of A and B implicitly gives the RQ factorization of A*inv(B): */

/*               A*inv(B) = (R*inv(T))*Z' */

/*  where inv(B) denotes the inverse of the matrix B, and Z' denotes the */
/*  conjugate transpose of the matrix Z. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  P       (input) INTEGER */
/*          The number of rows of the matrix B.  P >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrices A and B. N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, if M <= N, the upper triangle of the subarray */
/*          A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; */
/*          if M > N, the elements on and above the (M-N)-th subdiagonal */
/*          contain the M-by-N upper trapezoidal matrix R; the remaining */
/*          elements, with the array TAUA, represent the unitary */
/*          matrix Q as a product of elementary reflectors (see Further */
/*          Details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,M). */

/*  TAUA    (output) COMPLEX array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors which */
/*          represent the unitary matrix Q (see Further Details). */

/*  B       (input/output) COMPLEX array, dimension (LDB,N) */
/*          On entry, the P-by-N matrix B. */
/*          On exit, the elements on and above the diagonal of the array */
/*          contain the min(P,N)-by-N upper trapezoidal matrix T (T is */
/*          upper triangular if P >= N); the elements below the diagonal, */
/*          with the array TAUB, represent the unitary matrix Z as a */
/*          product of elementary reflectors (see Further Details). */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= max(1,P). */

/*  TAUB    (output) COMPLEX array, dimension (min(P,N)) */
/*          The scalar factors of the elementary reflectors which */
/*          represent the unitary matrix Z (see Further Details). */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >= max(1,N,M,P). */
/*          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), */
/*          where NB1 is the optimal blocksize for the RQ factorization */
/*          of an M-by-N matrix, NB2 is the optimal blocksize for the */
/*          QR factorization of a P-by-N matrix, and NB3 is the optimal */
/*          blocksize for a call of CUNMRQ. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO=-i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */

/*  Each H(i) has the form */

/*     H(i) = I - taua * v * v' */

/*  where taua is a complex scalar, and v is a complex vector with */
/*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */
/*  A(m-k+i,1:n-k+i-1), and taua in TAUA(i). */
/*  To form Q explicitly, use LAPACK subroutine CUNGRQ. */
/*  To use Q to update another matrix, use LAPACK subroutine CUNMRQ. */

/*  The matrix Z is represented as a product of elementary reflectors */

/*     Z = H(1) H(2) . . . H(k), where k = min(p,n). */

/*  Each H(i) has the form */

/*     H(i) = I - taub * v * v' */

/*  where taub is a complex scalar, and v is a complex vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), */
/*  and taub in TAUB(i). */
/*  To form Z explicitly, use LAPACK subroutine CUNGQR. */
/*  To use Z to update another matrix, use LAPACK subroutine CUNMQR. */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --taua;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --taub;
    --work;

    /* Function Body */
    *info = 0;
    nb1 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1);
    nb2 = ilaenv_(&c__1, "CGEQRF", " ", p, n, &c_n1, &c_n1);
    nb3 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, p, &c_n1);
/* Computing MAX */
    i__1 = max(nb1,nb2);
    nb = max(i__1,nb3);
/* Computing MAX */
    i__1 = max(*n,*m);
    lwkopt = max(i__1,*p) * nb;
    work[1].r = (real) lwkopt, work[1].i = 0.f;
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*p < 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,*p)) {
	*info = -8;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m), i__1 = max(i__1,*p);
	if (*lwork < max(i__1,*n) && ! lquery) {
	    *info = -11;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGGRQF", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     RQ factorization of M-by-N matrix A: A = R*Q */

    cgerqf_(m, n, &a[a_offset], lda, &taua[1], &work[1], lwork, info);
    lopt = work[1].r;

/*     Update B := B*Q' */

    i__1 = min(*m,*n);
/* Computing MAX */
    i__2 = 1, i__3 = *m - *n + 1;
    cunmrq_("Right", "Conjugate Transpose", p, n, &i__1, &a[max(i__2, i__3)+ 
	    a_dim1], lda, &taua[1], &b[b_offset], ldb, &work[1], lwork, info);
/* Computing MAX */
    i__1 = lopt, i__2 = (integer) work[1].r;
    lopt = max(i__1,i__2);

/*     QR factorization of P-by-N matrix B: B = Z*T */

    cgeqrf_(p, n, &b[b_offset], ldb, &taub[1], &work[1], lwork, info);
/* Computing MAX */
    i__2 = lopt, i__3 = (integer) work[1].r;
    i__1 = max(i__2,i__3);
    work[1].r = (real) i__1, work[1].i = 0.f;

    return 0;

/*     End of CGGRQF */

} /* cggrqf_ */
Esempio n. 4
0
/* Subroutine */ int ctimrq_(char *line, integer *nm, integer *mval, integer *
	nval, integer *nk, integer *kval, integer *nnb, integer *nbval, 
	integer *nxval, integer *nlda, integer *ldaval, real *timmin, complex 
	*a, complex *tau, complex *b, complex *work, real *rwork, real *
	reslts, integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, 
	ftnlen line_len)
{
    /* Initialized data */

    static char subnam[6*3] = "CGERQF" "CUNGRQ" "CUNMRQ";
    static char sides[1*2] = "L" "R";
    static char transs[1*2] = "N" "C";
    static integer iseed[4] = { 0,0,0,1 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)";
    static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops "
	    "***\002)";
    static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)";
    static char fmt_9996[] = "(5x,\002K = min(M,N)\002,/)";
    static char fmt_9995[] = "(/5x,a6,\002 with SIDE = '\002,a1,\002', TRANS"
	    " = '\002,a1,\002', \002,a1,\002 =\002,i6,/)";
    static char fmt_9994[] = "(\002 *** No pairs (M,N) found with M <= N: "
	    " \002,a6,\002 not timed\002)";

    /* System generated locals */
    integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, 
	    i__3, i__4, i__5, i__6;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    static integer ilda;
    static char labm[1], side[1];
    static integer info;
    static char path[3];
    static real time;
    static integer isub, muse[12], nuse[12], i__, k, m, n;
    static char cname[6];
    static integer iside, itoff, itran, minmn;
    extern doublereal sopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    extern /* Subroutine */ int icopy_(integer *, integer *, integer *, 
	    integer *, integer *);
    static char trans[1];
    static integer k1, i4, m1, n1;
    static real s1, s2;
    static integer ic;
    extern /* Subroutine */ int sprtb4_(char *, char *, char *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    real *, integer *, integer *, integer *, ftnlen, ftnlen, ftnlen), 
	    sprtb5_(char *, char *, char *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, real *, integer *, integer *, 
	    integer *, ftnlen, ftnlen, ftnlen);
    static integer nb, ik, im, lw, nx, reseed[4];
    extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer 
	    *, integer *, integer *, integer *, integer *, ftnlen), cgerqf_(
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *, integer *);
    extern doublereal second_(void);
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), ctimmg_(integer *, 
	    integer *, integer *, complex *, integer *, integer *, integer *),
	     atimin_(char *, char *, integer *, char *, logical *, integer *, 
	    integer *, ftnlen, ftnlen, ftnlen), clatms_(integer *, integer *, 
	    char *, integer *, char *, real *, integer *, real *, real *, 
	    integer *, integer *, char *, complex *, integer *, complex *, 
	    integer *), xlaenv_(integer *, integer *);
    extern doublereal smflop_(real *, real *, integer *);
    static real untime;
    extern /* Subroutine */ int cungrq_(integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, integer *);
    static logical timsub[3];
    extern /* Subroutine */ int cunmrq_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *);
    static integer lda, icl, inb, imx;
    static real ops;

    /* Fortran I/O blocks */
    static cilist io___9 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___29 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___31 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___32 = { 0, 0, 0, 0, 0 };
    static cilist io___33 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___34 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9994, 0 };



#define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6]
#define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\
reslts_dim2 + (a_2))*reslts_dim1 + a_1]


/*  -- LAPACK timing routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    CTIMRQ times the LAPACK routines to perform the RQ factorization of   
    a COMPLEX general matrix.   

