Esempio n. 1
0
void Kokkos::CUSPARSEdetails::CUSPARSESolveAnalysisDestroyer::free(cusparseSolveAnalysisInfo_t *ptr) 
{
  cusparseStatus_t status = cusparseDestroySolveAnalysisInfo( *ptr );
  delete ptr;
  TEUCHOS_TEST_FOR_EXCEPTION(status != CUSPARSE_STATUS_SUCCESS, std::runtime_error,
      "Kokkos::CUSPARSEdetails::CUSPARSESolveAnalysisDestroyer::free(): unknown error.")
}
Esempio n. 2
0
extern "C" magma_int_t
magma_dcumiccsetup(
    magma_d_matrix A,
    magma_d_preconditioner *precond,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    cusparseHandle_t cusparseHandle=NULL;
    cusparseMatDescr_t descrA=NULL;
    cusparseMatDescr_t descrL=NULL;
    cusparseMatDescr_t descrU=NULL;
#if CUDA_VERSION >= 7000
    csric02Info_t info_M=NULL;
    void *pBuffer = NULL;
#endif
    
    magma_d_matrix hA={Magma_CSR}, hACSR={Magma_CSR}, U={Magma_CSR};
    CHECK( magma_dmtransfer( A, &hA, A.memory_location, Magma_CPU, queue ));
    U.diagorder_type = Magma_VALUE;
    CHECK( magma_dmconvert( hA, &hACSR, hA.storage_type, Magma_CSR, queue ));

    // in case using fill-in
    if( precond->levels > 0 ){
            magma_d_matrix hAL={Magma_CSR}, hAUt={Magma_CSR};
            CHECK( magma_dsymbilu( &hACSR, precond->levels, &hAL, &hAUt,  queue ));
            magma_dmfree(&hAL, queue);
            magma_dmfree(&hAUt, queue);
    }

    CHECK( magma_dmconvert( hACSR, &U, Magma_CSR, Magma_CSRL, queue ));
    magma_dmfree( &hACSR, queue );
    CHECK( magma_dmtransfer(U, &(precond->M), Magma_CPU, Magma_DEV, queue ));

    // CUSPARSE context //
    CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
    CHECK_CUSPARSE( cusparseSetStream( cusparseHandle, queue->cuda_stream() ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrA ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &(precond->cuinfo) ));
    // use kernel to manually check for zeros n the diagonal
    CHECK( magma_ddiagcheck( precond->M, queue ) );
        
#if CUDA_VERSION >= 7000
    // this version has the bug fixed where a zero on the diagonal causes a crash
    CHECK_CUSPARSE( cusparseCreateCsric02Info(&info_M) );
    CHECK_CUSPARSE( cusparseSetMatType( descrA, CUSPARSE_MATRIX_TYPE_GENERAL ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrA, CUSPARSE_INDEX_BASE_ZERO ));
    int buffersize;
    int structural_zero;
    int numerical_zero;
    
    CHECK_CUSPARSE(
    cusparseDcsric02_bufferSize( cusparseHandle,
                         precond->M.num_rows, precond->M.nnz, descrA,
                         precond->M.dval, precond->M.drow, precond->M.dcol,
                         info_M,
                         &buffersize ) );
    
    CHECK( magma_malloc((void**)&pBuffer, buffersize) );

    CHECK_CUSPARSE( cusparseDcsric02_analysis( cusparseHandle,
            precond->M.num_rows, precond->M.nnz, descrA,
            precond->M.dval, precond->M.drow, precond->M.dcol,
            info_M, CUSPARSE_SOLVE_POLICY_NO_LEVEL, pBuffer ));
    CHECK_CUSPARSE( cusparseXcsric02_zeroPivot( cusparseHandle, info_M, &numerical_zero ) );
    CHECK_CUSPARSE( cusparseXcsric02_zeroPivot( cusparseHandle, info_M, &structural_zero ) );

    CHECK_CUSPARSE(
    cusparseDcsric02( cusparseHandle,
                         precond->M.num_rows, precond->M.nnz, descrA,
                         precond->M.dval, precond->M.drow, precond->M.dcol,
                         info_M, CUSPARSE_SOLVE_POLICY_NO_LEVEL, pBuffer) );    

#else
    // this version contains the bug but is needed for backward compability
    CHECK_CUSPARSE( cusparseSetMatType( descrA, CUSPARSE_MATRIX_TYPE_SYMMETRIC ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrA, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrA, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrA, CUSPARSE_FILL_MODE_LOWER ));
    
    CHECK_CUSPARSE( cusparseDcsrsm_analysis( cusparseHandle,
                CUSPARSE_OPERATION_NON_TRANSPOSE,
                precond->M.num_rows, precond->M.nnz, descrA,
                precond->M.dval, precond->M.drow, precond->M.dcol,
                precond->cuinfo ));
    CHECK_CUSPARSE( cusparseDcsric0( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
                      precond->M.num_rows, descrA,
                      precond->M.dval,
                      precond->M.drow,
                      precond->M.dcol,
                      precond->cuinfo ));
#endif

    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrL ));
    CHECK_CUSPARSE( cusparseSetMatType( descrL, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrL, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrL, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrL, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseDcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->M.num_rows,
        precond->M.nnz, descrL,
        precond->M.dval, precond->M.drow, precond->M.dcol, precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrU ));
    CHECK_CUSPARSE( cusparseSetMatType( descrU, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrU, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrU, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrU, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoU ));
    CHECK_CUSPARSE( cusparseDcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_TRANSPOSE, precond->M.num_rows,
        precond->M.nnz, descrU,
        precond->M.dval, precond->M.drow, precond->M.dcol, precond->cuinfoU ));

    if( precond->maxiter < 50 ){
        //prepare for iterative solves
        
        // copy the matrix to precond->L and (transposed) to precond->U
        CHECK( magma_dmtransfer(precond->M, &(precond->L), Magma_DEV, Magma_DEV, queue ));
        CHECK( magma_dmtranspose( precond->L, &(precond->U), queue ));
        
        // extract the diagonal of L into precond->d
        CHECK( magma_djacobisetup_diagscal( precond->L, &precond->d, queue ));
        CHECK( magma_dvinit( &precond->work1, Magma_DEV, hA.num_rows, 1, MAGMA_D_ZERO, queue ));
        
        // extract the diagonal of U into precond->d2
        CHECK( magma_djacobisetup_diagscal( precond->U, &precond->d2, queue ));
        CHECK( magma_dvinit( &precond->work2, Magma_DEV, hA.num_rows, 1, MAGMA_D_ZERO, queue ));
    }



/*
    // to enable also the block-asynchronous iteration for the triangular solves
    CHECK( magma_dmtransfer( precond->M, &hA, Magma_DEV, Magma_CPU, queue ));
    hA.storage_type = Magma_CSR;

    magma_d_matrix hD, hR, hAt

    CHECK( magma_dcsrsplit( 256, hA, &hD, &hR, queue ));

    CHECK( magma_dmtransfer( hD, &precond->LD, Magma_CPU, Magma_DEV, queue ));
    CHECK( magma_dmtransfer( hR, &precond->L, Magma_CPU, Magma_DEV, queue ));

    magma_dmfree(&hD, queue );
    magma_dmfree(&hR, queue );

    CHECK( magma_d_cucsrtranspose(   hA, &hAt, queue ));

    CHECK( magma_dcsrsplit( 256, hAt, &hD, &hR, queue ));

