Esempio n. 1
0
static CvMat* extractEdges( IplImage* img, image_type_t source )
{
  CvMat* temp_16sc;
  CvMat* temp_8uc;
  CvMat* edges;
  edges     = cvCreateMat( img->height, img->width, CV_8UC1 );
  temp_16sc = cvCreateMat( img->height, img->width, CV_16SC1 );
  temp_8uc  = cvCreateMat( img->height, img->width, CV_8UC1 );

  cvZero(edges);


  void accumulateEdgesFromChannel( int channel )
  {
    if( channel > 0 )
      cvSetImageCOI( img, channel );

    cvCopy(img, temp_8uc, NULL); // needed only becaues cvLaplace() doesn't support COI

    if( source == PHOTO )
      cvSmooth(temp_8uc, temp_8uc, CV_GAUSSIAN, PHOTO_PRESMOOTH, PHOTO_PRESMOOTH, 0.0, 0.0);

    cvLaplace(temp_8uc, temp_16sc, 3);
    cvAbs( temp_16sc, temp_16sc );
    cvAdd( edges, temp_16sc, edges, NULL);
  }


  if( img->nChannels == 1 )
    accumulateEdgesFromChannel( -1 );
  else if( source != PHOTO )
    accumulateEdgesFromChannel( 1 );
  else
    for(int i = 0; i < 3; i++)
      accumulateEdgesFromChannel( i+1 );


  cvReleaseMat(&temp_16sc);
  cvReleaseMat(&temp_8uc);
  return edges;
}
Esempio n. 2
0
//------------------------------------------------------------------------------
// Color Similarity Matrix Calculation
//------------------------------------------------------------------------------
CvMat *colorsim(int nbins, double sigma) {

	CvMat *xc=cvCreateMat(1,nbins, CV_32FC1);
	CvMat *yr=cvCreateMat(nbins,1, CV_32FC1);

	CvMat *x=cvCreateMat(nbins,nbins, CV_32FC1);
	CvMat *y=cvCreateMat(nbins,nbins, CV_32FC1);
	CvMat *m=cvCreateMat(x->rows,x->rows, CV_32FC1);


	// Set x,y directions 
	for (int j=0;j<nbins;j++) {
		cvSetReal2D(xc,0,j,(j+1-0.5)/nbins);
		cvSetReal2D(yr,j,0,(j+1-0.5)/nbins);
	}

	// Set u,v, meshgrids
	for (int i=0;i<x->rows;i++) {
		cvRepeat(xc,x);
		cvRepeat(yr,y);
	}

	CvMat *sub = cvCreateMat(x->rows,y->cols,CV_32FC1);
	cvSub(x,y,sub);
	cvAbs(sub,sub);
	cvMul(sub,sub,sub);
	cvConvertScale(sub,sub,-1.0/(2*sigma*sigma));
	cvExp(sub,sub);
	cvSubRS(sub,cvScalar(1.0),m);

	cvReleaseMat(&xc);
	cvReleaseMat(&yr);
	cvReleaseMat(&x);
	cvReleaseMat(&y);
	cvReleaseMat(&sub);

	return m;
}
Esempio n. 3
0
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
CvMat *tgso (CvMat &tmap, int ntex, double sigma, double theta, CvMat &tsim, int useChi2) {


	CvMat *roundTmap=cvCreateMat(tmap.rows,tmap.cols,CV_32FC1);
	CvMat *comp=cvCreateMat(tmap.rows,tmap.cols,CV_32FC1);

	for (int i=0;i<tmap.rows;i++)
		for (int j=0;j<tmap.cols;j++)
			cvSetReal2D(roundTmap,i,j,cvRound(cvGetReal2D(&tmap,i,j)));

	cvSub(&tmap,roundTmap,comp);
	if (cvCountNonZero(comp)) {
		printf("texton labels not integral");
		cvReleaseMat(&roundTmap);
		cvReleaseMat(&comp);
		exit(1);
	}

	double min,max;
	cvMinMaxLoc(&tmap,&min,&max);
	if (min<1 && max>ntex) {
		char *msg=new char[50];
		printf(msg,"texton labels out of range [1,%d]",ntex);
		cvReleaseMat(&roundTmap);
		cvReleaseMat(&comp);
		exit(1);
	}

	cvReleaseMat(&roundTmap);
	cvReleaseMat(&comp);


	double wr=floor(sigma); //sigma=radius (Leo) 

