Esempio n. 1
0
CV_IMPL void
cvRandInit( CvRandState* state, double lower, double upper, int seed )
{
    CV_FUNCNAME( "cvRandInit" );

    __BEGIN__;

    if( !state )
        CV_ERROR_FROM_CODE( CV_StsNullPtr );

    state->state = (uint64)(seed ? seed : UINT_MAX);
    CV_CALL( cvRandSetRange( state, lower, upper ));

    __END__;
}
Esempio n. 2
0
void  cvRandInit( CvRandState* state, double param1, double param2,
                  int seed, int disttype)
{
    if( !state )
    {
        cvError( CV_StsNullPtr, "cvRandInit", "Null pointer to RNG state", "cvcompat.h", 0 );
        return;
    }

    if( disttype != CV_RAND_UNI && disttype != CV_RAND_NORMAL )
    {
        cvError( CV_StsBadFlag, "cvRandInit", "Unknown distribution type", "cvcompat.h", 0 );
        return;
    }

    state->state = (uint64)(seed ? seed : -1);
    state->disttype = disttype;
    cvRandSetRange( state, param1, param2, -1 );
}
Esempio n. 3
0
KalmanFilter::KalmanFilter()
{

	int dynam_params = 8; // x,y,width,height,dx,dy,dw,dh
	int measure_params = 4;//x,y,width,height

	m_pKalmanFilter = cvCreateKalman(dynam_params, measure_params,0);
	cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );
	cvRandSetRange( &rng, 0, 1, 0 );
	rng.disttype = CV_RAND_NORMAL;
	measurement = cvCreateMat( measure_params, 1, CV_32FC1 ); 
	cvZero(measurement);

	// F matrix data
	// F is transition matrix. It relates how the states interact
	const float F[] = {
	1, 0, 0, 0, 1, 0, 0, 0, //x + dx
	0, 1, 0, 0, 0, 1, 0, 0,//y + dy
	0, 0, 1, 0, 0, 0, 1, 0,//width + dw
	0, 0, 0, 1, 0, 0, 0, 1,//height + dh
	0, 0, 0, 0, 1, 0, 0, 0,//dx
	0, 0, 0, 0, 0, 1, 0, 0,//dy
	0, 0, 0, 0, 0, 0, 1, 0,//dw
	0, 0, 0, 0, 0, 0, 0, 1 //dh
	};

	memcpy( m_pKalmanFilter->transition_matrix->data.fl, F, sizeof(F));
	cvSetIdentity( m_pKalmanFilter->measurement_matrix, cvRealScalar(1) ); // (H)
	cvSetIdentity( m_pKalmanFilter->process_noise_cov, cvRealScalar(1e-5) ); // (Q)
	cvSetIdentity( m_pKalmanFilter->measurement_noise_cov, cvRealScalar(1e-1) ); //(R)
	cvSetIdentity( m_pKalmanFilter->error_cov_post, cvRealScalar(1));

	// choose random initial state
	cvRand( &rng, m_pKalmanFilter->state_post );

}
Esempio n. 4
0
IplImage* cvTestSeqQueryFrame(CvTestSeq* pTestSeq)
{
    CvTestSeq_*     pTS = (CvTestSeq_*)pTestSeq;
    CvTestSeqElem*  p = pTS->pElemList;
    IplImage*       pImg = pTS->pImg;
    IplImage*       pImgAdd = cvCloneImage(pTS->pImg);
    IplImage*       pImgAddG = cvCreateImage(cvSize(pImgAdd->width,pImgAdd->height),IPL_DEPTH_8U,1);
    IplImage*       pImgMask = pTS->pImgMask;
    IplImage*       pImgMaskAdd = cvCloneImage(pTS->pImgMask);
    CvMat*          pT = cvCreateMat(2,3,CV_32F);

    if(pTS->CurFrame >= pTS->FrameNum) return NULL;
    cvZero(pImg);
    cvZero(pImgMask);

    for(p=pTS->pElemList; p; p=p->next)
    {
        int             DirectCopy = FALSE;
        int             frame = pTS->CurFrame - p->FrameBegin;
        //float           t = p->FrameNum>1?((float)frame/(p->FrameNum-1)):0;
        CvTSTrans*      pTrans = p->pTrans + frame%p->TransNum;

        assert(pTrans);

        if( p->FrameNum > 0 && (frame < 0 || frame >= p->FrameNum) )
        {   /* Current frame is out of range: */
            //if(p->pAVI)cvReleaseCapture(&p->pAVI);
            p->pAVI = NULL;
            continue;
        }

        cvZero(pImgAdd);
        cvZero(pImgAddG);
        cvZero(pImgMaskAdd);

        if(p->noise_type == CV_NOISE_NONE)
        {   /* For not noise:  */
            /* Get next frame: */
            icvTestSeqQureyFrameElem(p, frame);
            if(p->pImg == NULL) continue;