    CHECK( magma_dmtransfer( hD, &precond->UD, Magma_CPU, Magma_DEV, queue ));
    CHECK( magma_dmtransfer( hR, &precond->U, Magma_CPU, Magma_DEV, queue ));
    
    magma_dmfree(&hD, queue );
    magma_dmfree(&hR, queue );
    magma_dmfree(&hA, queue );
    magma_dmfree(&hAt, queue );
*/

cleanup:
#if CUDA_VERSION >= 7000
    magma_free( pBuffer );
    cusparseDestroyCsric02Info( info_M );
#endif
    cusparseDestroySolveAnalysisInfo( precond->cuinfo );
    cusparseDestroyMatDescr( descrL );
    cusparseDestroyMatDescr( descrU );
    cusparseDestroyMatDescr( descrA );
    cusparseDestroy( cusparseHandle );
    magma_dmfree(&U, queue );
    magma_dmfree(&hA, queue );

    return info;
}
Esempio n. 3
0
magma_int_t
magma_ssolverinfo_free( magma_s_solver_par *solver_par, 
                        magma_s_preconditioner *precond_par ){

    solver_par->init_res = 0.0;
    solver_par->iter_res = 0.0;
    solver_par->final_res = 0.0;

    if( solver_par->res_vec != NULL ){
        magma_free_cpu( solver_par->res_vec );
        solver_par->res_vec = NULL;
    }
    if( solver_par->timing != NULL ){
        magma_free_cpu( solver_par->timing );
        solver_par->timing = NULL;
    }
    if( solver_par->eigenvectors != NULL ){
        magma_free( solver_par->eigenvectors );
        solver_par->eigenvectors = NULL;
    }
    if( solver_par->eigenvalues != NULL ){
        magma_free_cpu( solver_par->eigenvalues );
        solver_par->eigenvalues = NULL;
    }

    if( precond_par->d.val != NULL ){
        magma_free( precond_par->d.val );
        precond_par->d.val = NULL;
    }
    if( precond_par->M.val != NULL ){
        if ( precond_par->M.memory_location == Magma_DEV )
            magma_free( precond_par->M.val );
        else
            magma_free_cpu( precond_par->M.val );
        precond_par->M.val = NULL;
    }
    if( precond_par->M.col != NULL ){
        if ( precond_par->M.memory_location == Magma_DEV )
            magma_free( precond_par->M.col );
        else
            magma_free_cpu( precond_par->M.col );
        precond_par->M.col = NULL;
    }
    if( precond_par->M.row != NULL ){
        if ( precond_par->M.memory_location == Magma_DEV )
            magma_free( precond_par->M.row );
        else
            magma_free_cpu( precond_par->M.row );
        precond_par->M.row = NULL;
    }
    if( precond_par->M.blockinfo != NULL ){
        magma_free_cpu( precond_par->M.blockinfo );
        precond_par->M.blockinfo = NULL;
    }
    if( precond_par->L.val != NULL ){
        if ( precond_par->L.memory_location == Magma_DEV )
            magma_free( precond_par->L.val );
        else
            magma_free_cpu( precond_par->L.val );
        precond_par->L.val = NULL;
    }
    if( precond_par->L.col != NULL ){
        if ( precond_par->L.memory_location == Magma_DEV )
            magma_free( precond_par->L.col );
        else
            magma_free_cpu( precond_par->L.col );
        precond_par->L.col = NULL;
    }
    if( precond_par->L.row != NULL ){
        if ( precond_par->L.memory_location == Magma_DEV )
            magma_free( precond_par->L.row );
        else
            magma_free_cpu( precond_par->L.row );
        precond_par->L.row = NULL;
    }
    if( precond_par->L.blockinfo != NULL ){
        magma_free_cpu( precond_par->L.blockinfo );
        precond_par->L.blockinfo = NULL;
    }
    if( precond_par->U.val != NULL ){
        if ( precond_par->U.memory_location == Magma_DEV )
            magma_free( precond_par->U.val );
        else
            magma_free_cpu( precond_par->U.val );
        precond_par->U.val = NULL;
    }
    if( precond_par->U.col != NULL ){
        if ( precond_par->U.memory_location == Magma_DEV )
            magma_free( precond_par->U.col );
        else
            magma_free_cpu( precond_par->U.col );
        precond_par->U.col = NULL;
    }
    if( precond_par->U.row != NULL ){
        if ( precond_par->U.memory_location == Magma_DEV )
            magma_free( precond_par->U.row );
        else
            magma_free_cpu( precond_par->U.row );
        precond_par->U.row = NULL;
    }
    if( precond_par->U.blockinfo != NULL ){
        magma_free_cpu( precond_par->U.blockinfo );
        precond_par->U.blockinfo = NULL;
    }
    if( precond_par->solver == Magma_ILU ||
        precond_par->solver == Magma_AILU ||
        precond_par->solver == Magma_ICC||
        precond_par->solver == Magma_AICC ){
        cusparseStatus_t cusparseStatus;
        cusparseStatus =
        cusparseDestroySolveAnalysisInfo( precond_par->cuinfoL );
         if(cusparseStatus != 0)    printf("error in info-free.\n");
        cusparseStatus =
        cusparseDestroySolveAnalysisInfo( precond_par->cuinfoU );
         if(cusparseStatus != 0)    printf("error in info-free.\n");

    }
    if( precond_par->LD.val != NULL ){
        if ( precond_par->LD.memory_location == Magma_DEV )
            magma_free( precond_par->LD.val );
        else
            magma_free_cpu( precond_par->LD.val );
        precond_par->LD.val = NULL;
    }
    if( precond_par->LD.col != NULL ){
        if ( precond_par->LD.memory_location == Magma_DEV )
            magma_free( precond_par->LD.col );
        else
            magma_free_cpu( precond_par->LD.col );
        precond_par->LD.col = NULL;
    }
    if( precond_par->LD.row != NULL ){
        if ( precond_par->LD.memory_location == Magma_DEV )
            magma_free( precond_par->LD.row );
        else
            magma_free_cpu( precond_par->LD.row );
        precond_par->LD.row = NULL;
    }
    if( precond_par->LD.blockinfo != NULL ){
        magma_free_cpu( precond_par->LD.blockinfo );
        precond_par->LD.blockinfo = NULL;
    }
    if( precond_par->UD.val != NULL ){
        if ( precond_par->UD.memory_location == Magma_DEV )
            magma_free( precond_par->UD.val );
        else
            magma_free_cpu( precond_par->UD.val );
        precond_par->UD.val = NULL;
    }
    if( precond_par->UD.col != NULL ){
        if ( precond_par->UD.memory_location == Magma_DEV )
            magma_free( precond_par->UD.col );
        else
            magma_free_cpu( precond_par->UD.col );
        precond_par->UD.col = NULL;
    }
    if( precond_par->UD.row != NULL ){
        if ( precond_par->UD.memory_location == Magma_DEV )
            magma_free( precond_par->UD.row );
        else
            magma_free_cpu( precond_par->UD.row );
        precond_par->UD.row = NULL;
    }
    if( precond_par->UD.blockinfo != NULL ){
        magma_free_cpu( precond_par->UD.blockinfo );
        precond_par->UD.blockinfo = NULL;
    }

    precond_par->solver = Magma_NONE;
    return MAGMA_SUCCESS;
}
Esempio n. 4
0
/* Solve Ax=b using the conjugate gradient method a) without any preconditioning, b) using an Incomplete Cholesky preconditioner and c) using an ILU0 preconditioner. */
int main(int argc, char **argv)
{
    const int max_iter = 1000;
    int k, M = 0, N = 0, nz = 0, *I = NULL, *J = NULL;
    int *d_col, *d_row;
    int qatest = 0;
    const float tol = 1e-12f;
    float *x, *rhs;
    float r0, r1, alpha, beta;
    float *d_val, *d_x;
    float *d_zm1, *d_zm2, *d_rm2;
    float *d_r, *d_p, *d_omega, *d_y;
    float *val = NULL;
    float *d_valsILU0;
    float *valsILU0;
    float rsum, diff, err = 0.0;
    float qaerr1, qaerr2 = 0.0;
    float dot, numerator, denominator, nalpha;
    const float floatone = 1.0;
    const float floatzero = 0.0;

    int nErrors = 0;

    printf("conjugateGradientPrecond starting...\n");