	CvMat *x=cvCreateMat(1,wr-(-wr)+1, CV_64FC1);
	CvMat *y=cvCreateMat(wr-(-wr)+1,1, CV_64FC1);

	CvMat *u=cvCreateMat(wr-(-wr)+1,wr-(-wr)+1, CV_64FC1);
	CvMat *v=cvCreateMat(wr-(-wr)+1,wr-(-wr)+1, CV_64FC1);
	CvMat *gamma=cvCreateMat(u->rows,v->rows, CV_64FC1);

	// Set x,y directions 
	for (int j=-wr;j<=wr;j++) {
		cvSetReal2D(x,0,(j+wr),j);
		cvSetReal2D(y,(j+wr),0,j);
	}

	// Set u,v, meshgrids
	for (int i=0;i<u->rows;i++) {
		cvRepeat(x,u);
		cvRepeat(y,v);
	}

	// Compute the gamma matrix from the grid
	for (int i=0;i<u->rows;i++) 
		for (int j=0;j<u->cols;j++)
			cvSetReal2D(gamma,i,j,atan2(cvGetReal2D(v,i,j),cvGetReal2D(u,i,j)));

	cvReleaseMat(&x);
	cvReleaseMat(&y);

	CvMat *sum=cvCreateMat(u->rows,u->cols, CV_64FC1);
	cvMul(u,u,u);
	cvMul(v,v,v);
	cvAdd(u,v,sum);
	CvMat *mask=cvCreateMat(u->rows,u->cols, CV_8UC1);
	cvCmpS(sum,sigma*sigma,mask,CV_CMP_LE);
	cvConvertScale(mask,mask,1.0/255);
	cvSetReal2D(mask,wr,wr,0);
	int count=cvCountNonZero(mask);

	cvReleaseMat(&u);
	cvReleaseMat(&v);
	cvReleaseMat(&sum);

	CvMat *sub=cvCreateMat(mask->rows,mask->cols, CV_64FC1);
	CvMat *side=cvCreateMat(mask->rows,mask->cols, CV_8UC1);

	cvSubS(gamma,cvScalar(theta),sub);
	cvReleaseMat(&gamma);

	for (int i=0;i<mask->rows;i++){
		for (int j=0;j<mask->cols;j++) {
			double n=cvmGet(sub,i,j);
			double n_mod = n-floor(n/(2*M_PI))*2*M_PI;
			cvSetReal2D(side,i,j, 1 + int(n_mod < M_PI));
		}
	}

	cvMul(side,mask,side);
	cvReleaseMat(&sub);
	cvReleaseMat(&mask);

	CvMat *lmask=cvCreateMat(side->rows,side->cols, CV_8UC1);
	CvMat *rmask=cvCreateMat(side->rows,side->cols, CV_8UC1);
	cvCmpS(side,1,lmask,CV_CMP_EQ);
	cvCmpS(side,2,rmask,CV_CMP_EQ);
	int count1=cvCountNonZero(lmask), count2=cvCountNonZero(rmask);
	if (count1 != count2) {
		printf("Bug: imbalance\n");
	}

	CvMat *rlmask=cvCreateMat(side->rows,side->cols, CV_32FC1);
	CvMat *rrmask=cvCreateMat(side->rows,side->cols, CV_32FC1);
	cvConvertScale(lmask,rlmask,1.0/(255*count)*2);
	cvConvertScale(rmask,rrmask,1.0/(255*count)*2);


	cvReleaseMat(&lmask);
	cvReleaseMat(&rmask);
	cvReleaseMat(&side);

	int h=tmap.rows;
	int w=tmap.cols;