#if 1 /* transform using T filed in Trans */
            {   /* Calculate transform matrix: */
                float   W = (float)(pImgAdd->width-1);
                float   H = (float)(pImgAdd->height-1);
                float   W0 = (float)(p->pImg->width-1);
                float   H0 = (float)(p->pImg->height-1);
                cvZero(pT);
                {   /* Calcualte inverse matrix: */
                    CvMat   mat = cvMat(2,3,CV_32F, pTrans->T);
                    mat.width--;
                    pT->width--;
                    cvInvert(&mat, pT);
                    pT->width++;
                }

                CV_MAT_ELEM(pT[0], float, 0, 2) =
                    CV_MAT_ELEM(pT[0], float, 0, 0)*(W0/2-pTrans->T[2])+
                    CV_MAT_ELEM(pT[0], float, 0, 1)*(H0/2-pTrans->T[5]);

                CV_MAT_ELEM(pT[0], float, 1, 2) =
                    CV_MAT_ELEM(pT[0], float, 1, 0)*(W0/2-pTrans->T[2])+
                    CV_MAT_ELEM(pT[0], float, 1, 1)*(H0/2-pTrans->T[5]);

                CV_MAT_ELEM(pT[0], float, 0, 0) *= W0/W;
                CV_MAT_ELEM(pT[0], float, 0, 1) *= H0/H;
                CV_MAT_ELEM(pT[0], float, 1, 0) *= W0/W;
                CV_MAT_ELEM(pT[0], float, 1, 1) *= H0/H;

            }   /* Calculate transform matrix. */
#else
            {   /* Calculate transform matrix: */
                float   SX = (float)(p->pImg->width-1)/((pImgAdd->width-1)*pTrans->Scale.x);
                float   SY = (float)(p->pImg->height-1)/((pImgAdd->height-1)*pTrans->Scale.y);
                float   DX = pTrans->Shift.x;
                float   DY = pTrans->Shift.y;;
                cvZero(pT);
                ((float*)(pT->data.ptr+pT->step*0))[0]=SX;
                ((float*)(pT->data.ptr+pT->step*1))[1]=SY;
                ((float*)(pT->data.ptr+pT->step*0))[2]=SX*(pImgAdd->width-1)*(0.5f-DX);
                ((float*)(pT->data.ptr+pT->step*1))[2]=SY*(pImgAdd->height-1)*(0.5f-DY);
            }   /* Calculate transform matrix. */
#endif


            {   /* Check for direct copy: */
                DirectCopy = TRUE;
                if( fabs(CV_MAT_ELEM(pT[0],float,0,0)-1) > 0.00001) DirectCopy = FALSE;
                if( fabs(CV_MAT_ELEM(pT[0],float,1,0)) > 0.00001) DirectCopy = FALSE;
                if( fabs(CV_MAT_ELEM(pT[0],float,0,1)) > 0.00001) DirectCopy = FALSE;
                if( fabs(CV_MAT_ELEM(pT[0],float,0,1)) > 0.00001) DirectCopy = FALSE;
                if( fabs(CV_MAT_ELEM(pT[0],float,0,2)-(pImg->width-1)*0.5) > 0.5) DirectCopy = FALSE;
                if( fabs(CV_MAT_ELEM(pT[0],float,1,2)-(pImg->height-1)*0.5) > 0.5) DirectCopy = FALSE;
            }