    /* QA testing mode */
    if (checkCmdLineFlag(argc, (const char **)argv, "qatest"))
    {
        qatest = 1;
    }

    /* This will pick the best possible CUDA capable device */
    cudaDeviceProp deviceProp;
    int devID = findCudaDevice(argc, (const char **)argv);
    printf("GPU selected Device ID = %d \n", devID);

    if (devID < 0)
    {
        printf("Invalid GPU device %d selected,  exiting...\n", devID);
        exit(EXIT_SUCCESS);
    }

    checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));

    /* Statistics about the GPU device */
    printf("> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n",
           deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor);

    int version = (deviceProp.major * 0x10 + deviceProp.minor);

    if (version < 0x11)
    {
        printf("%s: requires a minimum CUDA compute 1.1 capability\n", sSDKname);

        // cudaDeviceReset causes the driver to clean up all state. While
        // not mandatory in normal operation, it is good practice.  It is also
        // needed to ensure correct operation when the application is being
        // profiled. Calling cudaDeviceReset causes all profile data to be
        // flushed before the application exits
        cudaDeviceReset();
        exit(EXIT_SUCCESS);
    }

    /* Generate a random tridiagonal symmetric matrix in CSR (Compressed Sparse Row) format */
    M = N = 16384;
    nz = 5*N-4*(int)sqrt((double)N);
    I = (int *)malloc(sizeof(int)*(N+1));                              // csr row pointers for matrix A
    J = (int *)malloc(sizeof(int)*nz);                                 // csr column indices for matrix A
    val = (float *)malloc(sizeof(float)*nz);                           // csr values for matrix A
    x = (float *)malloc(sizeof(float)*N);
    rhs = (float *)malloc(sizeof(float)*N);

    for (int i = 0; i < N; i++)
    {
        rhs[i] = 0.0;                                                  // Initialize RHS
        x[i] = 0.0;                                                    // Initial approximation of solution
    }

    genLaplace(I, J, val, M, N, nz, rhs);

    /* Create CUBLAS context */
    cublasHandle_t cublasHandle = 0;
    cublasStatus_t cublasStatus;
    cublasStatus = cublasCreate(&cublasHandle);

    checkCudaErrors(cublasStatus);

    /* Create CUSPARSE context */
    cusparseHandle_t cusparseHandle = 0;
    cusparseStatus_t cusparseStatus;
    cusparseStatus = cusparseCreate(&cusparseHandle);

    checkCudaErrors(cusparseStatus);

    /* Description of the A matrix*/
    cusparseMatDescr_t descr = 0;
    cusparseStatus = cusparseCreateMatDescr(&descr);

    checkCudaErrors(cusparseStatus);

    /* Define the properties of the matrix */
    cusparseSetMatType(descr,CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descr,CUSPARSE_INDEX_BASE_ZERO);

    /* Allocate required memory */
    checkCudaErrors(cudaMalloc((void **)&d_col, nz*sizeof(int)));
    checkCudaErrors(cudaMalloc((void **)&d_row, (N+1)*sizeof(int)));
    checkCudaErrors(cudaMalloc((void **)&d_val, nz*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_x, N*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_y, N*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_r, N*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_p, N*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_omega, N*sizeof(float)));

    cudaMemcpy(d_col, J, nz*sizeof(int), cudaMemcpyHostToDevice);
    cudaMemcpy(d_row, I, (N+1)*sizeof(int), cudaMemcpyHostToDevice);
    cudaMemcpy(d_val, val, nz*sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(d_r, rhs, N*sizeof(float), cudaMemcpyHostToDevice);

    /* Conjugate gradient without preconditioning.
       ------------------------------------------
       Follows the description by Golub & Van Loan, "Matrix Computations 3rd ed.", Section 10.2.6  */

    printf("Convergence of conjugate gradient without preconditioning: \n");
    k = 0;
    r0 = 0;
    cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1);

    while (r1 > tol*tol && k <= max_iter)
    {
        k++;

        if (k == 1)
        {
            cublasScopy(cublasHandle, N, d_r, 1, d_p, 1);
        }
        else
        {
            beta = r1/r0;
            cublasSscal(cublasHandle, N, &beta, d_p, 1);
            cublasSaxpy(cublasHandle, N, &floatone, d_r, 1, d_p, 1) ;
        }

        cusparseScsrmv(cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &floatone, descr, d_val, d_row, d_col, d_p, &floatzero, d_omega);
        cublasSdot(cublasHandle, N, d_p, 1, d_omega, 1, &dot);
        alpha = r1/dot;
        cublasSaxpy(cublasHandle, N, &alpha, d_p, 1, d_x, 1);
        nalpha = -alpha;
        cublasSaxpy(cublasHandle, N, &nalpha, d_omega, 1, d_r, 1);
        r0 = r1;
        cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1);
    }

    printf("  iteration = %3d, residual = %e \n", k, sqrt(r1));

    cudaMemcpy(x, d_x, N*sizeof(float), cudaMemcpyDeviceToHost);

    /* check result */
    err = 0.0;

    for (int i = 0; i < N; i++)
    {
        rsum = 0.0;

        for (int j = I[i]; j < I[i+1]; j++)
        {
            rsum += val[j]*x[J[j]];
        }

        diff = fabs(rsum - rhs[i]);

        if (diff > err)
        {
            err = diff;
        }
    }

    printf("  Convergence Test: %s \n", (k <= max_iter) ? "OK" : "FAIL");
    nErrors += (k > max_iter) ? 1 : 0;
    qaerr1 = err;

    if (0)
    {
        // output result in matlab-style array
        int n=(int)sqrt((double)N);
        printf("a = [  ");

        for (int iy=0; iy<n; iy++)
        {
            for (int ix=0; ix<n; ix++)
            {
                printf(" %f ", x[iy*n+ix]);
            }

            if (iy == n-1)
            {
                printf(" ]");
            }

            printf("\n");
        }
    }


    /* Preconditioned Conjugate Gradient using ILU.
       --------------------------------------------
       Follows the description by Golub & Van Loan, "Matrix Computations 3rd ed.", Algorithm 10.3.1  */

    printf("\nConvergence of conjugate gradient using incomplete LU preconditioning: \n");

    int nzILU0 = 2*N-1;
    valsILU0 = (float *) malloc(nz*sizeof(float));

    checkCudaErrors(cudaMalloc((void **)&d_valsILU0, nz*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_zm1, (N)*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_zm2, (N)*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_rm2, (N)*sizeof(float)));

    /* create the analysis info object for the A matrix */
    cusparseSolveAnalysisInfo_t infoA = 0;
    cusparseStatus = cusparseCreateSolveAnalysisInfo(&infoA);

    checkCudaErrors(cusparseStatus);

    /* Perform the analysis for the Non-Transpose case */
    cusparseStatus = cusparseScsrsv_analysis(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
                                             N, nz, descr, d_val, d_row, d_col, infoA);

    checkCudaErrors(cusparseStatus);

