Esempio n. 1
0
PetscErrorCode MatDestroy_SuperLU_DIST(Mat A)
{
  PetscErrorCode   ierr;
  Mat_SuperLU_DIST *lu = (Mat_SuperLU_DIST*)A->spptr;
  PetscBool        flg;

  PetscFunctionBegin;
  if (lu && lu->CleanUpSuperLU_Dist) {
    /* Deallocate SuperLU_DIST storage */
    if (lu->MatInputMode == GLOBAL) {
      Destroy_CompCol_Matrix_dist(&lu->A_sup);
    } else {
      Destroy_CompRowLoc_Matrix_dist(&lu->A_sup);
      if ( lu->options.SolveInitialized ) {
#if defined(PETSC_USE_COMPLEX)
        zSolveFinalize(&lu->options, &lu->SOLVEstruct);
#else
        dSolveFinalize(&lu->options, &lu->SOLVEstruct);
#endif
      }
    }
    Destroy_LU(A->cmap->N, &lu->grid, &lu->LUstruct);
    ScalePermstructFree(&lu->ScalePermstruct);
    LUstructFree(&lu->LUstruct);

    /* Release the SuperLU_DIST process grid. */
    superlu_gridexit(&lu->grid);

    ierr = MPI_Comm_free(&(lu->comm_superlu));CHKERRQ(ierr);
  }
  ierr = PetscFree(A->spptr);CHKERRQ(ierr);

  ierr = PetscObjectTypeCompare((PetscObject)A,MATSEQAIJ,&flg);CHKERRQ(ierr);
  if (flg) {
    ierr = MatDestroy_SeqAIJ(A);CHKERRQ(ierr);
  } else {
    ierr = MatDestroy_MPIAIJ(A);CHKERRQ(ierr);
  }
  PetscFunctionReturn(0);
}
Esempio n. 2
0
int main(int argc, char *argv[])
{
    superlu_options_t options;
    SuperLUStat_t stat;
    SuperMatrix A;
    NRformat_loc *Astore;
    ScalePermstruct_t ScalePermstruct;
    LUstruct_t LUstruct;
    SOLVEstruct_t SOLVEstruct;
    gridinfo_t grid;
    double   *berr;
    double   *b, *b1, *xtrue, *nzval, *nzval1;
    int_t    *colind, *colind1, *rowptr, *rowptr1;
    int_t    i, j, m, n, nnz_loc, m_loc, fst_row;
    int      nprow, npcol;
    int      iam, info, ldb, ldx, nrhs;
    char     **cpp, c;
    FILE *fp, *fopen();


    nprow = 1;  /* Default process rows.      */
    npcol = 1;  /* Default process columns.   */
    nrhs = 1;   /* Number of right-hand side. */

    /* ------------------------------------------------------------
       INITIALIZE MPI ENVIRONMENT. 
       ------------------------------------------------------------*/
    MPI_Init( &argc, &argv );

    /* Parse command line argv[]. */
    for (cpp = argv+1; *cpp; ++cpp) {
	if ( **cpp == '-' ) {
	    c = *(*cpp+1);
	    ++cpp;
	    switch (c) {
	      case 'h':
		  printf("Options:\n");
		  printf("\t-r <int>: process rows    (default %d)\n", nprow);
		  printf("\t-c <int>: process columns (default %d)\n", npcol);
		  exit(0);
		  break;
	      case 'r': nprow = atoi(*cpp);
		        break;
	      case 'c': npcol = atoi(*cpp);
		        break;
	    }
	} else { /* Last arg is considered a filename */
	    if ( !(fp = fopen(*cpp, "r")) ) {
                ABORT("File does not exist");
            }
	    break;
	}
    }

    /* ------------------------------------------------------------
       INITIALIZE THE SUPERLU PROCESS GRID. 
       ------------------------------------------------------------*/
    superlu_gridinit(MPI_COMM_WORLD, nprow, npcol, &grid);

    /* Bail out if I do not belong in the grid. */
    iam = grid.iam;
    if ( iam >= nprow * npcol )	goto out;
    if ( !iam ) {
	printf("Input matrix file: %s\n", *cpp);
        printf("\tProcess grid\t%d X %d\n", grid.nprow, grid.npcol);
    }
    
#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Enter main()");
#endif

    /* ------------------------------------------------------------
       GET THE MATRIX FROM FILE AND SETUP THE RIGHT HAND SIDE. 
       ------------------------------------------------------------*/
    dcreate_matrix(&A, nrhs, &b, &ldb, &xtrue, &ldx, fp, &grid);

    if ( !(b1 = doubleMalloc_dist(ldb * nrhs)) )
        ABORT("Malloc fails for b1[]");
    for (j = 0; j < nrhs; ++j)
        for (i = 0; i < ldb; ++i) b1[i+j*ldb] = b[i+j*ldb];
    if ( !(berr = doubleMalloc_dist(nrhs)) )
	ABORT("Malloc fails for berr[].");
    m = A.nrow;
    n = A.ncol;