	CvMat *d       = cvCreateMat(h*w,ntex,CV_32FC1);
	CvMat *coltemp = cvCreateMat(h*w,1,CV_32FC1);
	CvMat *tgL     = cvCreateMat(h,w, CV_32FC1);
	CvMat *tgR     = cvCreateMat(h,w, CV_32FC1);
	CvMat *temp    = cvCreateMat(h,w,CV_8UC1);
	CvMat *im      = cvCreateMat(h,w, CV_32FC1);
	CvMat *sub2    = cvCreateMat(h,w,CV_32FC1);
	CvMat *sub2t   = cvCreateMat(w,h,CV_32FC1);
	CvMat *prod    = cvCreateMat(h*w,ntex,CV_32FC1);
	CvMat reshapehdr,*reshape;

	CvMat* tgL_pad = cvCreateMat(h+rlmask->rows-1,w+rlmask->cols-1,CV_32FC1);
	CvMat* tgR_pad = cvCreateMat(h+rlmask->rows-1,w+rlmask->cols-1,CV_32FC1);
	CvMat* im_pad  = cvCreateMat(h+rlmask->rows-1,w+rlmask->cols-1,CV_32FC1);

	CvMat *tg=cvCreateMat(h,w,CV_32FC1);
	cvZero(tg);
	
	if (useChi2 == 1){
		CvMat* temp_add1 = cvCreateMat(h,w,CV_32FC1);
		for (int i=0;i<ntex;i++) {
			cvCmpS(&tmap,i+1,temp,CV_CMP_EQ); 
			cvConvertScale(temp,im,1.0/255);

			cvCopyMakeBorder(tgL,tgL_pad,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2),IPL_BORDER_CONSTANT);
			cvCopyMakeBorder(tgR,tgR_pad,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2),IPL_BORDER_CONSTANT);
			cvCopyMakeBorder(im,im_pad,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2),IPL_BORDER_CONSTANT);

			cvFilter2D(im_pad,tgL_pad,rlmask,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2));
			cvFilter2D(im_pad,tgR_pad,rrmask,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2));

			cvGetSubRect(tgL_pad,tgL,cvRect((rlmask->cols-1)/2,(rlmask->rows-1)/2,tgL->cols,tgL->rows));
			cvGetSubRect(tgR_pad,tgR,cvRect((rlmask->cols-1)/2,(rlmask->rows-1)/2,tgR->cols,tgR->rows));

			cvSub(tgL,tgR,sub2);
			cvPow(sub2,sub2,2.0);
			cvAdd(tgL,tgR,temp_add1);
			cvAddS(temp_add1,cvScalar(0.0000000001),temp_add1);
			cvDiv(sub2,temp_add1,sub2);
			cvAdd(tg,sub2,tg);
		}
		cvScale(tg,tg,0.5);

		cvReleaseMat(&temp_add1);

	}
	else{// if not chi^2
		for (int i=0;i<ntex;i++) {
			cvCmpS(&tmap,i+1,temp,CV_CMP_EQ); 
			cvConvertScale(temp,im,1.0/255);

			cvCopyMakeBorder(tgL,tgL_pad,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2),IPL_BORDER_CONSTANT);
			cvCopyMakeBorder(tgR,tgR_pad,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2),IPL_BORDER_CONSTANT);
			cvCopyMakeBorder(im,im_pad,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2),IPL_BORDER_CONSTANT);

			cvFilter2D(im_pad,tgL_pad,rlmask,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2));
			cvFilter2D(im_pad,tgR_pad,rrmask,cvPoint((rlmask->cols-1)/2,(rlmask->rows-1)/2));

			cvGetSubRect(tgL_pad,tgL,cvRect((rlmask->cols-1)/2,(rlmask->rows-1)/2,tgL->cols,tgL->rows));
			cvGetSubRect(tgR_pad,tgR,cvRect((rlmask->cols-1)/2,(rlmask->rows-1)/2,tgR->cols,tgR->rows));

			cvSub(tgL,tgR,sub2);
			cvAbs(sub2,sub2);
			cvTranspose(sub2,sub2t);
			reshape=cvReshape(sub2t,&reshapehdr,0,h*w);
			cvGetCol(d,coltemp,i);
			cvCopy(reshape,coltemp);
		}

		cvMatMul(d,&tsim,prod);
		cvMul(prod,d,prod);