    Arguments   
    =========   

    LINE    (input) CHARACTER*80   
            The input line that requested this routine.  The first six   
            characters contain either the name of a subroutine or a   
            generic path name.  The remaining characters may be used to   
            specify the individual routines to be timed.  See ATIMIN for   
            a full description of the format of the input line.   

    NM      (input) INTEGER   
            The number of values of M and N contained in the vectors   
            MVAL and NVAL.  The matrix sizes are used in pairs (M,N).   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix row dimension M.   

    NVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix column dimension N.   

    NK      (input) INTEGER   
            The number of values of K in the vector KVAL.   

    KVAL    (input) INTEGER array, dimension (NK)   
            The values of the matrix dimension K, used in CUNMRQ.   

    NNB     (input) INTEGER   
            The number of values of NB and NX contained in the   
            vectors NBVAL and NXVAL.  The blocking parameters are used   
            in pairs (NB,NX).   

    NBVAL   (input) INTEGER array, dimension (NNB)   
            The values of the blocksize NB.   

    NXVAL   (input) INTEGER array, dimension (NNB)   
            The values of the crossover point NX.   

    NLDA    (input) INTEGER   
            The number of values of LDA contained in the vector LDAVAL.   

    LDAVAL  (input) INTEGER array, dimension (NLDA)   
            The values of the leading dimension of the array A.   

    TIMMIN  (input) REAL   
            The minimum time a subroutine will be timed.   

    A       (workspace) COMPLEX array, dimension (LDAMAX*NMAX)   
            where LDAMAX and NMAX are the maximum values of LDA and N.   

    TAU     (workspace) COMPLEX array, dimension (min(M,N))   

    B       (workspace) COMPLEX array, dimension (LDAMAX*NMAX)   

    WORK    (workspace) COMPLEX array, dimension (LDAMAX*NBMAX)   
            where NBMAX is the maximum value of NB.   

    RWORK   (workspace) REAL array, dimension   
                        (min(MMAX,NMAX))   

    RESLTS  (workspace) REAL array, dimension   
                        (LDR1,LDR2,LDR3,2*NK)   
            The timing results for each subroutine over the relevant   
            values of (M,N), (NB,NX), and LDA.   

    LDR1    (input) INTEGER   
            The first dimension of RESLTS.  LDR1 >= max(1,NNB).   

    LDR2    (input) INTEGER   
            The second dimension of RESLTS.  LDR2 >= max(1,NM).   

    LDR3    (input) INTEGER   
            The third dimension of RESLTS.  LDR3 >= max(1,NLDA).   

    NOUT    (input) INTEGER   
            The unit number for output.   

    Internal Parameters   
    ===================   

    MODE    INTEGER   
            The matrix type.  MODE = 3 is a geometric distribution of   
            eigenvalues.  See CLATMS for further details.   

    COND    REAL   
            The condition number of the matrix.  The singular values are   
            set to values from DMAX to DMAX/COND.   

    DMAX    REAL   
            The magnitude of the largest singular value.   

    =====================================================================   

       Parameter adjustments */
    --mval;
    --nval;
    --kval;
    --nbval;
    --nxval;
    --ldaval;
    --a;
    --tau;
    --b;
    --work;
    --rwork;
    reslts_dim1 = *ldr1;
    reslts_dim2 = *ldr2;
    reslts_dim3 = *ldr3;
    reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1)
	    );
    reslts -= reslts_offset;

    /* Function Body   

       Extract the timing request from the input line. */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "RQ", (ftnlen)2, (ftnlen)2);
    atimin_(path, line, &c__3, subnam, timsub, nout, &info, (ftnlen)3, (
	    ftnlen)80, (ftnlen)6);
    if (info != 0) {
	goto L230;
    }

/*     Check that M <= LDA for the input values. */

    s_copy(cname, line, (ftnlen)6, (ftnlen)6);
    atimck_(&c__1, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, (
	    ftnlen)6);
    if (info > 0) {
	io___9.ciunit = *nout;
	s_wsfe(&io___9);
	do_fio(&c__1, cname, (ftnlen)6);
	e_wsfe();
	goto L230;
    }

/*     Do for each pair of values (M,N): */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];
	n = nval[im];
	minmn = min(m,n);
	icopy_(&c__4, iseed, &c__1, reseed, &c__1);

/*        Do for each value of LDA: */

	i__2 = *nlda;
	for (ilda = 1; ilda <= i__2; ++ilda) {
	    lda = ldaval[ilda];

/*           Do for each pair of values (NB, NX) in NBVAL and NXVAL. */

	    i__3 = *nnb;
	    for (inb = 1; inb <= i__3; ++inb) {
		nb = nbval[inb];
		xlaenv_(&c__1, &nb);
		nx = nxval[inb];
		xlaenv_(&c__3, &nx);
/* Computing MAX */
		i__4 = 1, i__5 = m * max(1,nb);
		lw = max(i__4,i__5);

/*              Generate a test matrix of size M by N. */

		icopy_(&c__4, reseed, &c__1, iseed, &c__1);
		clatms_(&m, &n, "Uniform", iseed, "Nonsymm", &rwork[1], &c__3,
			 &c_b24, &c_b25, &m, &n, "No packing", &b[1], &lda, &
			work[1], &info);

		if (timsub[0]) {

/*                 CGERQF:  RQ factorization */

		    clacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda);
		    ic = 0;
		    s1 = second_();
L10:
		    cgerqf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &
			    info);
		    s2 = second_();
		    time = s2 - s1;
		    ++ic;
		    if (time < *timmin) {
			clacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda);
			goto L10;
		    }

/*                 Subtract the time used in CLACPY. */

		    icl = 1;
		    s1 = second_();
L20:
		    s2 = second_();
		    untime = s2 - s1;
		    ++icl;
		    if (icl <= ic) {
			clacpy_("Full", &m, &n, &a[1], &lda, &b[1], &lda);
			goto L20;
		    }

		    time = (time - untime) / (real) ic;
		    ops = sopla_("CGERQF", &m, &n, &c__0, &c__0, &nb);
		    reslts_ref(inb, im, ilda, 1) = smflop_(&ops, &time, &info)
			    ;
		} else {

/*                 If CGERQF was not timed, generate a matrix and factor   
                   it using CGERQF anyway so that the factored form of   
                   the matrix can be used in timing the other routines. */

		    clacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda);
		    cgerqf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &
			    info);
		}

		if (timsub[1]) {

/*                 CUNGRQ:  Generate orthogonal matrix Q from the RQ   
                   factorization */

		    clacpy_("Full", &minmn, &n, &a[1], &lda, &b[1], &lda);
		    ic = 0;
		    s1 = second_();
L30:
		    cungrq_(&minmn, &n, &minmn, &b[1], &lda, &tau[1], &work[1]
			    , &lw, &info);
		    s2 = second_();
		    time = s2 - s1;
		    ++ic;
		    if (time < *timmin) {
			clacpy_("Full", &minmn, &n, &a[1], &lda, &b[1], &lda);
			goto L30;
		    }

/*                 Subtract the time used in CLACPY. */

		    icl = 1;
		    s1 = second_();
L40:
		    s2 = second_();
		    untime = s2 - s1;
		    ++icl;
		    if (icl <= ic) {
			clacpy_("Full", &minmn, &n, &a[1], &lda, &b[1], &lda);
			goto L40;
		    }

		    time = (time - untime) / (real) ic;
		    ops = sopla_("CUNGRQ", &minmn, &n, &minmn, &c__0, &nb);
		    reslts_ref(inb, im, ilda, 2) = smflop_(&ops, &time, &info)
			    ;
		}