    /* Save a copy of the matrix A. */
    Astore = (NRformat_loc *) A.Store;
    nnz_loc = Astore->nnz_loc;
    m_loc = Astore->m_loc;
    fst_row = Astore->fst_row;
    nzval = Astore->nzval;
    colind = Astore->colind;
    rowptr = Astore->rowptr;
    nzval1 = doubleMalloc_dist(nnz_loc);
    colind1 = intMalloc_dist(nnz_loc);
    rowptr1 = intMalloc_dist(m_loc+1);
    for (i = 0; i < nnz_loc; ++i) {
        nzval1[i] = nzval[i];
        colind1[i] = colind[i];
    }
    for (i = 0; i < m_loc+1; ++i) rowptr1[i] = rowptr[i];

    /* ------------------------------------------------------------
       WE SOLVE THE LINEAR SYSTEM FOR THE FIRST TIME.
       ------------------------------------------------------------*/

    /* Set the default input options:
        options.Fact = DOFACT;
        options.Equil = YES;
        options.ColPerm = METIS_AT_PLUS_A;
        options.RowPerm = LargeDiag;
        options.ReplaceTinyPivot = YES;
        options.Trans = NOTRANS;
        options.IterRefine = DOUBLE;
        options.SolveInitialized = NO;
        options.RefineInitialized = NO;
        options.PrintStat = YES;
     */
    set_default_options_dist(&options);

    if (!iam) {
	print_sp_ienv_dist(&options);
	print_options_dist(&options);
    }

    /* Initialize ScalePermstruct and LUstruct. */
    ScalePermstructInit(m, n, &ScalePermstruct);
    LUstructInit(n, &LUstruct);

    /* Initialize the statistics variables. */
    PStatInit(&stat);

    /* Call the linear equation solver: factorize and solve. */
    pdgssvx(&options, &A, &ScalePermstruct, b, ldb, nrhs, &grid,
            &LUstruct, &SOLVEstruct, berr, &stat, &info);

    /* Check the accuracy of the solution. */
    pdinf_norm_error(iam, m_loc, nrhs, b, ldb, xtrue, ldx, &grid);
    
    PStatPrint(&options, &stat, &grid);        /* Print the statistics. */
    PStatFree(&stat);
    Destroy_CompRowLoc_Matrix_dist(&A); /* Deallocate storage of matrix A.  */
    SUPERLU_FREE(b);                 /* Free storage of right-hand side.    */


    /* ------------------------------------------------------------
       NOW WE SOLVE ANOTHER LINEAR SYSTEM.
       THE MATRIX A HAS THE SAME SPARSITY PATTERN AND THE SIMILAR
       NUMERICAL VALUES AS THAT IN A PREVIOUS SYSTEM.
       ------------------------------------------------------------*/
    options.Fact = SamePattern_SameRowPerm;
    PStatInit(&stat); /* Initialize the statistics variables. */

    /* Set up the local A in NR_loc format */
    dCreate_CompRowLoc_Matrix_dist(&A, m, n, nnz_loc, m_loc, fst_row,
				   nzval1, colind1, rowptr1,
				   SLU_NR_loc, SLU_D, SLU_GE);

    /* Solve the linear system. */
    pdgssvx(&options, &A, &ScalePermstruct, b1, ldb, nrhs, &grid,
            &LUstruct, &SOLVEstruct, berr, &stat, &info);

    /* Check the accuracy of the solution. */
    if ( !iam )
        printf("Solve a system with the same pattern and similar values.\n");
    pdinf_norm_error(iam, m_loc, nrhs, b1, ldb, xtrue, ldx, &grid);

    /* Print the statistics. */
    PStatPrint(&options, &stat, &grid);

    /* ------------------------------------------------------------
       DEALLOCATE STORAGE.
       ------------------------------------------------------------*/
    PStatFree(&stat);
    Destroy_CompRowLoc_Matrix_dist(&A); /* Deallocate storage of matrix A.  */
    Destroy_LU(n, &grid, &LUstruct); /* Deallocate storage associated with    
					the L and U matrices.               */
    ScalePermstructFree(&ScalePermstruct);
    LUstructFree(&LUstruct);         /* Deallocate the structure of L and U.*/
    if ( options.SolveInitialized ) {
        dSolveFinalize(&options, &SOLVEstruct);
    }
    SUPERLU_FREE(b1);	             /* Free storage of right-hand side.    */
    SUPERLU_FREE(xtrue);             /* Free storage of the exact solution. */
    SUPERLU_FREE(berr);


    /* ------------------------------------------------------------
       RELEASE THE SUPERLU PROCESS GRID.
       ------------------------------------------------------------*/
out:
    superlu_gridexit(&grid);

    /* ------------------------------------------------------------
       TERMINATES THE MPI EXECUTION ENVIRONMENT.
       ------------------------------------------------------------*/
    MPI_Finalize();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Exit main()");
#endif

}
Esempio n. 3
0
void f_dSolveFinalize(fptr *options, fptr *SOLVEstruct)
{
   dSolveFinalize((superlu_options_t *) *options,
                  (SOLVEstruct_t *) *SOLVEstruct);
}
Esempio n. 4
0
int main(int argc, char *argv[])
{
    superlu_dist_options_t options;
    SuperLUStat_t stat;
    SuperMatrix A;
    ScalePermstruct_t ScalePermstruct;
    LUstruct_t LUstruct;
    SOLVEstruct_t SOLVEstruct;
    gridinfo_t grid1, grid2;
    double   *berr;
    double   *a, *b, *xtrue;
    int_t    *asub, *xa;
    int_t    i, j, m, n;
    int      nprow, npcol, ldumap, p;
    int_t    usermap[6];
    int      iam, info, ldb, ldx, nprocs;
    int      nrhs = 1;   /* Number of right-hand side. */
    char     **cpp, c;
    FILE *fp, *fopen();
    int cpp_defs();