		CvMat *sumcols=cvCreateMat(h*w,1,CV_32FC1);
		cvSetZero(sumcols);
		for (int i=0;i<prod->cols;i++) {
			cvGetCol(prod,coltemp,i);
			cvAdd(sumcols,coltemp,sumcols);
		}

		reshape=cvReshape(sumcols,&reshapehdr,0,w);
		cvTranspose(reshape,tg);

		cvReleaseMat(&sumcols);
	}


	//Smooth the gradient now!!
	tg=fitparab(*tg,sigma,sigma/4,theta);
	cvMaxS(tg,0,tg); 

	
	cvReleaseMat(&im_pad);
	cvReleaseMat(&tgL_pad);
	cvReleaseMat(&tgR_pad);
	cvReleaseMat(&rlmask);
	cvReleaseMat(&rrmask);
	cvReleaseMat(&im);
	cvReleaseMat(&tgL);
	cvReleaseMat(&tgR);
	cvReleaseMat(&temp);
	cvReleaseMat(&coltemp);
	cvReleaseMat(&sub2);
	cvReleaseMat(&sub2t);
	cvReleaseMat(&d);
	cvReleaseMat(&prod);

	return tg;

}
Esempio n. 4
0
IplImage* 
ComputeSaliency(IplImage* image, int thresh, int scale) {
  //given a one channel image
  unsigned int size = floor(pow(2,scale)); //the size to do teh  saliency @

  IplImage* bw_im = cvCreateImage(cvSize(size,size), 
				  IPL_DEPTH_8U,1);
  cvResize(image, bw_im);
  IplImage* realInput = cvCreateImage( cvGetSize(bw_im), IPL_DEPTH_32F, 1);
  
  IplImage* imaginaryInput = cvCreateImage( cvGetSize(bw_im), IPL_DEPTH_32F, 1);
  IplImage* complexInput = cvCreateImage( cvGetSize(bw_im), IPL_DEPTH_32F, 2);

  cvScale(bw_im, realInput, 1.0/255.0);
  cvZero(imaginaryInput);
  cvMerge(realInput, imaginaryInput, NULL, NULL, complexInput);
  CvMat* dft_A = cvCreateMat( size, size, CV_32FC2 );

  // copy A to dft_A and pad dft_A with zeros
  CvMat tmp;
  cvGetSubRect( dft_A, &tmp, cvRect(0,0, size,size));
  cvCopy( complexInput, &tmp );
  //  cvZero(&tmp);

  cvDFT( dft_A, dft_A, CV_DXT_FORWARD, size );
  cvSplit( dft_A, realInput, imaginaryInput, NULL, NULL );
  // Compute the phase angle 
  IplImage* image_Mag = cvCreateImage(cvSize(size, size), IPL_DEPTH_32F, 1);
  IplImage* image_Phase = cvCreateImage(cvSize(size, size), IPL_DEPTH_32F, 1);
    

  //compute the phase of the spectrum
  cvCartToPolar(realInput, imaginaryInput, image_Mag, image_Phase, 0);
  
  IplImage* log_mag = cvCreateImage(cvSize(size, size), IPL_DEPTH_32F, 1);
  cvLog(image_Mag, log_mag);
  //Box filter the magnitude, then take the difference

  IplImage* log_mag_Filt = cvCreateImage(cvSize(size, size), 
					   IPL_DEPTH_32F, 1);
  CvMat* filt = cvCreateMat(3,3, CV_32FC1);
  cvSet(filt,cvScalarAll(1.0/9.0));
  cvFilter2D(log_mag, log_mag_Filt, filt);
  cvReleaseMat(&filt);

  cvSub(log_mag, log_mag_Filt, log_mag);
  
  cvExp(log_mag, image_Mag);
   
  cvPolarToCart(image_Mag, image_Phase, realInput, imaginaryInput,0);
  cvExp(log_mag, image_Mag);

  cvMerge(realInput, imaginaryInput, NULL, NULL, dft_A);
  cvDFT( dft_A, dft_A, CV_DXT_INV_SCALE, size);

  cvAbs(dft_A, dft_A);
  cvMul(dft_A,dft_A, dft_A);
  cvGetSubRect( dft_A, &tmp,  cvRect(0,0, size,size));
  cvCopy( &tmp, complexInput);
  cvSplit(complexInput, realInput, imaginaryInput, NULL,NULL);