            /* Extract image and mask: */
            if(p->pImg->nChannels == 1)
            {
                if(DirectCopy)
                {
                    cvCvtColor( p->pImg,pImgAdd,CV_GRAY2BGR);
                }
                else
                {
                    cvGetQuadrangleSubPix( p->pImg, pImgAddG, pT);
                    cvCvtColor( pImgAddG,pImgAdd,CV_GRAY2BGR);
                }
            }

            if(p->pImg->nChannels == 3)
            {
                if(DirectCopy)
                    cvCopy(p->pImg, pImgAdd);
                else
                    cvGetQuadrangleSubPix( p->pImg, pImgAdd, pT);
            }

            if(p->pImgMask)
            {
                if(DirectCopy)
                    cvCopy(p->pImgMask, pImgMaskAdd);
                else
                    cvGetQuadrangleSubPix( p->pImgMask, pImgMaskAdd, pT);

                cvThreshold(pImgMaskAdd,pImgMaskAdd,128,255,CV_THRESH_BINARY);
            }

            if(pTrans->C != 1 || pTrans->I != 0)
            {   /* Intensity transformation: */
                cvScale(pImgAdd, pImgAdd, pTrans->C,pTrans->I);
            }   /* Intensity transformation: */

            if(pTrans->GN > 0)
            {   /* Add noise: */
                IplImage* pImgN = cvCloneImage(pImgAdd);
                cvRandSetRange( &p->rnd_state, pTrans->GN, 0, -1 );
                cvRand(&p->rnd_state, pImgN);
                cvAdd(pImgN,pImgAdd,pImgAdd);
                cvReleaseImage(&pImgN);
            }   /* Add noise. */

            if(p->Mask)
            {   /* Update only mask: */
                cvOr(pImgMaskAdd, pImgMask, pImgMask);
            }
            else
            {   /* Add image and mask to exist main image and mask: */
                if(p->BG)
                {   /* If image is background: */
                    cvCopy( pImgAdd, pImg, NULL);
                }
                else
                {   /* If image is foreground: */
                    cvCopy( pImgAdd, pImg, pImgMaskAdd);
                    if(p->ObjID>=0)
                        cvOr(pImgMaskAdd, pImgMask, pImgMask);
                }
            }   /* Not mask. */
        }   /*  For not noise. */
        else
        {   /* Process noise video: */

            if( p->noise_type == CV_NOISE_GAUSSIAN ||
int main(int argc, char **argv)
{

	// Initialize, create Kalman Filter object, window, random number
	// generator etc.
	//
	cvNamedWindow("Kalman", 1);
	CvRandState rng;
	cvRandInit(&rng, 0, 1, -1, CV_RAND_UNI);

	IplImage *img = cvCreateImage(cvSize(500, 500), 8, 3);
	CvKalman *kalman = cvCreateKalman(2, 1, 0);
	// state is (phi, delta_phi) - angle and angular velocity
	// Initialize with random guess.
	//
	CvMat *x_k = cvCreateMat(2, 1, CV_32FC1);
	cvRandSetRange(&rng, 0, 0.1, 0);
	rng.disttype = CV_RAND_NORMAL;
	cvRand(&rng, x_k);

	// process noise
	//
	CvMat *w_k = cvCreateMat(2, 1, CV_32FC1);

	// measurements, only one parameter for angle
	//
	CvMat *z_k = cvCreateMat(1, 1, CV_32FC1);
	cvZero(z_k);

	// Transition matrix 'F' describes relationship between
	// model parameters at step k and at step k+1 (this is 
	// the "dynamics" in our model.
	//
	const float F[] = { 1, 1, 0, 1 };
	memcpy(kalman->transition_matrix->data.fl, F, sizeof(F));
	// Initialize other Kalman filter parameters.
	//
	cvSetIdentity(kalman->measurement_matrix, cvRealScalar(1));
	cvSetIdentity(kalman->process_noise_cov, cvRealScalar(1e-5));
	cvSetIdentity(kalman->measurement_noise_cov, cvRealScalar(1e-1));
	cvSetIdentity(kalman->error_cov_post, cvRealScalar(1));

	// choose random initial state
	//
	cvRand(&rng, kalman->state_post);

	while (1) {
		// predict point position
		const CvMat *y_k = cvKalmanPredict(kalman, 0);