    /* ------------------------------------------------------------
       INITIALIZE MPI ENVIRONMENT. 
       ------------------------------------------------------------*/
    MPI_Init( &argc, &argv );
    MPI_Comm_size( MPI_COMM_WORLD, &nprocs );
    if ( nprocs < 10 ) {
	fprintf(stderr, "Requires at least 10 processes\n");
	exit(-1);
    }

    /* Parse command line argv[]. */
    for (cpp = argv+1; *cpp; ++cpp) {
	if ( **cpp == '-' ) {
	    c = *(*cpp+1);
	    ++cpp;
	    switch (c) {
	      case 'h':
		  printf("Options:\n");
		  printf("\t-r <int>: process rows    (default %d)\n", nprow);
		  printf("\t-c <int>: process columns (default %d)\n", npcol);
		  exit(0);
		  break;
	      case 'r': nprow = atoi(*cpp);
		        break;
	      case 'c': npcol = atoi(*cpp);
		        break;
	    }
	} else { /* Last arg is considered a filename */
	    if ( !(fp = fopen(*cpp, "r")) ) {
                ABORT("File does not exist");
            }
	    break;
	}
    }

    /* ------------------------------------------------------------
       INITIALIZE THE SUPERLU PROCESS GRID 1. 
       ------------------------------------------------------------*/
    nprow = 2;
    npcol = 3;
    ldumap = 2;
    p = 0;    /* Grid 1 starts from process 0. */
    for (i = 0; i < nprow; ++i)
	for (j = 0; j < npcol; ++j) usermap[i+j*ldumap] = p++;
    superlu_gridmap(MPI_COMM_WORLD, nprow, npcol, usermap, ldumap, &grid1);

    /* ------------------------------------------------------------
       INITIALIZE THE SUPERLU PROCESS GRID 2. 
       ------------------------------------------------------------*/
    nprow = 2;
    npcol = 2;
    ldumap = 2;
    p = 6;   /* Grid 2 starts from process 6. */
    for (i = 0; i < nprow; ++i)
	for (j = 0; j < npcol; ++j) usermap[i+j*ldumap] = p++;
    superlu_gridmap(MPI_COMM_WORLD, nprow, npcol, usermap, ldumap, &grid2);

    /* Bail out if I do not belong in any of the 2 grids. */
    MPI_Comm_rank( MPI_COMM_WORLD, &iam );
    if ( iam >= 10 ) goto out;
    
#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Enter main()");
#endif

    if ( iam >= 0 && iam < 6 ) { /* I am in grid 1. */
	iam = grid1.iam;  /* Get the logical number in the new grid. */

        /* ------------------------------------------------------------
           GET THE MATRIX FROM FILE AND SETUP THE RIGHT HAND SIDE. 
           ------------------------------------------------------------*/
        dcreate_matrix(&A, nrhs, &b, &ldb, &xtrue, &ldx, fp, &grid1);
	
	if ( !(berr = doubleMalloc_dist(nrhs)) )
	    ABORT("Malloc fails for berr[].");

	/* ------------------------------------------------------------
	   NOW WE SOLVE THE LINEAR SYSTEM.
	   ------------------------------------------------------------*/
	
        /* Set the default input options:
            options.Fact = DOFACT;
            options.Equil = YES;
            options.ColPerm = METIS_AT_PLUS_A;
            options.RowPerm = LargeDiag;
            options.ReplaceTinyPivot = NO;
            options.Trans = NOTRANS;
            options.IterRefine = DOUBLE;
            options.SolveInitialized = NO;
            options.RefineInitialized = NO;
            options.PrintStat = YES;
         */
	set_default_options_dist(&options);

        if (!iam) {
	    print_sp_ienv_dist(&options);
    	    print_options_dist(&options);
        }

        m = A.nrow;
        n = A.ncol;

	/* Initialize ScalePermstruct and LUstruct. */
	ScalePermstructInit(m, n, &ScalePermstruct);
	LUstructInit(n, &LUstruct);

	/* Initialize the statistics variables. */
	PStatInit(&stat);
	
	/* Call the linear equation solver. */
	pdgssvx(&options, &A, &ScalePermstruct, b, ldb, nrhs, &grid1,
                &LUstruct, &SOLVEstruct, berr, &stat, &info);

        /* Check the accuracy of the solution. */
        pdinf_norm_error(iam, ((NRformat_loc *)A.Store)->m_loc,
                         nrhs, b, ldb, xtrue, ldx, &grid1);
    
	/* Print the statistics. */
	PStatPrint(&options, &stat, &grid1);