    /* Copy A data to ILU0 vals as input*/
    cudaMemcpy(d_valsILU0, d_val, nz*sizeof(float), cudaMemcpyDeviceToDevice);

    /* generate the Incomplete LU factor H for the matrix A using cudsparseScsrilu0 */
    cusparseStatus = cusparseScsrilu0(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, descr, d_valsILU0, d_row, d_col, infoA);

    checkCudaErrors(cusparseStatus);

    /* Create info objects for the ILU0 preconditioner */
    cusparseSolveAnalysisInfo_t info_u;
    cusparseCreateSolveAnalysisInfo(&info_u);

    cusparseMatDescr_t descrL = 0;
    cusparseStatus = cusparseCreateMatDescr(&descrL);
    cusparseSetMatType(descrL,CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descrL,CUSPARSE_INDEX_BASE_ZERO);
    cusparseSetMatFillMode(descrL, CUSPARSE_FILL_MODE_LOWER);
    cusparseSetMatDiagType(descrL, CUSPARSE_DIAG_TYPE_UNIT);

    cusparseMatDescr_t descrU = 0;
    cusparseStatus = cusparseCreateMatDescr(&descrU);
    cusparseSetMatType(descrU,CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descrU,CUSPARSE_INDEX_BASE_ZERO);
    cusparseSetMatFillMode(descrU, CUSPARSE_FILL_MODE_UPPER);
    cusparseSetMatDiagType(descrU, CUSPARSE_DIAG_TYPE_NON_UNIT);
    cusparseStatus = cusparseScsrsv_analysis(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, nz, descrU, d_val, d_row, d_col, info_u);

    /* reset the initial guess of the solution to zero */
    for (int i = 0; i < N; i++)
    {
        x[i] = 0.0;
    }

    checkCudaErrors(cudaMemcpy(d_r, rhs, N*sizeof(float), cudaMemcpyHostToDevice));
    checkCudaErrors(cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice));

    k = 0;
    cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1);

    while (r1 > tol*tol && k <= max_iter)
    {
        // Forward Solve, we can re-use infoA since the sparsity pattern of A matches that of L
        cusparseStatus = cusparseScsrsv_solve(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, &floatone, descrL,
                                              d_valsILU0, d_row, d_col, infoA, d_r, d_y);
        checkCudaErrors(cusparseStatus);

        // Back Substitution
        cusparseStatus = cusparseScsrsv_solve(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, &floatone, descrU,
                                              d_valsILU0, d_row, d_col, info_u, d_y, d_zm1);
        checkCudaErrors(cusparseStatus);

        k++;

        if (k == 1)
        {
            cublasScopy(cublasHandle, N, d_zm1, 1, d_p, 1);
        }
        else
        {
            cublasSdot(cublasHandle, N, d_r, 1, d_zm1, 1, &numerator);
            cublasSdot(cublasHandle, N, d_rm2, 1, d_zm2, 1, &denominator);
            beta = numerator/denominator;
            cublasSscal(cublasHandle, N, &beta, d_p, 1);
            cublasSaxpy(cublasHandle, N, &floatone, d_zm1, 1, d_p, 1) ;
        }

        cusparseScsrmv(cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nzILU0, &floatone, descrU, d_val, d_row, d_col, d_p, &floatzero, d_omega);
        cublasSdot(cublasHandle, N, d_r, 1, d_zm1, 1, &numerator);
        cublasSdot(cublasHandle, N, d_p, 1, d_omega, 1, &denominator);
        alpha = numerator / denominator;
        cublasSaxpy(cublasHandle, N, &alpha, d_p, 1, d_x, 1);
        cublasScopy(cublasHandle, N, d_r, 1, d_rm2, 1);
        cublasScopy(cublasHandle, N, d_zm1, 1, d_zm2, 1);
        nalpha = -alpha;
        cublasSaxpy(cublasHandle, N, &nalpha, d_omega, 1, d_r, 1);
        cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1);
    }

    printf("  iteration = %3d, residual = %e \n", k, sqrt(r1));

    cudaMemcpy(x, d_x, N*sizeof(float), cudaMemcpyDeviceToHost);

    /* check result */
    err = 0.0;

    for (int i = 0; i < N; i++)
    {
        rsum = 0.0;

        for (int j = I[i]; j < I[i+1]; j++)
        {
            rsum += val[j]*x[J[j]];
        }

        diff = fabs(rsum - rhs[i]);

        if (diff > err)
        {
            err = diff;
        }
    }

    printf("  Convergence Test: %s \n", (k <= max_iter) ? "OK" : "FAIL");
    nErrors += (k > max_iter) ? 1 : 0;
    qaerr2 = err;

    /* Destroy parameters */
    cusparseDestroySolveAnalysisInfo(infoA);
    cusparseDestroySolveAnalysisInfo(info_u);

    /* Destroy contexts */
    cusparseDestroy(cusparseHandle);
    cublasDestroy(cublasHandle);

    /* Free device memory */
    free(I);
    free(J);
    free(val);
    free(x);
    free(rhs);
    free(valsILU0);
    cudaFree(d_col);
    cudaFree(d_row);
    cudaFree(d_val);
    cudaFree(d_x);
    cudaFree(d_y);
    cudaFree(d_r);
    cudaFree(d_p);
    cudaFree(d_omega);
    cudaFree(d_valsILU0);
    cudaFree(d_zm1);
    cudaFree(d_zm2);
    cudaFree(d_rm2);

    // cudaDeviceReset causes the driver to clean up all state. While
    // not mandatory in normal operation, it is good practice.  It is also
    // needed to ensure correct operation when the application is being
    // profiled. Calling cudaDeviceReset causes all profile data to be
    // flushed before the application exits
    cudaDeviceReset();

    printf("  Test Summary:\n");
    printf("     Counted total of %d errors\n", nErrors);
    printf("     qaerr1 = %f qaerr2 = %f\n\n", fabs(qaerr1), fabs(qaerr2));
    exit((nErrors == 0 &&fabs(qaerr1)<1e-5 && fabs(qaerr2) < 1e-5 ? EXIT_SUCCESS : EXIT_FAILURE));
}
Esempio n. 5
0
extern "C" magma_int_t
magma_dcumilusetup(
    magma_d_sparse_matrix A, magma_d_preconditioner *precond,
    magma_queue_t queue )
{
    //magma_d_mvisu(A, queue );
        // copy matrix into preconditioner parameter
        magma_d_sparse_matrix hA, hACSR;    
        magma_d_mtransfer( A, &hA, A.memory_location, Magma_CPU, queue );
        magma_d_mconvert( hA, &hACSR, hA.storage_type, Magma_CSR, queue );
        magma_d_mtransfer(hACSR, &(precond->M), Magma_CPU, Magma_DEV, queue );

        magma_d_mfree( &hA, queue );
        magma_d_mfree( &hACSR, queue );


            // CUSPARSE context //
            cusparseHandle_t cusparseHandle;
            cusparseStatus_t cusparseStatus;
            cusparseStatus = cusparseCreate(&cusparseHandle);
            cusparseSetStream( cusparseHandle, queue );
             if (cusparseStatus != 0)    printf("error in Handle.\n");


            cusparseMatDescr_t descrA;
            cusparseStatus = cusparseCreateMatDescr(&descrA);
             if (cusparseStatus != 0)    printf("error in MatrDescr.\n");

            cusparseStatus =
            cusparseSetMatType(descrA,CUSPARSE_MATRIX_TYPE_GENERAL);
             if (cusparseStatus != 0)    printf("error in MatrType.\n");

            cusparseStatus =
            cusparseSetMatDiagType (descrA, CUSPARSE_DIAG_TYPE_NON_UNIT);
             if (cusparseStatus != 0)    printf("error in DiagType.\n");

            cusparseStatus =
            cusparseSetMatIndexBase(descrA,CUSPARSE_INDEX_BASE_ZERO);
             if (cusparseStatus != 0)    printf("error in IndexBase.\n");

            cusparseStatus =
            cusparseCreateSolveAnalysisInfo( &(precond->cuinfo) );
             if (cusparseStatus != 0)    printf("error in info.\n");