		// generate measurement (z_k)
		//
		cvRandSetRange(&rng,
					   0, sqrt(kalman->measurement_noise_cov->data.fl[0]), 0);
		cvRand(&rng, z_k);
		cvMatMulAdd(kalman->measurement_matrix, x_k, z_k, z_k);
		// plot points (eg convert to planar co-ordinates and draw)
		//
		cvZero(img);
		cvCircle(img, phi2xy(z_k), 4, CVX_YELLOW);	// observed state
		cvCircle(img, phi2xy(y_k), 4, CVX_WHITE, 2);	// "predicted" state
		cvCircle(img, phi2xy(x_k), 4, CVX_RED);	// real state
		cvShowImage("Kalman", img);
		// adjust Kalman filter state
		//
		cvKalmanCorrect(kalman, z_k);

		// Apply the transition matrix 'F' (eg, step time forward)
		// and also apply the "process" noise w_k.
		//
		cvRandSetRange(&rng, 0, sqrt(kalman->process_noise_cov->data.fl[0]), 0);
		cvRand(&rng, w_k);
		cvMatMulAdd(kalman->transition_matrix, x_k, w_k, x_k);

		// exit if user hits 'Esc'
		if (cvWaitKey(100) == 27)
			break;
	}

	return 0;
}
Esempio n. 6
0
static int arithm_test( void* arg )
{
    double success_error_level = 0;

    int   param = (int)arg;
    int   func = param / 256;
    int   depth = (param % 256) % 8;
    int   channels = (param % 256) / 8;
    int   mattype;
    int   seed = -1;//atsGetSeed();

    int   btpix, max_img_bytes;

    int     merr_i = 0, i;
    double  max_err = 0.;

    uchar *src1data, *src2data, *dstdata, *dstdbdata, *maskdata;
    CvRandState rng_state;
    AtsBinArithmMaskFunc bin_func = 0;
    AtsUnArithmMaskFunc un_func = 0;
    AtsBinArithmFunc mul_func = 0;

    CvScalar alpha, beta, gamma;
    CvMat gammaarr;

    alpha = beta = gamma = cvScalarAll(0);

    read_arithm_params();

    if( !(ATS_RANGE( depth, dt_l, dt_h+1 ) &&
          ATS_RANGE( channels, ch_l, ch_h+1 ))) return TRS_UNDEF;

    cvInitMatHeader( &gammaarr, 1, 1, CV_64FC4, gamma.val );

    switch( func )
    {
    case 0:
        bin_func = cvAdd;
        alpha = beta = cvScalarAll(1);
        break;
    case 1:
        bin_func = cvSub;
        alpha = cvScalarAll(1);
        beta = cvScalarAll(-1);
        break;
    case 2:
        mul_func = cvMul;
        break;
    case 3:
        un_func = cvAddS;
        alpha = cvScalarAll(1);
        break;
    case 4:
        un_func = cvSubRS;
        alpha = cvScalarAll(-1);
        break;
    default:
        assert(0);
        return TRS_FAIL;
    }

    mattype = depth + channels*8;
    depth = depth == 0 ? IPL_DEPTH_8U : depth == 1 ? IPL_DEPTH_8S :
            depth == 2 ? IPL_DEPTH_16S : depth == 3 ? IPL_DEPTH_32S :
            depth == 4 ? IPL_DEPTH_32F : IPL_DEPTH_64F;

    channels = channels + 1;

    cvRandInit( &rng_state, 0, 1, seed );

    max_img_bytes = (max_img_size + 32) * (max_img_size + 2) * cvPixSize(mattype);

    src1data = (uchar*)cvAlloc( max_img_bytes );
    src2data = (uchar*)cvAlloc( max_img_bytes );
    dstdata = (uchar*)cvAlloc( max_img_bytes );
    dstdbdata = (uchar*)cvAlloc( max_img_bytes );
    maskdata = (uchar*)cvAlloc( max_img_bytes / cvPixSize(mattype));

    btpix = ((depth & 255)/8)*channels;
    
    if( depth == IPL_DEPTH_32F )
        success_error_level = FLT_EPSILON * img32f_range * (mul_func ? img32f_range : 2.f);
    else if( depth == IPL_DEPTH_64F )
        success_error_level = DBL_EPSILON * img32f_range * (mul_func ? img32f_range : 2.f);

    for( i = 0; i < base_iters; i++ )
    {
        int continuous = (cvRandNext( &rng_state ) % 3) == 0;
        int is_mask_op = mul_func ? 0 : ((cvRandNext( &rng_state ) % 3) == 0);
        int step1, step2, step, mstep;
        CvMat  src1, src2, dst1, dst2, mask, dst;
        double err;
        int w, h;
                