	/* ------------------------------------------------------------
	   DEALLOCATE STORAGE.
	   ------------------------------------------------------------*/
	PStatFree(&stat);
        Destroy_CompRowLoc_Matrix_dist(&A);
        ScalePermstructFree(&ScalePermstruct);
	Destroy_LU(n, &grid1, &LUstruct);
	LUstructFree(&LUstruct);
        if ( options.SolveInitialized ) {
            dSolveFinalize(&options, &SOLVEstruct);
        }
	SUPERLU_FREE(b);
	SUPERLU_FREE(xtrue);
	SUPERLU_FREE(berr);

    } else { /* I am in grid 2. */
	iam = grid2.iam;  /* Get the logical number in the new grid. */

        /* ------------------------------------------------------------
           GET THE MATRIX FROM FILE AND SETUP THE RIGHT HAND SIDE. 
           ------------------------------------------------------------*/
        dcreate_matrix(&A, nrhs, &b, &ldb, &xtrue, &ldx, fp, &grid2);

	if ( !(berr = doubleMalloc_dist(nrhs)) )
	    ABORT("Malloc fails for berr[].");

	/* ------------------------------------------------------------
	   NOW WE SOLVE THE LINEAR SYSTEM.
	   ------------------------------------------------------------*/
	
        /* Set the default input options:
            options.Fact = DOFACT;
            options.Equil = YES;
            options.ColPerm = MMD_AT_PLUS_A;
            options.RowPerm = LargeDiag;
            options.ReplaceTinyPivot = YES;
            options.Trans = NOTRANS;
            options.IterRefine = DOUBLE;
            options.SolveInitialized = NO;
            options.RefineInitialized = NO;
            options.PrintStat = YES;
         */
	set_default_options_dist(&options);
	
        m = A.nrow;
        n = A.ncol;

	/* Initialize ScalePermstruct and LUstruct. */
	ScalePermstructInit(m, n, &ScalePermstruct);
	LUstructInit(n, &LUstruct);

	/* Initialize the statistics variables. */
	PStatInit(&stat);
	
	/* Call the linear equation solver. */
	pdgssvx(&options, &A, &ScalePermstruct, b, ldb, nrhs, &grid2,
                &LUstruct, &SOLVEstruct, berr, &stat, &info);

        /* Check the accuracy of the solution. */
        pdinf_norm_error(iam, ((NRformat_loc *)A.Store)->m_loc,
                         nrhs, b, ldb, xtrue, ldx, &grid2);
    
	/* Print the statistics. */
	PStatPrint(&options, &stat, &grid2);

	/* ------------------------------------------------------------
	   DEALLOCATE STORAGE.
	   ------------------------------------------------------------*/
	PStatFree(&stat);
        Destroy_CompRowLoc_Matrix_dist(&A);
        ScalePermstructFree(&ScalePermstruct);
	Destroy_LU(n, &grid2, &LUstruct);
	LUstructFree(&LUstruct);
        if ( options.SolveInitialized ) {
            dSolveFinalize(&options, &SOLVEstruct);
        }
	SUPERLU_FREE(b);
	SUPERLU_FREE(xtrue);
	SUPERLU_FREE(berr);
    }

    /* ------------------------------------------------------------
       RELEASE THE SUPERLU PROCESS GRIDS.
       ------------------------------------------------------------*/
    superlu_gridexit(&grid1);
    superlu_gridexit(&grid2);

out:
    /* ------------------------------------------------------------
       TERMINATES THE MPI EXECUTION ENVIRONMENT.
       ------------------------------------------------------------*/
    MPI_Finalize();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Exit main()");
#endif

}
Esempio n. 5
0
PetscErrorCode MatMatSolve_SuperLU_DIST(Mat A,Mat B_mpi,Mat X)
{
  Mat_SuperLU_DIST *lu = (Mat_SuperLU_DIST*)A->spptr;
  PetscErrorCode   ierr;
  PetscMPIInt      size;
  PetscInt         M=A->rmap->N,m=A->rmap->n,nrhs;
  SuperLUStat_t    stat;
  double           berr[1];
  PetscScalar      *bptr;
  int              info; /* SuperLU_Dist info code is ALWAYS an int, even with long long indices */
  PetscBool        flg;

  PetscFunctionBegin;
  if (lu->options.Fact != FACTORED) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"SuperLU_DIST options.Fact mush equal FACTORED");
  ierr = PetscObjectTypeCompareAny((PetscObject)B_mpi,&flg,MATSEQDENSE,MATMPIDENSE,NULL);CHKERRQ(ierr);
  if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix B must be MATDENSE matrix");
  ierr = PetscObjectTypeCompareAny((PetscObject)X,&flg,MATSEQDENSE,MATMPIDENSE,NULL);CHKERRQ(ierr);
  if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix X must be MATDENSE matrix");

  ierr = MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);CHKERRQ(ierr);
  if (size > 1 && lu->MatInputMode == GLOBAL) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"MatInputMode=GLOBAL for nproc %d>1 is not supported",size);
  /* size==1 or distributed mat input */
  if (lu->options.SolveInitialized && !lu->matmatsolve_iscalled) {
    /* communication pattern of SOLVEstruct is unlikely created for matmatsolve,
       thus destroy it and create a new SOLVEstruct.
       Otherwise it may result in memory corruption or incorrect solution
       See src/mat/examples/tests/ex125.c */
#if defined(PETSC_USE_COMPLEX)
    PetscStackCall("SuperLU_DIST:zSolveFinalize",zSolveFinalize(&lu->options, &lu->SOLVEstruct));
#else
    PetscStackCall("SuperLU_DIST:dSolveFinalize",dSolveFinalize(&lu->options, &lu->SOLVEstruct));
#endif
    lu->options.SolveInitialized = NO;
  }
  ierr = MatCopy(B_mpi,X,SAME_NONZERO_PATTERN);CHKERRQ(ierr);

  ierr = MatGetSize(B_mpi,NULL,&nrhs);CHKERRQ(ierr);