  IplImage* result_image = cvCreateImage(cvGetSize(image),IPL_DEPTH_32F, 1);
  double minv, maxv;
  CvPoint minl, maxl;
  cvSmooth(realInput,realInput);
  cvSmooth(realInput,realInput);
  cvMinMaxLoc(realInput,&minv,&maxv,&minl,&maxl);
  printf("Max value %lf, min %lf\n", maxv,minv);
  cvScale(realInput, realInput, 1.0/(maxv-minv), 1.0*(-minv)/(maxv-minv));
  cvResize(realInput, result_image);
  double threshold = thresh/100.0*cvAvg(realInput).val[0];
  cvThreshold(result_image, result_image, threshold, 1.0, CV_THRESH_BINARY);
  IplImage* final_result = cvCreateImage(cvGetSize(image),IPL_DEPTH_8U, 1);
  cvScale(result_image, final_result, 255.0, 0.0);
  cvReleaseImage(&result_image);
  //cvReleaseImage(&realInput);
  cvReleaseImage(&imaginaryInput);
  cvReleaseImage(&complexInput);
  cvReleaseMat(&dft_A);
  cvReleaseImage(&bw_im);

  cvReleaseImage(&image_Mag);
  cvReleaseImage(&image_Phase);

  cvReleaseImage(&log_mag);
  cvReleaseImage(&log_mag_Filt);
  cvReleaseImage(&bw_im);
  return final_result;
  //return bw_im;
}
UINT WINAPI
//DWORD WINAPI
#elif defined(POSIX_SYS)
// using pthread
void *
#endif
	ChessRecognition::HoughLineThread(
#if defined(WINDOWS_SYS)
	LPVOID
#elif defined(POSIX_SYS)
	void *
#endif
	Param) {
	// 실제로 뒤에서 동작하는 windows용 thread함수.
	// 함수 인자로 클래스를 받아옴.
	ChessRecognition *_TChessRecognition = (ChessRecognition *)Param;
	_TChessRecognition->_HoughLineBased = new HoughLineBased();

	CvSeq *_TLineX, *_TLineY;
	double _TH[] = { -1, -7, -15, 0, 15, 7, 1 };

	CvMat _TDoGX = cvMat(1, 7, CV_64FC1, _TH);
	CvMat* _TDoGY = cvCreateMat(7, 1, CV_64FC1);
	cvTranspose(&_TDoGX, _TDoGY); // transpose(&DoGx) -> DoGy

	double _TMinValX, _TMaxValX, _TMinValY, _TMaxValY, _TMinValT, _TMaxValT;
	int _TKernel = 1;

	// Hough 사용되는 Image에 대한 Initialize.
	IplImage *iplTemp = cvCreateImage(cvSize(_TChessRecognition->_Width, _TChessRecognition->_Height), IPL_DEPTH_32F, 1);                   
	IplImage *iplDoGx = cvCreateImage(cvGetSize(iplTemp), IPL_DEPTH_32F, 1);  
	IplImage *iplDoGy = cvCreateImage(cvGetSize(iplTemp), IPL_DEPTH_32F, 1);  
	IplImage *iplDoGyClone = cvCloneImage(iplDoGy);
	IplImage *iplDoGxClone = cvCloneImage(iplDoGx);
	IplImage *iplEdgeX = cvCreateImage(cvGetSize(iplTemp), 8, 1);
	IplImage *iplEdgeY = cvCreateImage(cvGetSize(iplTemp), 8, 1);