        w = cvRandNext( &rng_state ) % (max_img_size - min_img_size) + min_img_size;
        h = cvRandNext( &rng_state ) % (max_img_size - min_img_size) + min_img_size;

        step1 = step2 = step = w*btpix;
        mstep = w;

        if( !continuous )
        {
            step1 += (cvRandNext( &rng_state ) % 4)*(btpix/channels);
            step2 += (cvRandNext( &rng_state ) % 4)*(btpix/channels);
            step += (cvRandNext( &rng_state ) % 4)*(btpix/channels);
            mstep += (cvRandNext( &rng_state ) % 4);
        }

        switch( depth )
        {
        case IPL_DEPTH_8U:
            cvRandSetRange( &rng_state, 0, img8u_range );
            break;
        case IPL_DEPTH_8S:
            cvRandSetRange( &rng_state, -img8s_range, img8s_range );
            break;
        case IPL_DEPTH_16S:
            cvRandSetRange( &rng_state, -img16s_range, img16s_range );
            break;
        case IPL_DEPTH_32S:
            cvRandSetRange( &rng_state, -img32s_range, img32s_range );
            break;
        case IPL_DEPTH_32F:
        case IPL_DEPTH_64F:
            cvRandSetRange( &rng_state, -img32f_range, img32f_range );
            break;
        }

        cvInitMatHeader( &src1, h, w, mattype, src1data, step1 );
        cvInitMatHeader( &src2, h, w, mattype, src2data, step2 );
        cvInitMatHeader( &dst1, h, w, mattype, dstdata, step );
        cvInitMatHeader( &dst2, h, w, mattype, dstdbdata, step );

        cvInitMatHeader( &mask, h, w, CV_8UC1, maskdata, mstep );

        cvRand( &rng_state, &src1 );

        switch( cvRandNext(&rng_state) % 3 )
        {
        case 0:
            memcpy( &dst, &src1, sizeof(dst));
            break;
        case 1:
            if( un_func )
                memcpy( &dst, &src1, sizeof(dst));
            else
                memcpy( &dst, &src2, sizeof(dst));
            break;
        default:
            memcpy( &dst, &dst1, sizeof(dst));
            break;
        }

        if( un_func )
        {
            if( depth == IPL_DEPTH_8U )
                cvRandSetRange( &rng_state, -img8u_range, img8u_range );
            
            cvRand( &rng_state, &gammaarr );
        }
        else
        {
            cvRand( &rng_state, &src2 );
        }

        if( is_mask_op )
        {
            const int upper = 4;
            
            if( dst.data.ptr == dst1.data.ptr )
                cvRand( &rng_state, &dst );

            cvRandSetRange( &rng_state, 0, upper );
            cvRand( &rng_state, &mask );
            atsLinearFunc( &mask, cvScalarAll(1), 0, cvScalarAll(0),
                           cvScalarAll(2-upper), &mask );
        }

        if( !mul_func )
        {
            atsLinearFunc( &src1, alpha, un_func ? 0 : &src2, beta, gamma, &dst2 );
            if( is_mask_op )
            {
                cvXorS( &mask, cvScalarAll(1), &mask );
                cvCopy( &dst, &dst2, &mask );
                cvXorS( &mask, cvScalarAll(1), &mask );
            }

            if( un_func )
                un_func( &src1, gamma, &dst, is_mask_op ? &mask : 0 );
            else
                bin_func( &src1, &src2, &dst, is_mask_op ? &mask : 0 );
        }
        else
        {
            atsMul( &src1, &src2, &dst2 );
            mul_func( &src1, &src2, &dst );
        }

        /*if( i == 9 )
        {
            putchar('.');
        }*/

        //cvXor( &dst2, &dst, &dst2 );
        err = cvNorm( &dst2, &dst, CV_C );

        if( err > max_err )
        {
            max_err = err;
            merr_i = i;

            if( max_err > success_error_level )
                goto test_exit;
        }
    }

test_exit:
    cvFree( (void**)&src1data );
    cvFree( (void**)&src2data );
    cvFree( (void**)&dstdata );
    cvFree( (void**)&dstdbdata );
    cvFree( (void**)&maskdata );

    trsWrite( ATS_LST, "Max err is %g at iter = %d, seed = %08x",
                       max_err, merr_i, seed );

    return max_err <= success_error_level ?
        trsResult( TRS_OK, "No errors" ) :
        trsResult( TRS_FAIL, "Bad accuracy" );
}
Esempio n. 7
0
int main(int argc, char** argv)
{
    /* A matrix data */
    const float A[] = { 1, 1, 0, 1 };