  PetscStackCall("SuperLU_DIST:PStatInit",PStatInit(&stat));        /* Initialize the statistics variables. */
  ierr = MatDenseGetArray(X,&bptr);CHKERRQ(ierr);
  if (lu->MatInputMode == GLOBAL) { /* size == 1 */
#if defined(PETSC_USE_COMPLEX)
    PetscStackCall("SuperLU_DIST:pzgssvx_ABglobal",pzgssvx_ABglobal(&lu->options, &lu->A_sup, &lu->ScalePermstruct,(doublecomplex*)bptr, M, nrhs,&lu->grid, &lu->LUstruct, berr, &stat, &info));
#else
    PetscStackCall("SuperLU_DIST:pdgssvx_ABglobal",pdgssvx_ABglobal(&lu->options, &lu->A_sup, &lu->ScalePermstruct,bptr, M, nrhs, &lu->grid, &lu->LUstruct, berr, &stat, &info));
#endif
  } else { /* distributed mat input */
#if defined(PETSC_USE_COMPLEX)
    PetscStackCall("SuperLU_DIST:pzgssvx",pzgssvx(&lu->options,&lu->A_sup,&lu->ScalePermstruct,(doublecomplex*)bptr,m,nrhs,&lu->grid, &lu->LUstruct,&lu->SOLVEstruct,berr,&stat,&info));
#else
    PetscStackCall("SuperLU_DIST:pdgssvx",pdgssvx(&lu->options,&lu->A_sup,&lu->ScalePermstruct,bptr,m,nrhs,&lu->grid,&lu->LUstruct,&lu->SOLVEstruct,berr,&stat,&info));
#endif
  }
  if (info) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"pdgssvx fails, info: %d\n",info);
  ierr = MatDenseRestoreArray(X,&bptr);CHKERRQ(ierr);

  if (lu->options.PrintStat) PStatPrint(&lu->options, &stat, &lu->grid); /* Print the statistics. */
  PetscStackCall("SuperLU_DIST:PStatFree",PStatFree(&stat));
  lu->matsolve_iscalled    = PETSC_FALSE;
  lu->matmatsolve_iscalled = PETSC_TRUE;
  PetscFunctionReturn(0);
}
Esempio n. 6
0
PetscErrorCode MatSolve_SuperLU_DIST(Mat A,Vec b_mpi,Vec x)
{
  Mat_SuperLU_DIST *lu = (Mat_SuperLU_DIST*)A->spptr;
  PetscErrorCode   ierr;
  PetscMPIInt      size;
  PetscInt         m=A->rmap->n,M=A->rmap->N,N=A->cmap->N;
  SuperLUStat_t    stat;
  double           berr[1];
  PetscScalar      *bptr;
  PetscInt         nrhs=1;
  Vec              x_seq;
  IS               iden;
  VecScatter       scat;
  int              info; /* SuperLU_Dist info code is ALWAYS an int, even with long long indices */
  static PetscBool cite = PETSC_FALSE;

  PetscFunctionBegin;
  ierr = PetscCitationsRegister("@article{lidemmel03,\n  author = {Xiaoye S. Li and James W. Demmel},\n  title = {{SuperLU_DIST}: A Scalable Distributed-Memory Sparse Direct\n           Solver for Unsymmetric Linear Systems},\n  journal = {ACM Trans. Mathematical Software},\n  volume = {29},\n  number = {2},\n  pages = {110-140},\n  year = 2003\n}\n",&cite);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);CHKERRQ(ierr);
  if (size > 1 && lu->MatInputMode == GLOBAL) {
    /* global mat input, convert b to x_seq */
    ierr = VecCreateSeq(PETSC_COMM_SELF,N,&x_seq);CHKERRQ(ierr);
    ierr = ISCreateStride(PETSC_COMM_SELF,N,0,1,&iden);CHKERRQ(ierr);
    ierr = VecScatterCreate(b_mpi,iden,x_seq,iden,&scat);CHKERRQ(ierr);
    ierr = ISDestroy(&iden);CHKERRQ(ierr);

    ierr = VecScatterBegin(scat,b_mpi,x_seq,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd(scat,b_mpi,x_seq,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecGetArray(x_seq,&bptr);CHKERRQ(ierr);
  } else { /* size==1 || distributed mat input */
    if (lu->options.SolveInitialized && !lu->matsolve_iscalled) {
      /* see comments in MatMatSolve() */
#if defined(PETSC_USE_COMPLEX)
      PetscStackCall("SuperLU_DIST:zSolveFinalize",zSolveFinalize(&lu->options, &lu->SOLVEstruct));
#else
      PetscStackCall("SuperLU_DIST:dSolveFinalize",dSolveFinalize(&lu->options, &lu->SOLVEstruct));
#endif
      lu->options.SolveInitialized = NO;
    }
    ierr = VecCopy(b_mpi,x);CHKERRQ(ierr);
    ierr = VecGetArray(x,&bptr);CHKERRQ(ierr);
  }

  if (lu->options.Fact != FACTORED) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"SuperLU_DIST options.Fact mush equal FACTORED");