/* L50: */
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print tables of results */

    for (isub = 1; isub <= 2; ++isub) {
	if (! timsub[isub - 1]) {
	    goto L90;
	}
	io___29.ciunit = *nout;
	s_wsfe(&io___29);
	do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	e_wsfe();
	if (*nlda > 1) {
	    i__1 = *nlda;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		io___31.ciunit = *nout;
		s_wsfe(&io___31);
		do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer));
		e_wsfe();
/* L80: */
	    }
	}
	io___32.ciunit = *nout;
	s_wsle(&io___32);
	e_wsle();
	if (isub == 2) {
	    io___33.ciunit = *nout;
	    s_wsfe(&io___33);
	    e_wsfe();
	}
	sprtb4_("(  NB,  NX)", "M", "N", nnb, &nbval[1], &nxval[1], nm, &mval[
		1], &nval[1], nlda, &reslts_ref(1, 1, 1, isub), ldr1, ldr2, 
		nout, (ftnlen)11, (ftnlen)1, (ftnlen)1);
L90:
	;
    }

/*     Time CUNMRQ separately.  Here the starting matrix is M by N, and   
       K is the free dimension of the matrix multiplied by Q. */

    if (timsub[2]) {

/*        Check that K <= LDA for the input values. */

	atimck_(&c__3, cname, nk, &kval[1], nlda, &ldaval[1], nout, &info, (
		ftnlen)6);
	if (info > 0) {
	    io___34.ciunit = *nout;
	    s_wsfe(&io___34);
	    do_fio(&c__1, subnam_ref(0, 3), (ftnlen)6);
	    e_wsfe();
	    goto L230;
	}

/*        Use only the pairs (M,N) where M <= N. */

	imx = 0;
	i__1 = *nm;
	for (im = 1; im <= i__1; ++im) {
	    if (mval[im] <= nval[im]) {
		++imx;
		muse[imx - 1] = mval[im];
		nuse[imx - 1] = nval[im];
	    }
/* L100: */
	}

/*        CUNMRQ:  Multiply by Q stored as a product of elementary   
          transformations   

          Do for each pair of values (M,N): */

	i__1 = imx;
	for (im = 1; im <= i__1; ++im) {
	    m = muse[im - 1];
	    n = nuse[im - 1];

/*           Do for each value of LDA: */

	    i__2 = *nlda;
	    for (ilda = 1; ilda <= i__2; ++ilda) {
		lda = ldaval[ilda];

/*              Generate an M by N matrix and form its RQ decomposition. */

		clatms_(&m, &n, "Uniform", iseed, "Nonsymm", &rwork[1], &c__3,
			 &c_b24, &c_b25, &m, &n, "No packing", &a[1], &lda, &
			work[1], &info);
/* Computing MAX */
		i__3 = 1, i__4 = m * max(1,nb);
		lw = max(i__3,i__4);
		cgerqf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &info);

/*              Do first for SIDE = 'L', then for SIDE = 'R' */

		i4 = 0;
		for (iside = 1; iside <= 2; ++iside) {
		    *(unsigned char *)side = *(unsigned char *)&sides[iside - 
			    1];

/*                 Do for each pair of values (NB, NX) in NBVAL and   
                   NXVAL. */

		    i__3 = *nnb;
		    for (inb = 1; inb <= i__3; ++inb) {
			nb = nbval[inb];
			xlaenv_(&c__1, &nb);
			nx = nxval[inb];
			xlaenv_(&c__3, &nx);

/*                    Do for each value of K in KVAL */

			i__4 = *nk;
			for (ik = 1; ik <= i__4; ++ik) {
			    k = kval[ik];

/*                       Sort out which variable is which */

			    if (iside == 1) {
				k1 = m;
				m1 = n;
				n1 = k;
/* Computing MAX */
				i__5 = 1, i__6 = n1 * max(1,nb);
				lw = max(i__5,i__6);
			    } else {
				k1 = m;
				n1 = n;
				m1 = k;
/* Computing MAX */
				i__5 = 1, i__6 = m1 * max(1,nb);
				lw = max(i__5,i__6);
			    }

/*                       Do first for TRANS = 'N', then for TRANS = 'T' */

			    itoff = 0;
			    for (itran = 1; itran <= 2; ++itran) {
				*(unsigned char *)trans = *(unsigned char *)&
					transs[itran - 1];
				ctimmg_(&c__0, &m1, &n1, &b[1], &lda, &c__0, &
					c__0);
				ic = 0;
				s1 = second_();
L110:
				cunmrq_(side, trans, &m1, &n1, &k1, &a[1], &
					lda, &tau[1], &b[1], &lda, &work[1], &
					lw, &info);
				s2 = second_();
				time = s2 - s1;
				++ic;
				if (time < *timmin) {
				    ctimmg_(&c__0, &m1, &n1, &b[1], &lda, &
					    c__0, &c__0);
				    goto L110;
				}

/*                          Subtract the time used in CTIMMG. */

				icl = 1;
				s1 = second_();
L120:
				s2 = second_();
				untime = s2 - s1;
				++icl;
				if (icl <= ic) {
				    ctimmg_(&c__0, &m1, &n1, &b[1], &lda, &
					    c__0, &c__0);
				    goto L120;
				}

				time = (time - untime) / (real) ic;
				i__5 = iside - 1;
				ops = sopla_("CUNMRQ", &m1, &n1, &k1, &i__5, &
					nb);
				reslts_ref(inb, im, ilda, i4 + itoff + ik) = 
					smflop_(&ops, &time, &info);
				itoff = *nk;
/* L130: */
			    }
/* L140: */
			}
/* L150: */
		    }
		    i4 = *nk << 1;
/* L160: */
		}
/* L170: */
	    }
/* L180: */
	}

/*        Print tables of results */

	isub = 3;
	i4 = 1;
	if (imx >= 1) {
	    for (iside = 1; iside <= 2; ++iside) {
		*(unsigned char *)side = *(unsigned char *)&sides[iside - 1];
		if (iside == 1) {
		    io___49.ciunit = *nout;
		    s_wsfe(&io___49);
		    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
		    e_wsfe();
		    if (*nlda > 1) {
			i__1 = *nlda;
			for (i__ = 1; i__ <= i__1; ++i__) {
			    io___50.ciunit = *nout;
			    s_wsfe(&io___50);
			    do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)
				    sizeof(integer));
			    e_wsfe();
/* L190: */
			}
		    }
		}
		for (itran = 1; itran <= 2; ++itran) {
		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];
		    i__1 = *nk;
		    for (ik = 1; ik <= i__1; ++ik) {
			if (iside == 1) {
			    n = kval[ik];
			    io___51.ciunit = *nout;
			    s_wsfe(&io___51);
			    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
			    do_fio(&c__1, side, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, "N", (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    e_wsfe();
			    *(unsigned char *)labm = 'M';
			} else {
			    m = kval[ik];
			    io___53.ciunit = *nout;
			    s_wsfe(&io___53);
			    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
			    do_fio(&c__1, side, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, "M", (ftnlen)1);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    e_wsfe();
			    *(unsigned char *)labm = 'N';
			}
			sprtb5_("NB", "K", labm, nnb, &nbval[1], &imx, muse, 
				nuse, nlda, &reslts_ref(1, 1, 1, i4), ldr1, 
				ldr2, nout, (ftnlen)2, (ftnlen)1, (ftnlen)1);
			++i4;
/* L200: */
		    }
/* L210: */
		}
/* L220: */
	    }
	} else {
	    io___54.ciunit = *nout;
	    s_wsfe(&io___54);
	    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	    e_wsfe();
	}
    }
L230:
    return 0;

/*     End of CTIMRQ */

} /* ctimrq_ */
Esempio n. 5
0
/* Subroutine */ int cggglm_(integer *n, integer *m, integer *p, complex *a, 
	integer *lda, complex *b, integer *ldb, complex *d__, complex *x, 
	complex *y, complex *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
    complex q__1;