    IplImage* img = cvCreateImage( cvSize(500,500), 8, 3 );
    CvKalman* kalman = cvCreateKalman( 2, 1, 0 );
    /* state is (phi, delta_phi) - angle and angle increment */
    CvMat* state = cvCreateMat( 2, 1, CV_32FC1 );
    CvMat* process_noise = cvCreateMat( 2, 1, CV_32FC1 );
    /* only phi (angle) is measured */
    CvMat* measurement = cvCreateMat( 1, 1, CV_32FC1 );
    CvRandState rng;
    int code = -1;

    cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );

    cvZero( measurement );
    cvNamedWindow( "Kalman", 1 );

    for(;;)
    {
        cvRandSetRange( &rng, 0, 0.1, 0 );
        rng.disttype = CV_RAND_NORMAL;

        cvRand( &rng, state );

        memcpy( kalman->transition_matrix->data.fl, A, sizeof(A));
        cvSetIdentity( kalman->measurement_matrix, cvRealScalar(1) );
        cvSetIdentity( kalman->process_noise_cov, cvRealScalar(1e-5) );
        cvSetIdentity( kalman->measurement_noise_cov, cvRealScalar(1e-1) );
        cvSetIdentity( kalman->error_cov_post, cvRealScalar(1));
        /* choose random initial state */
        cvRand( &rng, kalman->state_post );

        rng.disttype = CV_RAND_NORMAL;

        for(;;)
        {
            #define calc_point(angle)                                      \
                cvPoint( cvRound(img->width/2 + img->width/3*cos(angle)),  \
                         cvRound(img->height/2 - img->width/3*sin(angle)))

            float state_angle = state->data.fl[0];
            CvPoint state_pt = calc_point(state_angle);

            /* predict point position */
            const CvMat* prediction = cvKalmanPredict( kalman, 0 );
            float predict_angle = prediction->data.fl[0];
            CvPoint predict_pt = calc_point(predict_angle);
            float measurement_angle;
            CvPoint measurement_pt;

            cvRandSetRange( &rng,
                            0,
                            sqrt(kalman->measurement_noise_cov->data.fl[0]),
                            0 );
            cvRand( &rng, measurement );

            /* generate measurement */
            cvMatMulAdd( kalman->measurement_matrix, state, measurement, measurement );

            measurement_angle = measurement->data.fl[0];
            measurement_pt = calc_point(measurement_angle);

            /* plot points */
            #define draw_cross( center, color, d )                        \
                cvLine( img, cvPoint( center.x - d, center.y - d ),       \
                             cvPoint( center.x + d, center.y + d ),       \
                             color, 1, 0 );                               \
                cvLine( img, cvPoint( center.x + d, center.y - d ),       \
                             cvPoint( center.x - d, center.y + d ),       \
                             color, 1, 0 )

            cvZero( img );
            draw_cross( state_pt, CV_RGB(255,255,255), 3 );
            draw_cross( measurement_pt, CV_RGB(255,0,0), 3 );
            draw_cross( predict_pt, CV_RGB(0,255,0), 3 );
            cvLine( img, state_pt, predict_pt, CV_RGB(255,255,0), 3, 0 );

            /* adjust Kalman filter state */
            cvKalmanCorrect( kalman, measurement );

            cvRandSetRange( &rng,
                            0,
                            sqrt(kalman->process_noise_cov->data.fl[0]),
                            0 );
            cvRand( &rng, process_noise );
            cvMatMulAdd( kalman->transition_matrix,
                         state,
                         process_noise,
                         state );

            cvShowImage( "Kalman", img );
            code = cvWaitKey( 100 );

            if( code > 0 ) /* break current simulation by pressing a key */
                break;
        }
        if( code == 27 ) /* exit by ESCAPE */
            break;
    }

    return 0;
}