  PetscStackCall("SuperLU_DIST:PStatInit",PStatInit(&stat));        /* Initialize the statistics variables. */
  if (lu->MatInputMode == GLOBAL) {
#if defined(PETSC_USE_COMPLEX)
    PetscStackCall("SuperLU_DIST:pzgssvx_ABglobal",pzgssvx_ABglobal(&lu->options,&lu->A_sup,&lu->ScalePermstruct,(doublecomplex*)bptr,M,nrhs,&lu->grid,&lu->LUstruct,berr,&stat,&info));
#else
    PetscStackCall("SuperLU_DIST:pdgssvx_ABglobal",pdgssvx_ABglobal(&lu->options, &lu->A_sup, &lu->ScalePermstruct,bptr,M,nrhs,&lu->grid,&lu->LUstruct,berr,&stat,&info));
#endif
  } else { /* distributed mat input */
#if defined(PETSC_USE_COMPLEX)
    PetscStackCall("SuperLU_DIST:pzgssvx",pzgssvx(&lu->options,&lu->A_sup,&lu->ScalePermstruct,(doublecomplex*)bptr,m,nrhs,&lu->grid,&lu->LUstruct,&lu->SOLVEstruct,berr,&stat,&info));
#else
    PetscStackCall("SuperLU_DIST:pdgssvx",pdgssvx(&lu->options,&lu->A_sup,&lu->ScalePermstruct,bptr,m,nrhs,&lu->grid,&lu->LUstruct,&lu->SOLVEstruct,berr,&stat,&info));
#endif
  }
  if (info) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"pdgssvx fails, info: %d\n",info);

  if (lu->options.PrintStat) PStatPrint(&lu->options, &stat, &lu->grid);      /* Print the statistics. */
  PetscStackCall("SuperLU_DIST:PStatFree",PStatFree(&stat));

  if (size > 1 && lu->MatInputMode == GLOBAL) {
    /* convert seq x to mpi x */
    ierr = VecRestoreArray(x_seq,&bptr);CHKERRQ(ierr);
    ierr = VecScatterBegin(scat,x_seq,x,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterEnd(scat,x_seq,x,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterDestroy(&scat);CHKERRQ(ierr);
    ierr = VecDestroy(&x_seq);CHKERRQ(ierr);
  } else {
    ierr = VecRestoreArray(x,&bptr);CHKERRQ(ierr);

    lu->matsolve_iscalled    = PETSC_TRUE;
    lu->matmatsolve_iscalled = PETSC_FALSE;
  }
  PetscFunctionReturn(0);
}
Esempio n. 7
0
PetscErrorCode MatSolve_SuperLU_DIST(Mat A,Vec b_mpi,Vec x)
{
  Mat_SuperLU_DIST *lu = (Mat_SuperLU_DIST*)A->spptr;
  PetscErrorCode   ierr;
  PetscMPIInt      size;
  PetscInt         m=A->rmap->n,M=A->rmap->N,N=A->cmap->N; 
  SuperLUStat_t    stat;  
  double           berr[1];
  PetscScalar      *bptr;  
  PetscInt         nrhs=1;
  Vec              x_seq;
  IS               iden;
  VecScatter       scat;
  int              info; /* SuperLU_Dist info code is ALWAYS an int, even with long long indices */

  PetscFunctionBegin;
  ierr = MPI_Comm_size(((PetscObject)A)->comm,&size);CHKERRQ(ierr);
  if (size > 1 && lu->MatInputMode == GLOBAL) {  
    /* global mat input, convert b to x_seq */
    ierr = VecCreateSeq(PETSC_COMM_SELF,N,&x_seq);CHKERRQ(ierr);
    ierr = ISCreateStride(PETSC_COMM_SELF,N,0,1,&iden);CHKERRQ(ierr);
    ierr = VecScatterCreate(b_mpi,iden,x_seq,iden,&scat);CHKERRQ(ierr);
    ierr = ISDestroy(&iden);CHKERRQ(ierr);

    ierr = VecScatterBegin(scat,b_mpi,x_seq,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd(scat,b_mpi,x_seq,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecGetArray(x_seq,&bptr);CHKERRQ(ierr); 
  } else { /* size==1 || distributed mat input */
    if (lu->options.SolveInitialized && !lu->matsolve_iscalled){
      /* see comments in MatMatSolve() */
#if defined(PETSC_USE_COMPLEX)
      zSolveFinalize(&lu->options, &lu->SOLVEstruct);
#else
      dSolveFinalize(&lu->options, &lu->SOLVEstruct);
#endif
      lu->options.SolveInitialized = NO; 
    }
    ierr = VecCopy(b_mpi,x);CHKERRQ(ierr);
    ierr = VecGetArray(x,&bptr);CHKERRQ(ierr);
  }
 
  if (lu->options.Fact != FACTORED) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"SuperLU_DIST options.Fact mush equal FACTORED");