    /* Local variables */
    integer i__, nb, np, nb1, nb2, nb3, nb4, lopt;
    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *), ccopy_(integer *, complex *, integer *, 
	    complex *, integer *), cggqrf_(integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, complex *, 
	    complex *, integer *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    integer lwkmin;
    extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *), cunmrq_(char *, 
	    char *, integer *, integer *, integer *, complex *, integer *, 
	    complex *, complex *, integer *, complex *, integer *, integer *);
    integer lwkopt;
    logical lquery;
    extern /* Subroutine */ int ctrtrs_(char *, char *, char *, integer *, 
	    integer *, complex *, integer *, complex *, integer *, integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CGGGLM solves a general Gauss-Markov linear model (GLM) problem: */

/*          minimize || y ||_2   subject to   d = A*x + B*y */
/*              x */

/*  where A is an N-by-M matrix, B is an N-by-P matrix, and d is a */
/*  given N-vector. It is assumed that M <= N <= M+P, and */

/*             rank(A) = M    and    rank( A B ) = N. */

/*  Under these assumptions, the constrained equation is always */
/*  consistent, and there is a unique solution x and a minimal 2-norm */
/*  solution y, which is obtained using a generalized QR factorization */
/*  of the matrices (A, B) given by */

/*     A = Q*(R),   B = Q*T*Z. */
/*           (0) */

/*  In particular, if matrix B is square nonsingular, then the problem */
/*  GLM is equivalent to the following weighted linear least squares */
/*  problem */

/*               minimize || inv(B)*(d-A*x) ||_2 */
/*                   x */

/*  where inv(B) denotes the inverse of B. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The number of rows of the matrices A and B.  N >= 0. */

/*  M       (input) INTEGER */
/*          The number of columns of the matrix A.  0 <= M <= N. */

/*  P       (input) INTEGER */
/*          The number of columns of the matrix B.  P >= N-M. */

/*  A       (input/output) COMPLEX array, dimension (LDA,M) */
/*          On entry, the N-by-M matrix A. */
/*          On exit, the upper triangular part of the array A contains */
/*          the M-by-M upper triangular matrix R. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,N). */

/*  B       (input/output) COMPLEX array, dimension (LDB,P) */
/*          On entry, the N-by-P matrix B. */
/*          On exit, if N <= P, the upper triangle of the subarray */
/*          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; */
/*          if N > P, the elements on and above the (N-P)th subdiagonal */
/*          contain the N-by-P upper trapezoidal matrix T. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= max(1,N). */

/*  D       (input/output) COMPLEX array, dimension (N) */
/*          On entry, D is the left hand side of the GLM equation. */
/*          On exit, D is destroyed. */

/*  X       (output) COMPLEX array, dimension (M) */
/*  Y       (output) COMPLEX array, dimension (P) */
/*          On exit, X and Y are the solutions of the GLM problem. */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >= max(1,N+M+P). */
/*          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB, */
/*          where NB is an upper bound for the optimal blocksizes for */
/*          CGEQRF, CGERQF, CUNMQR and CUNMRQ. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          = 1:  the upper triangular factor R associated with A in the */
/*                generalized QR factorization of the pair (A, B) is */
/*                singular, so that rank(A) < M; the least squares */
/*                solution could not be computed. */
/*          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal */
/*                factor T associated with B in the generalized QR */
/*                factorization of the pair (A, B) is singular, so that */
/*                rank( A B ) < N; the least squares solution could not */
/*                be computed. */

/*  =================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --d__;
    --x;
    --y;
    --work;

    /* Function Body */
    *info = 0;
    np = min(*n,*p);
    lquery = *lwork == -1;
    if (*n < 0) {
	*info = -1;
    } else if (*m < 0 || *m > *n) {
	*info = -2;
    } else if (*p < 0 || *p < *n - *m) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    }

/*     Calculate workspace */

    if (*info == 0) {
	if (*n == 0) {
	    lwkmin = 1;
	    lwkopt = 1;
	} else {
	    nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, m, &c_n1, &c_n1);
	    nb2 = ilaenv_(&c__1, "CGERQF", " ", n, m, &c_n1, &c_n1);
	    nb3 = ilaenv_(&c__1, "CUNMQR", " ", n, m, p, &c_n1);
	    nb4 = ilaenv_(&c__1, "CUNMRQ", " ", n, m, p, &c_n1);
/* Computing MAX */
	    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
	    nb = max(i__1,nb4);
	    lwkmin = *m + *n + *p;
	    lwkopt = *m + np + max(*n,*p) * nb;
	}
	work[1].r = (real) lwkopt, work[1].i = 0.f;

	if (*lwork < lwkmin && ! lquery) {
	    *info = -12;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGGGLM", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Compute the GQR factorization of matrices A and B: */

/*            Q'*A = ( R11 ) M,    Q'*B*Z' = ( T11   T12 ) M */
/*                   (  0  ) N-M             (  0    T22 ) N-M */
/*                      M                     M+P-N  N-M */

/*     where R11 and T22 are upper triangular, and Q and Z are */
/*     unitary. */

    i__1 = *lwork - *m - np;
    cggqrf_(n, m, p, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[*m 
	    + 1], &work[*m + np + 1], &i__1, info);
    i__1 = *m + np + 1;
    lopt = work[i__1].r;

/*     Update left-hand-side vector d = Q'*d = ( d1 ) M */
/*                                             ( d2 ) N-M */

    i__1 = max(1,*n);
    i__2 = *lwork - *m - np;
    cunmqr_("Left", "Conjugate transpose", n, &c__1, m, &a[a_offset], lda, &
	    work[1], &d__[1], &i__1, &work[*m + np + 1], &i__2, info);
/* Computing MAX */
    i__3 = *m + np + 1;
    i__1 = lopt, i__2 = (integer) work[i__3].r;
    lopt = max(i__1,i__2);

/*     Solve T22*y2 = d2 for y2 */

    if (*n > *m) {
	i__1 = *n - *m;
	i__2 = *n - *m;
	ctrtrs_("Upper", "No transpose", "Non unit", &i__1, &c__1, &b[*m + 1 
		+ (*m + *p - *n + 1) * b_dim1], ldb, &d__[*m + 1], &i__2, 
		info);

	if (*info > 0) {
	    *info = 1;
	    return 0;
	}

	i__1 = *n - *m;
	ccopy_(&i__1, &d__[*m + 1], &c__1, &y[*m + *p - *n + 1], &c__1);
    }

/*     Set y1 = 0 */

    i__1 = *m + *p - *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = i__;
	y[i__2].r = 0.f, y[i__2].i = 0.f;
/* L10: */
    }

/*     Update d1 = d1 - T12*y2 */

    i__1 = *n - *m;
    q__1.r = -1.f, q__1.i = -0.f;
    cgemv_("No transpose", m, &i__1, &q__1, &b[(*m + *p - *n + 1) * b_dim1 + 
	    1], ldb, &y[*m + *p - *n + 1], &c__1, &c_b2, &d__[1], &c__1);

/*     Solve triangular system: R11*x = d1 */

    if (*m > 0) {
	ctrtrs_("Upper", "No Transpose", "Non unit", m, &c__1, &a[a_offset], 
		lda, &d__[1], m, info);

	if (*info > 0) {
	    *info = 2;
	    return 0;
	}

/*        Copy D to X */

	ccopy_(m, &d__[1], &c__1, &x[1], &c__1);
    }

/*     Backward transformation y = Z'*y */

/* Computing MAX */
    i__1 = 1, i__2 = *n - *p + 1;
    i__3 = max(1,*p);
    i__4 = *lwork - *m - np;
    cunmrq_("Left", "Conjugate transpose", p, &c__1, &np, &b[max(i__1, i__2)+ 
	    b_dim1], ldb, &work[*m + 1], &y[1], &i__3, &work[*m + np + 1], &
	    i__4, info);
/* Computing MAX */
    i__4 = *m + np + 1;
    i__2 = lopt, i__3 = (integer) work[i__4].r;
    i__1 = *m + np + max(i__2,i__3);
    work[1].r = (real) i__1, work[1].i = 0.f;

    return 0;