	CvMemStorage* _TStorageX = cvCreateMemStorage(0), *_TStorageY = cvCreateMemStorage(0);

	while (_TChessRecognition->_EnableThread != false) {
		// 이미지를 받아옴. main루프와 동기를 맞추기 위해서 critical section 사용.
		_TChessRecognition->_ChessBoardDetectionInternalImageProtectMutex.lock();
		//EnterCriticalSection(&(_TChessRecognition->cs));
		cvConvert(_TChessRecognition->_ChessBoardDetectionInternalImage, iplTemp);
		//LeaveCriticalSection(&_TChessRecognition->cs);
		_TChessRecognition->_ChessBoardDetectionInternalImageProtectMutex.unlock();

		// 각 X축 Y축 라인을 검출해 내기 위해서 filter 적용.
		cvFilter2D(iplTemp, iplDoGx, &_TDoGX); // 라인만 축출해내고.
		cvFilter2D(iplTemp, iplDoGy, _TDoGY);
		cvAbs(iplDoGx, iplDoGx);
		cvAbs(iplDoGy, iplDoGy);

		// 이미지 내부에서 최댓값과 최소값을 구하여 정규화.
		cvMinMaxLoc(iplDoGx, &_TMinValX, &_TMaxValX);
		cvMinMaxLoc(iplDoGy, &_TMinValY, &_TMaxValY);
		cvMinMaxLoc(iplTemp, &_TMinValT, &_TMaxValT);
		cvScale(iplDoGx, iplDoGx, 2.0 / _TMaxValX); // 정규화.
		cvScale(iplDoGy, iplDoGy, 2.0 / _TMaxValY);
		cvScale(iplTemp, iplTemp, 2.0 / _TMaxValT);

		cvCopy(iplDoGy, iplDoGyClone);
		cvCopy(iplDoGx, iplDoGxClone);

		// NMS진행후 추가 작업
		_TChessRecognition->_HoughLineBased->NonMaximumSuppression(iplDoGx, iplDoGyClone, _TKernel);
		_TChessRecognition->_HoughLineBased->NonMaximumSuppression(iplDoGy, iplDoGxClone, _TKernel);

		cvConvert(iplDoGx, iplEdgeY); // IPL_DEPTH_8U로 다시 재변환.
		cvConvert(iplDoGy, iplEdgeX);

		double rho = 1.0; // distance resolution in pixel-related units.
		double theta = 1.0; // angle resolution measured in radians.
		int threshold = 20;

		if (threshold == 0)
			threshold = 1;

		// detecting 해낸 edge에서 hough line 검출.
		_TLineX = cvHoughLines2(iplEdgeX, _TStorageX, CV_HOUGH_STANDARD, 1.0 * rho, CV_PI / 180 * theta, threshold, 0, 0);
		_TLineY = cvHoughLines2(iplEdgeY, _TStorageY, CV_HOUGH_STANDARD, 1.0 * rho, CV_PI / 180 * theta, threshold, 0, 0);

		// cvSeq를 vector로 바꾸기 위한 연산.
		_TChessRecognition->_Vec_ProtectionMutex.lock();
		_TChessRecognition->_HoughLineBased->CastSequence(_TLineX, _TLineY);
		_TChessRecognition->_Vec_ProtectionMutex.unlock();

		Sleep(2);
	}

	// mat 할당 해제.
	cvReleaseMat(&_TDoGY);

	// 내부 연산에 사용된 이미지 할당 해제.
	cvReleaseImage(&iplTemp);
	cvReleaseImage(&iplDoGx);
	cvReleaseImage(&iplDoGy);
	cvReleaseImage(&iplDoGyClone);
	cvReleaseImage(&iplDoGxClone);
	cvReleaseImage(&iplEdgeX);
	cvReleaseImage(&iplEdgeY);

	// houghline2에 사용된 opencv 메모리 할당 해제.
	cvReleaseMemStorage(&_TStorageX);
	cvReleaseMemStorage(&_TStorageY);

	delete _TChessRecognition->_HoughLineBased;
#if defined(WINDOWS_SYS)
	_endthread();
#elif defined(POSIX_SYS)

#endif
	_TChessRecognition->_EndThread = true;
	return 0;
}