  PStatInit(&stat);        /* Initialize the statistics variables. */
  if (lu->MatInputMode == GLOBAL) { 
#if defined(PETSC_USE_COMPLEX)
    pzgssvx_ABglobal(&lu->options,&lu->A_sup,&lu->ScalePermstruct,(doublecomplex*)bptr,M,nrhs, 
                   &lu->grid,&lu->LUstruct,berr,&stat,&info);
#else
    pdgssvx_ABglobal(&lu->options, &lu->A_sup, &lu->ScalePermstruct,bptr,M,nrhs, 
                   &lu->grid,&lu->LUstruct,berr,&stat,&info);
#endif 
  } else { /* distributed mat input */
#if defined(PETSC_USE_COMPLEX)
    pzgssvx(&lu->options,&lu->A_sup,&lu->ScalePermstruct,(doublecomplex*)bptr,m,nrhs,&lu->grid,
	    &lu->LUstruct,&lu->SOLVEstruct,berr,&stat,&info);
#else
    pdgssvx(&lu->options,&lu->A_sup,&lu->ScalePermstruct,bptr,m,nrhs,&lu->grid,
	    &lu->LUstruct,&lu->SOLVEstruct,berr,&stat,&info);
#endif
  }
  if (info) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"pdgssvx fails, info: %d\n",info);

  if (lu->options.PrintStat) {
     PStatPrint(&lu->options, &stat, &lu->grid);     /* Print the statistics. */
  }
  PStatFree(&stat);
 
  if (size > 1 && lu->MatInputMode == GLOBAL) {    
    /* convert seq x to mpi x */
    ierr = VecRestoreArray(x_seq,&bptr);CHKERRQ(ierr);
    ierr = VecScatterBegin(scat,x_seq,x,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterEnd(scat,x_seq,x,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterDestroy(&scat);CHKERRQ(ierr);
    ierr = VecDestroy(&x_seq);CHKERRQ(ierr);
  } else {
    ierr = VecRestoreArray(x,&bptr);CHKERRQ(ierr);
    lu->matsolve_iscalled    = PETSC_TRUE;
    lu->matmatsolve_iscalled = PETSC_FALSE;
  }
  PetscFunctionReturn(0);
}
Esempio n. 8
0
/*! \brief
 *
 * <pre>
 * Purpose
 * =======
 *
 * The driver program PDDRIVE1.
 *
 * This example illustrates how to use PDGSSVX to
 * solve systems with the same A but different right-hand side.
 * In this case, we factorize A only once in the first call to
 * PDGSSVX, and reuse the following data structures
 * in the subsequent call to PDGSSVX:
 *        ScalePermstruct  : DiagScale, R, C, perm_r, perm_c
 *        LUstruct         : Glu_persist, Llu
 * 
 * With MPICH,  program may be run by typing:
 *    mpiexec -n <np> pddrive1 -r <proc rows> -c <proc columns> big.rua
 * </pre>
 */
int main(int argc, char *argv[])
{
    superlu_dist_options_t options;
    SuperLUStat_t stat;
    SuperMatrix A;
    ScalePermstruct_t ScalePermstruct;
    LUstruct_t LUstruct;
    SOLVEstruct_t SOLVEstruct;
    gridinfo_t grid;
    double   *berr;
    double   *b, *xtrue, *b1;
    int    i, j, m, n;
    int    nprow, npcol;
    int    iam, info, ldb, ldx, nrhs;
    char     **cpp, c, *postfix;
    int ii, omp_mpi_level;
    FILE *fp, *fopen();
    int cpp_defs();

    nprow = 1;  /* Default process rows.      */
    npcol = 1;  /* Default process columns.   */
    nrhs = 1;   /* Number of right-hand side. */

    /* ------------------------------------------------------------
       INITIALIZE MPI ENVIRONMENT. 
       ------------------------------------------------------------*/
    MPI_Init_thread( &argc, &argv, MPI_THREAD_MULTIPLE, &omp_mpi_level); 

    /* Parse command line argv[]. */
    for (cpp = argv+1; *cpp; ++cpp) {
	if ( **cpp == '-' ) {
	    c = *(*cpp+1);
	    ++cpp;
	    switch (c) {
	      case 'h':
		  printf("Options:\n");
		  printf("\t-r <int>: process rows    (default %d)\n", nprow);
		  printf("\t-c <int>: process columns (default %d)\n", npcol);
		  exit(0);
		  break;
	      case 'r': nprow = atoi(*cpp);
		        break;
	      case 'c': npcol = atoi(*cpp);
		        break;
	    }
	} else { /* Last arg is considered a filename */
	    if ( !(fp = fopen(*cpp, "r")) ) {
                ABORT("File does not exist");
            }
	    break;
	}
    }

    /* ------------------------------------------------------------
       INITIALIZE THE SUPERLU PROCESS GRID. 
       ------------------------------------------------------------*/
    superlu_gridinit(MPI_COMM_WORLD, nprow, npcol, &grid);