/*     End of CGGGLM */

} /* cggglm_ */
Esempio n. 6
0
/* Subroutine */
int cgglse_(integer *m, integer *n, integer *p, complex *a, integer *lda, complex *b, integer *ldb, complex *c__, complex *d__, complex *x, complex *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
    complex q__1;
    /* Local variables */
    integer nb, mn, nr, nb1, nb2, nb3, nb4, lopt;
    extern /* Subroutine */
    int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *), ccopy_(integer *, complex *, integer *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *, complex *, integer *), ctrmv_(char *, char *, char *, integer *, complex *, integer *, complex *, integer *), cggrqf_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, complex *, integer *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *);
    integer lwkmin;
    extern /* Subroutine */
    int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), cunmrq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *);
    integer lwkopt;
    logical lquery;
    extern /* Subroutine */
    int ctrtrs_(char *, char *, char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *);
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --c__;
    --d__;
    --x;
    --work;
    /* Function Body */
    *info = 0;
    mn = min(*m,*n);
    lquery = *lwork == -1;
    if (*m < 0)
    {
        *info = -1;
    }
    else if (*n < 0)
    {
        *info = -2;
    }
    else if (*p < 0 || *p > *n || *p < *n - *m)
    {
        *info = -3;
    }
    else if (*lda < max(1,*m))
    {
        *info = -5;
    }
    else if (*ldb < max(1,*p))
    {
        *info = -7;
    }
    /* Calculate workspace */
    if (*info == 0)
    {
        if (*n == 0)
        {
            lwkmin = 1;
            lwkopt = 1;
        }
        else
        {
            nb1 = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1);
            nb2 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1);
            nb3 = ilaenv_(&c__1, "CUNMQR", " ", m, n, p, &c_n1);
            nb4 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, p, &c_n1);
            /* Computing MAX */
            i__1 = max(nb1,nb2);
            i__1 = max(i__1,nb3); // , expr subst
            nb = max(i__1,nb4);
            lwkmin = *m + *n + *p;
            lwkopt = *p + mn + max(*m,*n) * nb;
        }
        work[1].r = (real) lwkopt;
        work[1].i = 0.f; // , expr subst
        if (*lwork < lwkmin && ! lquery)
        {
            *info = -12;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CGGLSE", &i__1);
        return 0;
    }
    else if (lquery)
    {
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    /* Compute the GRQ factorization of matrices B and A: */
    /* B*Q**H = ( 0 T12 ) P Z**H*A*Q**H = ( R11 R12 ) N-P */
    /* N-P P ( 0 R22 ) M+P-N */
    /* N-P P */
    /* where T12 and R11 are upper triangular, and Q and Z are */
    /* unitary. */
    i__1 = *lwork - *p - mn;
    cggrqf_(p, m, n, &b[b_offset], ldb, &work[1], &a[a_offset], lda, &work[*p + 1], &work[*p + mn + 1], &i__1, info);
    i__1 = *p + mn + 1;
    lopt = work[i__1].r;
    /* Update c = Z**H *c = ( c1 ) N-P */
    /* ( c2 ) M+P-N */
    i__1 = max(1,*m);
    i__2 = *lwork - *p - mn;
    cunmqr_("Left", "Conjugate Transpose", m, &c__1, &mn, &a[a_offset], lda, & work[*p + 1], &c__[1], &i__1, &work[*p + mn + 1], &i__2, info);
    /* Computing MAX */
    i__3 = *p + mn + 1;
    i__1 = lopt;
    i__2 = (integer) work[i__3].r; // , expr subst
    lopt = max(i__1,i__2);
    /* Solve T12*x2 = d for x2 */
    if (*p > 0)
    {
        ctrtrs_("Upper", "No transpose", "Non-unit", p, &c__1, &b[(*n - *p + 1) * b_dim1 + 1], ldb, &d__[1], p, info);
        if (*info > 0)
        {
            *info = 1;
            return 0;
        }
        /* Put the solution in X */
        ccopy_(p, &d__[1], &c__1, &x[*n - *p + 1], &c__1);
        /* Update c1 */
        i__1 = *n - *p;
        q__1.r = -1.f;
        q__1.i = -0.f; // , expr subst
        cgemv_("No transpose", &i__1, p, &q__1, &a[(*n - *p + 1) * a_dim1 + 1] , lda, &d__[1], &c__1, &c_b1, &c__[1], &c__1);
    }
    /* Solve R11*x1 = c1 for x1 */
    if (*n > *p)
    {
        i__1 = *n - *p;
        i__2 = *n - *p;
        ctrtrs_("Upper", "No transpose", "Non-unit", &i__1, &c__1, &a[ a_offset], lda, &c__[1], &i__2, info);
        if (*info > 0)
        {
            *info = 2;
            return 0;
        }
        /* Put the solutions in X */
        i__1 = *n - *p;
        ccopy_(&i__1, &c__[1], &c__1, &x[1], &c__1);
    }
    /* Compute the residual vector: */
    if (*m < *n)
    {
        nr = *m + *p - *n;
        if (nr > 0)
        {
            i__1 = *n - *m;
            q__1.r = -1.f;
            q__1.i = -0.f; // , expr subst
            cgemv_("No transpose", &nr, &i__1, &q__1, &a[*n - *p + 1 + (*m + 1) * a_dim1], lda, &d__[nr + 1], &c__1, &c_b1, &c__[*n - * p + 1], &c__1);
        }
    }
    else
    {
        nr = *p;
    }
    if (nr > 0)
    {
        ctrmv_("Upper", "No transpose", "Non unit", &nr, &a[*n - *p + 1 + (*n - *p + 1) * a_dim1], lda, &d__[1], &c__1);
        q__1.r = -1.f;
        q__1.i = -0.f; // , expr subst
        caxpy_(&nr, &q__1, &d__[1], &c__1, &c__[*n - *p + 1], &c__1);
    }
    /* Backward transformation x = Q**H*x */
    i__1 = *lwork - *p - mn;
    cunmrq_("Left", "Conjugate Transpose", n, &c__1, p, &b[b_offset], ldb, & work[1], &x[1], n, &work[*p + mn + 1], &i__1, info);
    /* Computing MAX */
    i__4 = *p + mn + 1;
    i__2 = lopt;
    i__3 = (integer) work[i__4].r; // , expr subst
    i__1 = *p + mn + max(i__2,i__3);
    work[1].r = (real) i__1;
    work[1].i = 0.f; // , expr subst
    return 0;
    /* End of CGGLSE */
}
Esempio n. 7
0
/* Subroutine */ int cerrrq_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    real r__1, r__2;
    complex q__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    complex a[4]	/* was [2][2] */, b[2];
    integer i__, j;
    complex w[2], x[2], af[4]	/* was [2][2] */;
    integer info;
    extern /* Subroutine */ int cgerq2_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *), cungr2_(integer *, 
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *), cunmr2_(char *, char *, integer *, integer *, integer 
	    *, complex *, integer *, complex *, complex *, integer *, complex 
	    *, integer *), alaesm_(char *, logical *, integer 
	    *), cgerqf_(integer *, integer *, complex *, integer *, 
	    complex *, complex *, integer *, integer *), cgerqs_(integer *, 
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *, complex *, integer *, integer *), chkxer_(char *, 
	    integer *, integer *, logical *, logical *), cungrq_(
	    integer *, integer *, integer *, complex *, integer *, complex *, 
	    complex *, integer *, integer *), cunmrq_(char *, char *, integer 
	    *, integer *, integer *, complex *, integer *, complex *, complex 
	    *, integer *, complex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CERRRQ tests the error exits for the COMPLEX routines */
/*  that use the RQ decomposition of a general matrix. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 2; ++j) {
	for (i__ = 1; i__ <= 2; ++i__) {
	    i__1 = i__ + (j << 1) - 3;
	    r__1 = 1.f / (real) (i__ + j);
	    r__2 = -1.f / (real) (i__ + j);
	    q__1.r = r__1, q__1.i = r__2;
	    a[i__1].r = q__1.r, a[i__1].i = q__1.i;
	    i__1 = i__ + (j << 1) - 3;
	    r__1 = 1.f / (real) (i__ + j);
	    r__2 = -1.f / (real) (i__ + j);
	    q__1.r = r__1, q__1.i = r__2;
	    af[i__1].r = q__1.r, af[i__1].i = q__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0.f, b[i__1].i = 0.f;
	i__1 = j - 1;
	w[i__1].r = 0.f, w[i__1].i = 0.f;
	i__1 = j - 1;
	x[i__1].r = 0.f, x[i__1].i = 0.f;
/* L20: */
    }
    infoc_1.ok = TRUE_;