            // end CUSPARSE context //



            cusparseStatus =
            cusparseDcsrsm_analysis( cusparseHandle, 
                        CUSPARSE_OPERATION_NON_TRANSPOSE, 
                        precond->M.num_rows, precond->M.nnz, descrA,
                        precond->M.dval, precond->M.drow, precond->M.dcol, 
                        precond->cuinfo); 
             if (cusparseStatus != 0)    
                 printf("error in analysis:%d\n", cusparseStatus);

            cusparseStatus =
            cusparseDcsrilu0( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, 
                              precond->M.num_rows, descrA, 
                              precond->M.dval, 
                              precond->M.drow, 
                              precond->M.dcol, 
                              precond->cuinfo);
             if (cusparseStatus != 0)    
                 printf("error in ILU:%d\n", cusparseStatus);


            cusparseStatus =
            cusparseDestroySolveAnalysisInfo( precond->cuinfo );
             if (cusparseStatus != 0)    printf("error in info-free.\n");

    cusparseDestroyMatDescr( descrA );

    magma_d_sparse_matrix hL, hU;

    magma_d_mtransfer( precond->M, &hA, Magma_DEV, Magma_CPU, queue );

    hL.diagorder_type = Magma_UNITY;
    magma_d_mconvert( hA, &hL , Magma_CSR, Magma_CSRL, queue );
    hU.diagorder_type = Magma_VALUE;
    magma_d_mconvert( hA, &hU , Magma_CSR, Magma_CSRU, queue );
    magma_d_mtransfer( hL, &(precond->L), Magma_CPU, Magma_DEV, queue );
    magma_d_mtransfer( hU, &(precond->U), Magma_CPU, Magma_DEV, queue );

    cusparseMatDescr_t descrL;
    cusparseStatus = cusparseCreateMatDescr(&descrL);
     if (cusparseStatus != 0)    printf("error in MatrDescr.\n");

    cusparseStatus =
    cusparseSetMatType(descrL,CUSPARSE_MATRIX_TYPE_TRIANGULAR);
     if (cusparseStatus != 0)    printf("error in MatrType.\n");

    cusparseStatus =
    cusparseSetMatDiagType (descrL, CUSPARSE_DIAG_TYPE_UNIT);
     if (cusparseStatus != 0)    printf("error in DiagType.\n");

    cusparseStatus =
    cusparseSetMatIndexBase(descrL,CUSPARSE_INDEX_BASE_ZERO);
     if (cusparseStatus != 0)    printf("error in IndexBase.\n");

    cusparseStatus =
    cusparseSetMatFillMode(descrL,CUSPARSE_FILL_MODE_LOWER);
     if (cusparseStatus != 0)    printf("error in fillmode.\n");


    cusparseStatus = cusparseCreateSolveAnalysisInfo(&precond->cuinfoL); 
     if (cusparseStatus != 0)    printf("error in info.\n");

    cusparseStatus =
    cusparseDcsrsm_analysis(cusparseHandle, 
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->L.num_rows, 
        precond->L.nnz, descrL, 
        precond->L.dval, precond->L.drow, precond->L.dcol, precond->cuinfoL );
     if (cusparseStatus != 0)    printf("error in analysis.\n");

    cusparseDestroyMatDescr( descrL );

    cusparseMatDescr_t descrU;
    cusparseStatus = cusparseCreateMatDescr(&descrU);
     if (cusparseStatus != 0)    printf("error in MatrDescr.\n");

    cusparseStatus =
    cusparseSetMatType(descrU,CUSPARSE_MATRIX_TYPE_TRIANGULAR);
     if (cusparseStatus != 0)    printf("error in MatrType.\n");

    cusparseStatus =
    cusparseSetMatDiagType (descrU, CUSPARSE_DIAG_TYPE_NON_UNIT);
     if (cusparseStatus != 0)    printf("error in DiagType.\n");

    cusparseStatus =
    cusparseSetMatIndexBase(descrU,CUSPARSE_INDEX_BASE_ZERO);
     if (cusparseStatus != 0)    printf("error in IndexBase.\n");

    cusparseStatus =
    cusparseSetMatFillMode(descrU,CUSPARSE_FILL_MODE_UPPER);
     if (cusparseStatus != 0)    printf("error in fillmode.\n");

    cusparseStatus = cusparseCreateSolveAnalysisInfo(&precond->cuinfoU); 
     if (cusparseStatus != 0)    printf("error in info.\n");

    cusparseStatus =
    cusparseDcsrsm_analysis(cusparseHandle, 
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->U.num_rows, 
        precond->U.nnz, descrU, 
        precond->U.dval, precond->U.drow, precond->U.dcol, precond->cuinfoU );
     if (cusparseStatus != 0)    printf("error in analysis.\n");

    cusparseDestroyMatDescr( descrU );

    magma_d_mfree(&hA, queue );
    magma_d_mfree(&hL, queue );
    magma_d_mfree(&hU, queue );

    cusparseDestroy( cusparseHandle );

    return MAGMA_SUCCESS;
}
Esempio n. 6
0
extern "C" magma_int_t
magma_dcumiccsetup(
    magma_d_sparse_matrix A, magma_d_preconditioner *precond,
    magma_queue_t queue )
{
    magma_d_sparse_matrix hA, hACSR, U, hD, hR, hAt;
    magma_d_mtransfer( A, &hA, A.memory_location, Magma_CPU, queue );
    U.diagorder_type = Magma_VALUE;
    magma_d_mconvert( hA, &hACSR, hA.storage_type, Magma_CSR, queue );
    magma_d_mconvert( hACSR, &U, Magma_CSR, Magma_CSRL, queue );
    magma_d_mfree( &hACSR, queue );
    magma_d_mtransfer(U, &(precond->M), Magma_CPU, Magma_DEV, queue );

    // CUSPARSE context //
    cusparseHandle_t cusparseHandle;
    cusparseStatus_t cusparseStatus;
    cusparseStatus = cusparseCreate(&cusparseHandle);
    cusparseSetStream( cusparseHandle, queue );
     if (cusparseStatus != 0)    printf("error in Handle.\n");

    cusparseMatDescr_t descrA;
    cusparseStatus = cusparseCreateMatDescr(&descrA);
     if (cusparseStatus != 0)    printf("error in MatrDescr.\n");

    cusparseStatus =
    cusparseSetMatType(descrA,CUSPARSE_MATRIX_TYPE_SYMMETRIC);
     if (cusparseStatus != 0)    printf("error in MatrType.\n");

    cusparseStatus =
    cusparseSetMatDiagType (descrA, CUSPARSE_DIAG_TYPE_NON_UNIT);
     if (cusparseStatus != 0)    printf("error in DiagType.\n");

    cusparseStatus =
    cusparseSetMatIndexBase(descrA,CUSPARSE_INDEX_BASE_ZERO);
     if (cusparseStatus != 0)    printf("error in IndexBase.\n");

    cusparseStatus =
    cusparseSetMatFillMode(descrA,CUSPARSE_FILL_MODE_LOWER);
     if (cusparseStatus != 0)    printf("error in fillmode.\n");


    cusparseStatus =
    cusparseCreateSolveAnalysisInfo( &(precond->cuinfo) );
     if (cusparseStatus != 0)    printf("error in info.\n");