    /* Bail out if I do not belong in the grid. */
    iam = grid.iam;
    if ( iam >= nprow * npcol )	goto out;
    if ( !iam ) {
	int v_major, v_minor, v_bugfix;
#ifdef __INTEL_COMPILER
	printf("__INTEL_COMPILER is defined\n");
#endif
	printf("__STDC_VERSION__ %ld\n", __STDC_VERSION__);

	superlu_dist_GetVersionNumber(&v_major, &v_minor, &v_bugfix);
	printf("Library version:\t%d.%d.%d\n", v_major, v_minor, v_bugfix);

	printf("Input matrix file:\t%s\n", *cpp);
        printf("Process grid:\t\t%d X %d\n", (int)grid.nprow, (int)grid.npcol);
	fflush(stdout);
    }

#if ( VAMPIR>=1 )
    VT_traceoff();
#endif

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Enter main()");
#endif

    for(ii = 0;ii<strlen(*cpp);ii++){
	if((*cpp)[ii]=='.'){
		postfix = &((*cpp)[ii+1]);
	}
    }	
    // printf("%s\n", postfix);

    /* ------------------------------------------------------------
       GET THE MATRIX FROM FILE AND SETUP THE RIGHT HAND SIDE. 
       ------------------------------------------------------------*/
    dcreate_matrix_postfix(&A, nrhs, &b, &ldb, &xtrue, &ldx, fp, postfix, &grid);
    if ( !(b1 = doubleMalloc_dist(ldb * nrhs)) )
        ABORT("Malloc fails for b1[]");
    for (j = 0; j < nrhs; ++j)
        for (i = 0; i < ldb; ++i) b1[i+j*ldb] = b[i+j*ldb];

    if ( !(berr = doubleMalloc_dist(nrhs)) )
	ABORT("Malloc fails for berr[].");

    /* ------------------------------------------------------------
       WE SOLVE THE LINEAR SYSTEM FOR THE FIRST TIME.
       ------------------------------------------------------------*/

    /* Set the default input options:
        options.Fact = DOFACT;
        options.Equil = YES;
        options.ColPerm = METIS_AT_PLUS_A;
        options.RowPerm = LargeDiag_MC64;
        options.ReplaceTinyPivot = NO;
        options.Trans = NOTRANS;
        options.IterRefine = DOUBLE;
        options.SolveInitialized = NO;
        options.RefineInitialized = NO;
        options.PrintStat = YES;
     */
    set_default_options_dist(&options);

    if (!iam) {
	print_sp_ienv_dist(&options);
	print_options_dist(&options);
	fflush(stdout);
    }

    m = A.nrow;
    n = A.ncol;

    /* Initialize ScalePermstruct and LUstruct. */
    ScalePermstructInit(m, n, &ScalePermstruct);
    LUstructInit(n, &LUstruct);

    /* Initialize the statistics variables. */
    PStatInit(&stat);

    /* Call the linear equation solver. */
    pdgssvx(&options, &A, &ScalePermstruct, b, ldb, nrhs, &grid,
	    &LUstruct, &SOLVEstruct, berr, &stat, &info);


    /* Check the accuracy of the solution. */
    if ( !iam ) printf("\tSolve the first system:\n");
    pdinf_norm_error(iam, ((NRformat_loc *)A.Store)->m_loc,
		     nrhs, b, ldb, xtrue, ldx, &grid);

    PStatPrint(&options, &stat, &grid);        /* Print the statistics. */
    PStatFree(&stat);

    /* ------------------------------------------------------------
       NOW WE SOLVE ANOTHER SYSTEM WITH THE SAME A BUT DIFFERENT
       RIGHT-HAND SIDE,  WE WILL USE THE EXISTING L AND U FACTORS IN
       LUSTRUCT OBTAINED FROM A PREVIOUS FATORIZATION.
       ------------------------------------------------------------*/
    options.Fact = FACTORED; /* Indicate the factored form of A is supplied. */
    PStatInit(&stat); /* Initialize the statistics variables. */

    pdgssvx(&options, &A, &ScalePermstruct, b1, ldb, nrhs, &grid,
	    &LUstruct, &SOLVEstruct, berr, &stat, &info);

    /* Check the accuracy of the solution. */
    if ( !iam ) printf("\tSolve the system with a different B:\n");
    pdinf_norm_error(iam, ((NRformat_loc *)A.Store)->m_loc,
		     nrhs, b1, ldb, xtrue, ldx, &grid);

    PStatPrint(&options, &stat, &grid);        /* Print the statistics. */


    /* ------------------------------------------------------------
       DEALLOCATE STORAGE.
       ------------------------------------------------------------*/
    PStatFree(&stat);
    Destroy_CompRowLoc_Matrix_dist(&A);
    ScalePermstructFree(&ScalePermstruct);   
    Destroy_LU(n, &grid, &LUstruct);
    LUstructFree(&LUstruct);
    if ( options.SolveInitialized ) {
        dSolveFinalize(&options, &SOLVEstruct);
    }
    SUPERLU_FREE(b);
    SUPERLU_FREE(b1);
    SUPERLU_FREE(xtrue);
    SUPERLU_FREE(berr);

    /* ------------------------------------------------------------
       RELEASE THE SUPERLU PROCESS GRID.
       ------------------------------------------------------------*/
out:
    superlu_gridexit(&grid);

    /* ------------------------------------------------------------
       TERMINATES THE MPI EXECUTION ENVIRONMENT.
       ------------------------------------------------------------*/
    MPI_Finalize();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Exit main()");
#endif

}