/*     Error exits for RQ factorization */

/*     CGERQF */

    s_copy(srnamc_1.srnamt, "CGERQF", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cgerqf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info);
    chkxer_("CGERQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cgerqf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info);
    chkxer_("CGERQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    cgerqf_(&c__2, &c__1, a, &c__1, b, w, &c__2, &info);
    chkxer_("CGERQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cgerqf_(&c__2, &c__1, a, &c__2, b, w, &c__1, &info);
    chkxer_("CGERQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CGERQ2 */

    s_copy(srnamc_1.srnamt, "CGERQ2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cgerq2_(&c_n1, &c__0, a, &c__1, b, w, &info);
    chkxer_("CGERQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cgerq2_(&c__0, &c_n1, a, &c__1, b, w, &info);
    chkxer_("CGERQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    cgerq2_(&c__2, &c__1, a, &c__1, b, w, &info);
    chkxer_("CGERQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CGERQS */

    s_copy(srnamc_1.srnamt, "CGERQS", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cgerqs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cgerqs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cgerqs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cgerqs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cgerqs_(&c__2, &c__2, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    cgerqs_(&c__2, &c__2, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    cgerqs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CUNGRQ */

    s_copy(srnamc_1.srnamt, "CUNGRQ", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cungrq_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cungrq_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cungrq_(&c__2, &c__1, &c__0, a, &c__2, x, w, &c__2, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cungrq_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cungrq_(&c__1, &c__2, &c__2, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cungrq_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    cungrq_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CUNGR2 */

    s_copy(srnamc_1.srnamt, "CUNGR2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cungr2_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info);
    chkxer_("CUNGR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cungr2_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info);
    chkxer_("CUNGR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cungr2_(&c__2, &c__1, &c__0, a, &c__2, x, w, &info);
    chkxer_("CUNGR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cungr2_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info);
    chkxer_("CUNGR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cungr2_(&c__1, &c__2, &c__2, a, &c__2, x, w, &info);
    chkxer_("CUNGR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cungr2_(&c__2, &c__2, &c__0, a, &c__1, x, w, &info);
    chkxer_("CUNGR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CUNMRQ */

    s_copy(srnamc_1.srnamt, "CUNMRQ", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cunmrq_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cunmrq_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cunmrq_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    cunmrq_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmrq_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmrq_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmrq_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cunmrq_("L", "N", &c__2, &c__1, &c__2, a, &c__1, x, af, &c__2, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cunmrq_("R", "N", &c__1, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    cunmrq_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 12;
    cunmrq_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 12;
    cunmrq_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CUNMR2 */

    s_copy(srnamc_1.srnamt, "CUNMR2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cunmr2_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cunmr2_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cunmr2_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    cunmr2_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmr2_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmr2_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmr2_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cunmr2_("L", "N", &c__2, &c__1, &c__2, a, &c__1, x, af, &c__2, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cunmr2_("R", "N", &c__1, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    cunmr2_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of CERRRQ */

} /* cerrrq_ */
Esempio n. 8
0
/* Subroutine */ int crqt03_(integer *m, integer *n, integer *k, complex *af, 
	complex *c__, complex *cc, complex *q, integer *lda, complex *tau, 
	complex *work, integer *lwork, real *rwork, real *result)
{
    /* Initialized data */

    static integer iseed[4] = { 1988,1989,1990,1991 };

    /* System generated locals */
    integer af_dim1, af_offset, c_dim1, c_offset, cc_dim1, cc_offset, q_dim1, 
	    q_offset, i__1, i__2;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    static char side[1];
    static integer info, j;
    extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, 
	    integer *, complex *, complex *, integer *, complex *, integer *, 
	    complex *, complex *, integer *);
    static integer iside;
    extern logical lsame_(char *, char *);
    static real resid;
    static integer minmn;
    static real cnorm;
    static char trans[1];
    static integer mc, nc;
    extern doublereal clange_(char *, integer *, integer *, complex *, 
	    integer *, real *), slamch_(char *);
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), claset_(char *, 
	    integer *, integer *, complex *, complex *, complex *, integer *), clarnv_(integer *, integer *, integer *, complex *), 
	    cungrq_(integer *, integer *, integer *, complex *, integer *, 
	    complex *, complex *, integer *, integer *);
    static integer itrans;
    extern /* Subroutine */ int cunmrq_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *);
    static real eps;


#define c___subscr(a_1,a_2) (a_2)*c_dim1 + a_1
#define c___ref(a_1,a_2) c__[c___subscr(a_1,a_2)]
#define q_subscr(a_1,a_2) (a_2)*q_dim1 + a_1
#define q_ref(a_1,a_2) q[q_subscr(a_1,a_2)]
#define af_subscr(a_1,a_2) (a_2)*af_dim1 + a_1
#define af_ref(a_1,a_2) af[af_subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CRQT03 tests CUNMRQ, which computes Q*C, Q'*C, C*Q or C*Q'.   

    CRQT03 compares the results of a call to CUNMRQ with the results of   
    forming Q explicitly by a call to CUNGRQ and then performing matrix   
    multiplication by a call to CGEMM.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows or columns of the matrix C; C is n-by-m if   
            Q is applied from the left, or m-by-n if Q is applied from   
            the right.  M >= 0.   

    N       (input) INTEGER   
            The order of the orthogonal matrix Q.  N >= 0.   

    K       (input) INTEGER   
            The number of elementary reflectors whose product defines the   
            orthogonal matrix Q.  N >= K >= 0.   

    AF      (input) COMPLEX array, dimension (LDA,N)   
            Details of the RQ factorization of an m-by-n matrix, as   
            returned by CGERQF. See CGERQF for further details.   

    C       (workspace) COMPLEX array, dimension (LDA,N)   

    CC      (workspace) COMPLEX array, dimension (LDA,N)   

    Q       (workspace) COMPLEX array, dimension (LDA,N)   

    LDA     (input) INTEGER   
            The leading dimension of the arrays AF, C, CC, and Q.   

    TAU     (input) COMPLEX array, dimension (min(M,N))   
            The scalar factors of the elementary reflectors corresponding   
            to the RQ factorization in AF.   

    WORK    (workspace) COMPLEX array, dimension (LWORK)   

    LWORK   (input) INTEGER   
            The length of WORK.  LWORK must be at least M, and should be   
            M*NB, where NB is the blocksize for this environment.   