    // end CUSPARSE context //

    cusparseStatus =
    cusparseDcsrsm_analysis( cusparseHandle, 
                CUSPARSE_OPERATION_NON_TRANSPOSE, 
                precond->M.num_rows, precond->M.nnz, descrA,
                precond->M.dval, precond->M.drow, precond->M.dcol, 
                precond->cuinfo); 

     if (cusparseStatus != 0)    printf("error in analysis IC.\n");

    cusparseStatus =
    cusparseDcsric0( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, 
                      precond->M.num_rows, descrA, 
                      precond->M.dval, 
                      precond->M.drow, 
                      precond->M.dcol, 
                      precond->cuinfo);

    cusparseStatus =
    cusparseDestroySolveAnalysisInfo( precond->cuinfo );
     if (cusparseStatus != 0)    printf("error in info-free.\n");

     if (cusparseStatus != 0)    printf("error in ICC.\n");

    cusparseMatDescr_t descrL;
    cusparseStatus = cusparseCreateMatDescr(&descrL);
     if (cusparseStatus != 0)    printf("error in MatrDescr.\n");

    cusparseStatus =
    cusparseSetMatType(descrL,CUSPARSE_MATRIX_TYPE_TRIANGULAR);
     if (cusparseStatus != 0)    printf("error in MatrType.\n");

    cusparseStatus =
    cusparseSetMatDiagType (descrL, CUSPARSE_DIAG_TYPE_NON_UNIT);
     if (cusparseStatus != 0)    printf("error in DiagType.\n");

    cusparseStatus =
    cusparseSetMatIndexBase(descrL,CUSPARSE_INDEX_BASE_ZERO);
     if (cusparseStatus != 0)    printf("error in IndexBase.\n");

    cusparseStatus =
    cusparseSetMatFillMode(descrL,CUSPARSE_FILL_MODE_LOWER);
     if (cusparseStatus != 0)    printf("error in fillmode.\n");


    cusparseStatus = cusparseCreateSolveAnalysisInfo(&precond->cuinfoL); 
     if (cusparseStatus != 0)    printf("error in info.\n");

    cusparseStatus =
    cusparseDcsrsm_analysis(cusparseHandle, 
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->M.num_rows, 
        precond->M.nnz, descrL, 
        precond->M.dval, precond->M.drow, precond->M.dcol, precond->cuinfoL );
     if (cusparseStatus != 0)    printf("error in analysis L.\n");

    cusparseDestroyMatDescr( descrL );

    cusparseMatDescr_t descrU;
    cusparseStatus = cusparseCreateMatDescr(&descrU);
     if (cusparseStatus != 0)    printf("error in MatrDescr.\n");

    cusparseStatus =
    cusparseSetMatType(descrU,CUSPARSE_MATRIX_TYPE_TRIANGULAR);
     if (cusparseStatus != 0)    printf("error in MatrType.\n");

    cusparseStatus =
    cusparseSetMatDiagType (descrU, CUSPARSE_DIAG_TYPE_NON_UNIT);
     if (cusparseStatus != 0)    printf("error in DiagType.\n");

    cusparseStatus =
    cusparseSetMatIndexBase(descrU,CUSPARSE_INDEX_BASE_ZERO);
     if (cusparseStatus != 0)    printf("error in IndexBase.\n");

    cusparseStatus =
    cusparseSetMatFillMode(descrU,CUSPARSE_FILL_MODE_LOWER);
     if (cusparseStatus != 0)    printf("error in fillmode.\n");

    cusparseStatus = cusparseCreateSolveAnalysisInfo(&precond->cuinfoU); 
     if (cusparseStatus != 0)    printf("error in info.\n");

    cusparseStatus =
    cusparseDcsrsm_analysis(cusparseHandle, 
        CUSPARSE_OPERATION_TRANSPOSE, precond->M.num_rows, 
        precond->M.nnz, descrU, 
        precond->M.dval, precond->M.drow, precond->M.dcol, precond->cuinfoU );
     if (cusparseStatus != 0)    printf("error in analysis U.\n");

    cusparseDestroyMatDescr( descrU );
    cusparseDestroyMatDescr( descrA );
    cusparseDestroy( cusparseHandle );

    magma_d_mfree(&U, queue );
    magma_d_mfree(&hA, queue );

/*
    // to enable also the block-asynchronous iteration for the triangular solves
    magma_d_mtransfer( precond->M, &hA, Magma_DEV, Magma_CPU, queue );
    hA.storage_type = Magma_CSR;

    magma_dcsrsplit( 256, hA, &hD, &hR, queue );

    magma_d_mtransfer( hD, &precond->LD, Magma_CPU, Magma_DEV, queue );
    magma_d_mtransfer( hR, &precond->L, Magma_CPU, Magma_DEV, queue );

    magma_d_mfree(&hD, queue );
    magma_d_mfree(&hR, queue );

    magma_d_cucsrtranspose(   hA, &hAt, queue );

    magma_dcsrsplit( 256, hAt, &hD, &hR, queue );

    magma_d_mtransfer( hD, &precond->UD, Magma_CPU, Magma_DEV, queue );
    magma_d_mtransfer( hR, &precond->U, Magma_CPU, Magma_DEV, queue );
    
    magma_d_mfree(&hD, queue );
    magma_d_mfree(&hR, queue );
    magma_d_mfree(&hA, queue );
    magma_d_mfree(&hAt, queue );
*/

    return MAGMA_SUCCESS;
}
Esempio n. 7
0
extern "C" magma_int_t
magma_ccumiccsetup(
    magma_c_matrix A,
    magma_c_preconditioner *precond,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    cusparseHandle_t cusparseHandle=NULL;
    cusparseMatDescr_t descrA=NULL;
    cusparseMatDescr_t descrL=NULL;
    cusparseMatDescr_t descrU=NULL;
    
    magma_c_matrix hA={Magma_CSR}, hACSR={Magma_CSR}, U={Magma_CSR};
    CHECK( magma_cmtransfer( A, &hA, A.memory_location, Magma_CPU, queue ));
    U.diagorder_type = Magma_VALUE;
    CHECK( magma_cmconvert( hA, &hACSR, hA.storage_type, Magma_CSR, queue ));

    // in case using fill-in
    if( precond->levels > 0 ){
            magma_c_matrix hAL={Magma_CSR}, hAUt={Magma_CSR};
            CHECK( magma_csymbilu( &hACSR, precond->levels, &hAL, &hAUt,  queue ));
            magma_cmfree(&hAL, queue);
            magma_cmfree(&hAUt, queue);
    }

    CHECK( magma_cmconvert( hACSR, &U, Magma_CSR, Magma_CSRL, queue ));
    magma_cmfree( &hACSR, queue );
    CHECK( magma_cmtransfer(U, &(precond->M), Magma_CPU, Magma_DEV, queue ));