    RWORK   (workspace) REAL array, dimension (M)   

    RESULT  (output) REAL array, dimension (4)   
            The test ratios compare two techniques for multiplying a   
            random matrix C by an n-by-n orthogonal matrix Q.   
            RESULT(1) = norm( Q*C - Q*C )  / ( N * norm(C) * EPS )   
            RESULT(2) = norm( C*Q - C*Q )  / ( N * norm(C) * EPS )   
            RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS )   
            RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS )   

    =====================================================================   

       Parameter adjustments */
    q_dim1 = *lda;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    cc_dim1 = *lda;
    cc_offset = 1 + cc_dim1 * 1;
    cc -= cc_offset;
    c_dim1 = *lda;
    c_offset = 1 + c_dim1 * 1;
    c__ -= c_offset;
    af_dim1 = *lda;
    af_offset = 1 + af_dim1 * 1;
    af -= af_offset;
    --tau;
    --work;
    --rwork;
    --result;

    /* Function Body */

    eps = slamch_("Epsilon");
    minmn = min(*m,*n);

/*     Quick return if possible */

    if (minmn == 0) {
	result[1] = 0.f;
	result[2] = 0.f;
	result[3] = 0.f;
	result[4] = 0.f;
	return 0;
    }

/*     Copy the last k rows of the factorization to the array Q */

    claset_("Full", n, n, &c_b1, &c_b1, &q[q_offset], lda);
    if (*k > 0 && *n > *k) {
	i__1 = *n - *k;
	clacpy_("Full", k, &i__1, &af_ref(*m - *k + 1, 1), lda, &q_ref(*n - *
		k + 1, 1), lda);
    }
    if (*k > 1) {
	i__1 = *k - 1;
	i__2 = *k - 1;
	clacpy_("Lower", &i__1, &i__2, &af_ref(*m - *k + 2, *n - *k + 1), lda,
		 &q_ref(*n - *k + 2, *n - *k + 1), lda);
    }

/*     Generate the n-by-n matrix Q */

    s_copy(srnamc_1.srnamt, "CUNGRQ", (ftnlen)6, (ftnlen)6);
    cungrq_(n, n, k, &q[q_offset], lda, &tau[minmn - *k + 1], &work[1], lwork,
	     &info);

    for (iside = 1; iside <= 2; ++iside) {
	if (iside == 1) {
	    *(unsigned char *)side = 'L';
	    mc = *n;
	    nc = *m;
	} else {
	    *(unsigned char *)side = 'R';
	    mc = *m;
	    nc = *n;
	}

/*        Generate MC by NC matrix C */

	i__1 = nc;
	for (j = 1; j <= i__1; ++j) {
	    clarnv_(&c__2, iseed, &mc, &c___ref(1, j));
/* L10: */
	}
	cnorm = clange_("1", &mc, &nc, &c__[c_offset], lda, &rwork[1]);
	if (cnorm == 0.f) {
	    cnorm = 1.f;
	}

	for (itrans = 1; itrans <= 2; ++itrans) {
	    if (itrans == 1) {
		*(unsigned char *)trans = 'N';
	    } else {
		*(unsigned char *)trans = 'C';
	    }

/*           Copy C */

	    clacpy_("Full", &mc, &nc, &c__[c_offset], lda, &cc[cc_offset], 
		    lda);

/*           Apply Q or Q' to C */

	    s_copy(srnamc_1.srnamt, "CUNMRQ", (ftnlen)6, (ftnlen)6);
	    if (*k > 0) {
		cunmrq_(side, trans, &mc, &nc, k, &af_ref(*m - *k + 1, 1), 
			lda, &tau[minmn - *k + 1], &cc[cc_offset], lda, &work[
			1], lwork, &info);
	    }

/*           Form explicit product and subtract */

	    if (lsame_(side, "L")) {
		cgemm_(trans, "No transpose", &mc, &nc, &mc, &c_b21, &q[
			q_offset], lda, &c__[c_offset], lda, &c_b22, &cc[
			cc_offset], lda);
	    } else {
		cgemm_("No transpose", trans, &mc, &nc, &nc, &c_b21, &c__[
			c_offset], lda, &q[q_offset], lda, &c_b22, &cc[
			cc_offset], lda);
	    }

/*           Compute error in the difference */

	    resid = clange_("1", &mc, &nc, &cc[cc_offset], lda, &rwork[1]);
	    result[(iside - 1 << 1) + itrans] = resid / ((real) max(1,*n) * 
		    cnorm * eps);

/* L20: */
	}
/* L30: */
    }

    return 0;

/*     End of CRQT03 */

} /* crqt03_ */
Esempio n. 9
0
/* Subroutine */ int crqt03_(integer *m, integer *n, integer *k, complex *af, 
	complex *c__, complex *cc, complex *q, integer *lda, complex *tau, 
	complex *work, integer *lwork, real *rwork, real *result)
{
    /* Initialized data */

    static integer iseed[4] = { 1988,1989,1990,1991 };

    /* System generated locals */
    integer af_dim1, af_offset, c_dim1, c_offset, cc_dim1, cc_offset, q_dim1, 
	    q_offset, i__1, i__2;

    /* Local variables */
    integer j, mc, nc;
    real eps;
    char side[1];
    integer info;
    integer iside;
    real resid;
    integer minmn;
    real cnorm;
    char trans[1];
    integer itrans;


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CRQT03 tests CUNMRQ, which computes Q*C, Q'*C, C*Q or C*Q'. */

/*  CRQT03 compares the results of a call to CUNMRQ with the results of */
/*  forming Q explicitly by a call to CUNGRQ and then performing matrix */
/*  multiplication by a call to CGEMM. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows or columns of the matrix C; C is n-by-m if */
/*          Q is applied from the left, or m-by-n if Q is applied from */
/*          the right.  M >= 0. */

/*  N       (input) INTEGER */
/*          The order of the orthogonal matrix Q.  N >= 0. */

/*  K       (input) INTEGER */
/*          The number of elementary reflectors whose product defines the */
/*          orthogonal matrix Q.  N >= K >= 0. */

/*  AF      (input) COMPLEX array, dimension (LDA,N) */
/*          Details of the RQ factorization of an m-by-n matrix, as */
/*          returned by CGERQF. See CGERQF for further details. */

/*  C       (workspace) COMPLEX array, dimension (LDA,N) */

/*  CC      (workspace) COMPLEX array, dimension (LDA,N) */

/*  Q       (workspace) COMPLEX array, dimension (LDA,N) */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the arrays AF, C, CC, and Q. */

/*  TAU     (input) COMPLEX array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors corresponding */
/*          to the RQ factorization in AF. */

/*  WORK    (workspace) COMPLEX array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The length of WORK.  LWORK must be at least M, and should be */
/*          M*NB, where NB is the blocksize for this environment. */

/*  RWORK   (workspace) REAL array, dimension (M) */

/*  RESULT  (output) REAL array, dimension (4) */
/*          The test ratios compare two techniques for multiplying a */
/*          random matrix C by an n-by-n orthogonal matrix Q. */
/*          RESULT(1) = norm( Q*C - Q*C )  / ( N * norm(C) * EPS ) */
/*          RESULT(2) = norm( C*Q - C*Q )  / ( N * norm(C) * EPS ) */
/*          RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS ) */
/*          RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS ) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    q_dim1 = *lda;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    cc_dim1 = *lda;
    cc_offset = 1 + cc_dim1;
    cc -= cc_offset;
    c_dim1 = *lda;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    af_dim1 = *lda;
    af_offset = 1 + af_dim1;
    af -= af_offset;
    --tau;
    --work;
    --rwork;
    --result;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    eps = slamch_("Epsilon");
    minmn = min(*m,*n);

/*     Quick return if possible */

    if (minmn == 0) {
	result[1] = 0.f;
	result[2] = 0.f;
	result[3] = 0.f;
	result[4] = 0.f;
	return 0;
    }

/*     Copy the last k rows of the factorization to the array Q */

    claset_("Full", n, n, &c_b1, &c_b1, &q[q_offset], lda);
    if (*k > 0 && *n > *k) {
	i__1 = *n - *k;
	clacpy_("Full", k, &i__1, &af[*m - *k + 1 + af_dim1], lda, &q[*n - *k 
		+ 1 + q_dim1], lda);
    }
    if (*k > 1) {
	i__1 = *k - 1;
	i__2 = *k - 1;
	clacpy_("Lower", &i__1, &i__2, &af[*m - *k + 2 + (*n - *k + 1) * 
		af_dim1], lda, &q[*n - *k + 2 + (*n - *k + 1) * q_dim1], lda);
    }

/*     Generate the n-by-n matrix Q */

    s_copy(srnamc_1.srnamt, "CUNGRQ", (ftnlen)32, (ftnlen)6);
    cungrq_(n, n, k, &q[q_offset], lda, &tau[minmn - *k + 1], &work[1], lwork, 
	     &info);

    for (iside = 1; iside <= 2; ++iside) {
	if (iside == 1) {
	    *(unsigned char *)side = 'L';
	    mc = *n;
	    nc = *m;
	} else {
	    *(unsigned char *)side = 'R';
	    mc = *m;
	    nc = *n;
	}