    // CUSPARSE context //
    CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
    CHECK_CUSPARSE( cusparseSetStream( cusparseHandle, queue ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrA ));
    CHECK_CUSPARSE( cusparseSetMatType( descrA, CUSPARSE_MATRIX_TYPE_SYMMETRIC ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrA, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrA, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrA, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &(precond->cuinfo) ));
    CHECK_CUSPARSE( cusparseCcsrsm_analysis( cusparseHandle,
                CUSPARSE_OPERATION_NON_TRANSPOSE,
                precond->M.num_rows, precond->M.nnz, descrA,
                precond->M.dval, precond->M.drow, precond->M.dcol,
                precond->cuinfo ));
    CHECK_CUSPARSE( cusparseCcsric0( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
                      precond->M.num_rows, descrA,
                      precond->M.dval,
                      precond->M.drow,
                      precond->M.dcol,
                      precond->cuinfo ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrL ));
    CHECK_CUSPARSE( cusparseSetMatType( descrL, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrL, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrL, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrL, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseCcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->M.num_rows,
        precond->M.nnz, descrL,
        precond->M.dval, precond->M.drow, precond->M.dcol, precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrU ));
    CHECK_CUSPARSE( cusparseSetMatType( descrU, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrU, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrU, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrU, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoU ));
    CHECK_CUSPARSE( cusparseCcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_TRANSPOSE, precond->M.num_rows,
        precond->M.nnz, descrU,
        precond->M.dval, precond->M.drow, precond->M.dcol, precond->cuinfoU ));
    
    if( precond->maxiter < 50 ){
        //prepare for iterative solves
        
        // copy the matrix to precond->L and (transposed) to precond->U
        CHECK( magma_cmtransfer(precond->M, &(precond->L), Magma_DEV, Magma_DEV, queue ));
        CHECK( magma_cmtranspose( precond->L, &(precond->U), queue ));
        
        // extract the diagonal of L into precond->d
        CHECK( magma_cjacobisetup_diagscal( precond->L, &precond->d, queue ));
        CHECK( magma_cvinit( &precond->work1, Magma_DEV, hA.num_rows, 1, MAGMA_C_ZERO, queue ));
        
        // extract the diagonal of U into precond->d2
        CHECK( magma_cjacobisetup_diagscal( precond->U, &precond->d2, queue ));
        CHECK( magma_cvinit( &precond->work2, Magma_DEV, hA.num_rows, 1, MAGMA_C_ZERO, queue ));
    }



/*
    // to enable also the block-asynchronous iteration for the triangular solves
    CHECK( magma_cmtransfer( precond->M, &hA, Magma_DEV, Magma_CPU, queue ));
    hA.storage_type = Magma_CSR;

    magma_c_matrix hD, hR, hAt

    CHECK( magma_ccsrsplit( 256, hA, &hD, &hR, queue ));

    CHECK( magma_cmtransfer( hD, &precond->LD, Magma_CPU, Magma_DEV, queue ));
    CHECK( magma_cmtransfer( hR, &precond->L, Magma_CPU, Magma_DEV, queue ));

    magma_cmfree(&hD, queue );
    magma_cmfree(&hR, queue );

    CHECK( magma_c_cucsrtranspose(   hA, &hAt, queue ));

    CHECK( magma_ccsrsplit( 256, hAt, &hD, &hR, queue ));

    CHECK( magma_cmtransfer( hD, &precond->UD, Magma_CPU, Magma_DEV, queue ));
    CHECK( magma_cmtransfer( hR, &precond->U, Magma_CPU, Magma_DEV, queue ));
    
    magma_cmfree(&hD, queue );
    magma_cmfree(&hR, queue );
    magma_cmfree(&hA, queue );
    magma_cmfree(&hAt, queue );
*/

cleanup:
    cusparseDestroySolveAnalysisInfo( precond->cuinfo );
    cusparseDestroyMatDescr( descrL );
    cusparseDestroyMatDescr( descrU );
    cusparseDestroyMatDescr( descrA );
    cusparseDestroy( cusparseHandle );
    magma_cmfree(&U, queue );
    magma_cmfree(&hA, queue );
    
    return info;
}
Esempio n. 8
0
extern "C" magma_int_t
magma_ccumilusetup(
    magma_c_matrix A,
    magma_c_preconditioner *precond,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    cusparseHandle_t cusparseHandle=NULL;
    cusparseMatDescr_t descrA=NULL;
    cusparseMatDescr_t descrL=NULL;
    cusparseMatDescr_t descrU=NULL;
    
    //magma_cprint_matrix(A, queue );
    // copy matrix into preconditioner parameter
    magma_c_matrix hA={Magma_CSR}, hACSR={Magma_CSR};
    magma_c_matrix hL={Magma_CSR}, hU={Magma_CSR};
    CHECK( magma_cmtransfer( A, &hA, A.memory_location, Magma_CPU, queue ));
    CHECK( magma_cmconvert( hA, &hACSR, hA.storage_type, Magma_CSR, queue ));

        // in case using fill-in
    if( precond->levels > 0 ){
        magma_c_matrix hAL={Magma_CSR}, hAUt={Magma_CSR};
        CHECK( magma_csymbilu( &hACSR, precond->levels, &hAL, &hAUt,  queue ));
        magma_cmfree(&hAL, queue);
        magma_cmfree(&hAUt, queue);
    }

    CHECK( magma_cmtransfer(hACSR, &(precond->M), Magma_CPU, Magma_DEV, queue ));

    magma_cmfree( &hA, queue );
    magma_cmfree( &hACSR, queue );

    // CUSPARSE context //
    CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
    CHECK_CUSPARSE( cusparseSetStream( cusparseHandle, queue ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrA ));
    CHECK_CUSPARSE( cusparseSetMatType( descrA, CUSPARSE_MATRIX_TYPE_GENERAL ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrA, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrA, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &(precond->cuinfo) ));
    CHECK_CUSPARSE( cusparseCcsrsm_analysis( cusparseHandle,
                CUSPARSE_OPERATION_NON_TRANSPOSE,
                precond->M.num_rows, precond->M.nnz, descrA,
                precond->M.dval, precond->M.drow, precond->M.dcol,
                precond->cuinfo ));
    CHECK_CUSPARSE( cusparseCcsrilu0( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
                      precond->M.num_rows, descrA,
                      precond->M.dval,
                      precond->M.drow,
                      precond->M.dcol,
                      precond->cuinfo ));

    CHECK( magma_cmtransfer( precond->M, &hA, Magma_DEV, Magma_CPU, queue ));

    hL.diagorder_type = Magma_UNITY;
    CHECK( magma_cmconvert( hA, &hL , Magma_CSR, Magma_CSRL, queue ));
    hU.diagorder_type = Magma_VALUE;
    CHECK( magma_cmconvert( hA, &hU , Magma_CSR, Magma_CSRU, queue ));
    CHECK( magma_cmtransfer( hL, &(precond->L), Magma_CPU, Magma_DEV, queue ));
    CHECK( magma_cmtransfer( hU, &(precond->U), Magma_CPU, Magma_DEV, queue ));


    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrL ));
    CHECK_CUSPARSE( cusparseSetMatType( descrL, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrL, CUSPARSE_DIAG_TYPE_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrL, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrL, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseCcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->L.num_rows,
        precond->L.nnz, descrL,
        precond->L.dval, precond->L.drow, precond->L.dcol, precond->cuinfoL ));

    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrU ));
    CHECK_CUSPARSE( cusparseSetMatType( descrU, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrU, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrU, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrU, CUSPARSE_FILL_MODE_UPPER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoU ));
    CHECK_CUSPARSE( cusparseCcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->U.num_rows,
        precond->U.nnz, descrU,
        precond->U.dval, precond->U.drow, precond->U.dcol, precond->cuinfoU ));


    if( precond->maxiter < 50 ){
        //prepare for iterative solves
        
        // extract the diagonal of L into precond->d
        CHECK( magma_cjacobisetup_diagscal( precond->L, &precond->d, queue ));
        CHECK( magma_cvinit( &precond->work1, Magma_DEV, hA.num_rows, 1, MAGMA_C_ZERO, queue ));
        
        // extract the diagonal of U into precond->d2
        CHECK( magma_cjacobisetup_diagscal( precond->U, &precond->d2, queue ));
        CHECK( magma_cvinit( &precond->work2, Magma_DEV, hA.num_rows, 1, MAGMA_C_ZERO, queue ));
    }

    
cleanup:
    cusparseDestroySolveAnalysisInfo( precond->cuinfo );
    cusparseDestroyMatDescr( descrA );
    cusparseDestroyMatDescr( descrL );
    cusparseDestroyMatDescr( descrU );
    cusparseDestroy( cusparseHandle );
    magma_cmfree( &hA, queue );
    magma_cmfree( &hACSR, queue );
    magma_cmfree(&hA, queue );
    magma_cmfree(&hL, queue );
    magma_cmfree(&hU, queue );

    return info;
}
Esempio n. 9
0
extern "C" magma_int_t
magma_dsolverinfo_free(
    magma_d_solver_par *solver_par,
    magma_d_preconditioner *precond_par,
    magma_queue_t queue )
{
    solver_par->init_res = 0.0;
    solver_par->iter_res = 0.0;
    solver_par->final_res = 0.0;

    if ( solver_par->res_vec != NULL ) {
        magma_free_cpu( solver_par->res_vec );
        solver_par->res_vec = NULL;
    }
    if ( solver_par->timing != NULL ) {
        magma_free_cpu( solver_par->timing );
        solver_par->timing = NULL;
    }
    if ( solver_par->eigenvectors != NULL ) {
        magma_free( solver_par->eigenvectors );
        solver_par->eigenvectors = NULL;
    }
    if ( solver_par->eigenvalues != NULL ) {
        magma_free_cpu( solver_par->eigenvalues );
        solver_par->eigenvalues = NULL;
    }
    if ( precond_par->d.val != NULL ) {
        magma_free( precond_par->d.val );
        precond_par->d.val = NULL;
    }
    if ( precond_par->d2.val != NULL ) {
        magma_free( precond_par->d2.val );
        precond_par->d2.val = NULL;
    }
    if ( precond_par->work1.val != NULL ) {
        magma_free( precond_par->work1.val );
        precond_par->work1.val = NULL;
    }
    if ( precond_par->work2.val != NULL ) {
        magma_free( precond_par->work2.val );
        precond_par->work2.val = NULL;
    }
    if ( precond_par->M.val != NULL ) {
        if ( precond_par->M.memory_location == Magma_DEV )
            magma_free( precond_par->M.dval );
        else
            magma_free_cpu( precond_par->M.val );
        precond_par->M.val = NULL;
    }
    if ( precond_par->M.col != NULL ) {
        if ( precond_par->M.memory_location == Magma_DEV )
            magma_free( precond_par->M.dcol );
        else
            magma_free_cpu( precond_par->M.col );
        precond_par->M.col = NULL;
    }
    if ( precond_par->M.row != NULL ) {
        if ( precond_par->M.memory_location == Magma_DEV )
            magma_free( precond_par->M.drow );
        else
            magma_free_cpu( precond_par->M.row );
        precond_par->M.row = NULL;
    }
    if ( precond_par->M.blockinfo != NULL ) {
        magma_free_cpu( precond_par->M.blockinfo );
        precond_par->M.blockinfo = NULL;
    }
    if ( precond_par->L.val != NULL ) {
        if ( precond_par->L.memory_location == Magma_DEV )
            magma_free( precond_par->L.dval );
        else
            magma_free_cpu( precond_par->L.val );
        precond_par->L.val = NULL;
    }
    if ( precond_par->L.col != NULL ) {
        if ( precond_par->L.memory_location == Magma_DEV )
            magma_free( precond_par->L.col );
        else
            magma_free_cpu( precond_par->L.dcol );
        precond_par->L.col = NULL;
    }
    if ( precond_par->L.row != NULL ) {
        if ( precond_par->L.memory_location == Magma_DEV )
            magma_free( precond_par->L.drow );
        else
            magma_free_cpu( precond_par->L.row );
        precond_par->L.row = NULL;
    }
    if ( precond_par->L.blockinfo != NULL ) {
        magma_free_cpu( precond_par->L.blockinfo );
        precond_par->L.blockinfo = NULL;
    }
    if ( precond_par->U.val != NULL ) {
        if ( precond_par->U.memory_location == Magma_DEV )
            magma_free( precond_par->U.dval );
        else
            magma_free_cpu( precond_par->U.val );
        precond_par->U.val = NULL;
    }
    if ( precond_par->U.col != NULL ) {
        if ( precond_par->U.memory_location == Magma_DEV )
            magma_free( precond_par->U.dcol );
        else
            magma_free_cpu( precond_par->U.col );
        precond_par->U.col = NULL;
    }
    if ( precond_par->U.row != NULL ) {
        if ( precond_par->U.memory_location == Magma_DEV )
            magma_free( precond_par->U.drow );
        else
            magma_free_cpu( precond_par->U.row );
        precond_par->U.row = NULL;
    }
    if ( precond_par->U.blockinfo != NULL ) {
        magma_free_cpu( precond_par->U.blockinfo );
        precond_par->U.blockinfo = NULL;
    }
    if ( precond_par->solver == Magma_ILU ||
        precond_par->solver == Magma_AILU ||
        precond_par->solver == Magma_ICC||
        precond_par->solver == Magma_AICC ) {
        cusparseDestroySolveAnalysisInfo( precond_par->cuinfoL ); 
        cusparseDestroySolveAnalysisInfo( precond_par->cuinfoU ); 
        precond_par->cuinfoL = NULL;
        precond_par->cuinfoU = NULL;

    }
    if ( precond_par->LD.val != NULL ) {
        if ( precond_par->LD.memory_location == Magma_DEV )
            magma_free( precond_par->LD.dval );
        else
            magma_free_cpu( precond_par->LD.val );
        precond_par->LD.val = NULL;
    }
    if ( precond_par->LD.col != NULL ) {
        if ( precond_par->LD.memory_location == Magma_DEV )
            magma_free( precond_par->LD.dcol );
        else
            magma_free_cpu( precond_par->LD.col );
        precond_par->LD.col = NULL;
    }
    if ( precond_par->LD.row != NULL ) {
        if ( precond_par->LD.memory_location == Magma_DEV )
            magma_free( precond_par->LD.drow );
        else
            magma_free_cpu( precond_par->LD.row );
        precond_par->LD.row = NULL;
    }
    if ( precond_par->LD.blockinfo != NULL ) {
        magma_free_cpu( precond_par->LD.blockinfo );
        precond_par->LD.blockinfo = NULL;
    }
    if ( precond_par->UD.val != NULL ) {
        if ( precond_par->UD.memory_location == Magma_DEV )
            magma_free( precond_par->UD.dval );
        else
            magma_free_cpu( precond_par->UD.val );
        precond_par->UD.val = NULL;
    }
    if ( precond_par->UD.col != NULL ) {
        if ( precond_par->UD.memory_location == Magma_DEV )
            magma_free( precond_par->UD.dcol );
        else
            magma_free_cpu( precond_par->UD.col );
        precond_par->UD.col = NULL;
    }
    if ( precond_par->UD.row != NULL ) {
        if ( precond_par->UD.memory_location == Magma_DEV )
            magma_free( precond_par->UD.drow );
        else
            magma_free_cpu( precond_par->UD.row );
        precond_par->UD.row = NULL;
    }
    if ( precond_par->UD.blockinfo != NULL ) {
        magma_free_cpu( precond_par->UD.blockinfo );
        precond_par->UD.blockinfo = NULL;
    }

    precond_par->solver = Magma_NONE;
    return MAGMA_SUCCESS;
}