/*        Generate MC by NC matrix C */

	i__1 = nc;
	for (j = 1; j <= i__1; ++j) {
	    clarnv_(&c__2, iseed, &mc, &c__[j * c_dim1 + 1]);
/* L10: */
	}
	cnorm = clange_("1", &mc, &nc, &c__[c_offset], lda, &rwork[1]);
	if (cnorm == 0.f) {
	    cnorm = 1.f;
	}

	for (itrans = 1; itrans <= 2; ++itrans) {
	    if (itrans == 1) {
		*(unsigned char *)trans = 'N';
	    } else {
		*(unsigned char *)trans = 'C';
	    }

/*           Copy C */

	    clacpy_("Full", &mc, &nc, &c__[c_offset], lda, &cc[cc_offset], 
		    lda);

/*           Apply Q or Q' to C */

	    s_copy(srnamc_1.srnamt, "CUNMRQ", (ftnlen)32, (ftnlen)6);
	    if (*k > 0) {
		cunmrq_(side, trans, &mc, &nc, k, &af[*m - *k + 1 + af_dim1], 
			lda, &tau[minmn - *k + 1], &cc[cc_offset], lda, &work[
			1], lwork, &info);
	    }

/*           Form explicit product and subtract */

	    if (lsame_(side, "L")) {
		cgemm_(trans, "No transpose", &mc, &nc, &mc, &c_b21, &q[
			q_offset], lda, &c__[c_offset], lda, &c_b22, &cc[
			cc_offset], lda);
	    } else {
		cgemm_("No transpose", trans, &mc, &nc, &nc, &c_b21, &c__[
			c_offset], lda, &q[q_offset], lda, &c_b22, &cc[
			cc_offset], lda);
	    }

/*           Compute error in the difference */

	    resid = clange_("1", &mc, &nc, &cc[cc_offset], lda, &rwork[1]);
	    result[(iside - 1 << 1) + itrans] = resid / ((real) max(1,*n) * 
		    cnorm * eps);

/* L20: */
	}
/* L30: */
    }

    return 0;

/*     End of CRQT03 */

} /* crqt03_ */
Esempio n. 10
0
/* Subroutine */ int cggrqf_(integer *m, integer *p, integer *n, complex *a, 
	integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, 
	complex *work, integer *lwork, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CGGRQF computes a generalized RQ factorization of an M-by-N matrix A 
  
    and a P-by-N matrix B:   

                A = R*Q,        B = Z*T*Q,   

    where Q is an N-by-N unitary matrix, Z is a P-by-P unitary   
    matrix, and R and T assume one of the forms:   

    if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N,   
                     N-M  M                           ( R21 ) N   
                                                         N   

    where R12 or R21 is upper triangular, and   

    if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P,   
                    (  0  ) P-N                         P   N-P   
                       N   

    where T11 is upper triangular.   

    In particular, if B is square and nonsingular, the GRQ factorization 
  
    of A and B implicitly gives the RQ factorization of A*inv(B):   

                 A*inv(B) = (R*inv(T))*Z'   

    where inv(B) denotes the inverse of the matrix B, and Z' denotes the 
  
    conjugate transpose of the matrix Z.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    P       (input) INTEGER   
            The number of rows of the matrix B.  P >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrices A and B. N >= 0.   

    A       (input/output) COMPLEX array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, if M <= N, the upper triangle of the subarray   
            A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; 
  
            if M > N, the elements on and above the (M-N)-th subdiagonal 
  
            contain the M-by-N upper trapezoidal matrix R; the remaining 
  
            elements, with the array TAUA, represent the unitary   
            matrix Q as a product of elementary reflectors (see Further   
            Details).   

    LDA     (input) INTEGER   
            The leading dimension of the array A. LDA >= max(1,M).   

    TAUA    (output) COMPLEX array, dimension (min(M,N))   
            The scalar factors of the elementary reflectors which   
            represent the unitary matrix Q (see Further Details).   

    B       (input/output) COMPLEX array, dimension (LDB,N)   
            On entry, the P-by-N matrix B.   
            On exit, the elements on and above the diagonal of the array 
  
            contain the min(P,N)-by-N upper trapezoidal matrix T (T is   
            upper triangular if P >= N); the elements below the diagonal, 
  
            with the array TAUB, represent the unitary matrix Z as a   
            product of elementary reflectors (see Further Details).   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,P).   

    TAUB    (output) COMPLEX array, dimension (min(P,N))   
            The scalar factors of the elementary reflectors which   
            represent the unitary matrix Z (see Further Details).   

    WORK    (workspace/output) COMPLEX array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >= max(1,N,M,P).   
            For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), 
  
            where NB1 is the optimal blocksize for the RQ factorization   
            of an M-by-N matrix, NB2 is the optimal blocksize for the   
            QR factorization of a P-by-N matrix, and NB3 is the optimal   
            blocksize for a call of CUNMRQ.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO=-i, the i-th argument had an illegal value.   

    Further Details   
    ===============   

    The matrix Q is represented as a product of elementary reflectors   

       Q = H(1) H(2) . . . H(k), where k = min(m,n).   

    Each H(i) has the form   

       H(i) = I - taua * v * v'   

    where taua is a complex scalar, and v is a complex vector with   
    v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in 
  
    A(m-k+i,1:n-k+i-1), and taua in TAUA(i).   
    To form Q explicitly, use LAPACK subroutine CUNGRQ.   
    To use Q to update another matrix, use LAPACK subroutine CUNMRQ.   

    The matrix Z is represented as a product of elementary reflectors   

       Z = H(1) H(2) . . . H(k), where k = min(p,n).   

    Each H(i) has the form   

       H(i) = I - taub * v * v'   

    where taub is a complex scalar, and v is a complex vector with   
    v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), 
  
    and taub in TAUB(i).   
    To form Z explicitly, use LAPACK subroutine CUNGQR.   
    To use Z to update another matrix, use LAPACK subroutine CUNMQR.   

    ===================================================================== 
  


       Test the input parameters   

    
   Parameter adjustments   
       Function Body */
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
    doublereal d__1;
    /* Local variables */
    static integer lopt;
    extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *, integer *), cgerqf_(
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *, integer *), xerbla_(char *, integer *), 
	    cunmrq_(char *, char *, integer *, integer *, integer *, complex *
	    , integer *, complex *, complex *, integer *, complex *, integer *
	    , integer *);


#define TAUA(I) taua[(I)-1]
#define TAUB(I) taub[(I)-1]
#define WORK(I) work[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]

    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*p < 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,*p)) {
	*info = -8;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m), i__1 = max(i__1,*p);
	if (*lwork < max(i__1,*n)) {
	    *info = -11;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGGRQF", &i__1);
	return 0;
    }

/*     RQ factorization of M-by-N matrix A: A = R*Q */

    cgerqf_(m, n, &A(1,1), lda, &TAUA(1), &WORK(1), lwork, info);
    lopt = WORK(1).r;

/*     Update B := B*Q' */

    i__1 = min(*m,*n);
/* Computing MAX */
    i__2 = 1, i__3 = *m - *n + 1;
    cunmrq_("Right", "Conjugate Transpose", p, n, &i__1, &A(max(1,*m-*n+1),1), lda, &TAUA(1), &B(1,1), ldb, &WORK(1), lwork, info);
/* Computing MAX */
    i__1 = lopt, i__2 = (integer) WORK(1).r;
    lopt = max(i__1,i__2);

/*     QR factorization of P-by-N matrix B: B = Z*T */

    cgeqrf_(p, n, &B(1,1), ldb, &TAUB(1), &WORK(1), lwork, info);
/* Computing MAX */
    i__1 = lopt, i__2 = (integer) WORK(1).r;
    d__1 = (doublereal) max(i__1,i__2);
    WORK(1).r = d__1, WORK(1).i = 0.f;

    return 0;

/*     End of CGGRQF */

} /* cggrqf_ */