//==============================================================================
void DantzigBoxedLcpSolver::solve(
    int n,
    double* A,
    double* x,
    double* b,
    int /*nub*/,
    double* lo,
    double* hi,
    int* findex)
{
  dSolveLCP(n, A, x, b, nullptr, 0, lo, hi, findex);
}
Esempio n. 2
0
File: lcp.cpp Progetto: dartsim/dart
extern "C" ODE_API int dTestSolveLCP()
{
  const int n = 100;

  //size_t memreq = EstimateTestSolveLCPMemoryReq(n);
  //dxWorldProcessMemArena *arena = dxAllocateTemporaryWorldProcessMemArena(memreq, nullptr, nullptr);
  //if (arena == nullptr) {
  //  return 0;
  //}

  //int i,nskip = dPAD(n);
  int i;
  int nskip = n;
#ifdef dDOUBLE
  const dReal tol = REAL(1e-9);
#endif
#ifdef dSINGLE
  const dReal tol = REAL(1e-4);
#endif
  printf ("dTestSolveLCP()\n");

  dReal *A = new dReal[n*nskip];
  dReal *x = new dReal[n];
  dReal *b = new dReal[n];
  dReal *w = new dReal[n];
  dReal *lo = new dReal[n];
  dReal *hi = new dReal[n];
  
  dReal *A2 = new dReal[n*nskip];
  dReal *b2 = new dReal[n];
  dReal *lo2 = new dReal[n];
  dReal *hi2 = new dReal[n];
  
  dReal *tmp1 = new dReal[n];
  dReal *tmp2 = new dReal[n];

  // double total_time = 0;
  for (int count=0; count < 1000; count++) {

      // form (A,b) = a random positive definite LCP problem
      dMakeRandomMatrix (A2,n,n,1.0);
      dMultiply2 (A,A2,A2,n,n,n);
      dMakeRandomMatrix (x,n,1,1.0);
      dMultiply0 (b,A,x,n,n,1);
      for (i=0; i<n; i++) b[i] += (dRandReal()*REAL(0.2))-REAL(0.1);

      // choose `nub' in the range 0..n-1
      int nub = 50; //dRandInt (n);

      // make limits
      for (i=0; i<nub; i++) lo[i] = -dInfinity;
      for (i=0; i<nub; i++) hi[i] = dInfinity;
      //for (i=nub; i<n; i++) lo[i] = 0;
      //for (i=nub; i<n; i++) hi[i] = dInfinity;
      //for (i=nub; i<n; i++) lo[i] = -dInfinity;
      //for (i=nub; i<n; i++) hi[i] = 0;
      for (i=nub; i<n; i++) lo[i] = -(dRandReal()*REAL(1.0))-REAL(0.01);
      for (i=nub; i<n; i++) hi[i] =  (dRandReal()*REAL(1.0))+REAL(0.01);

      // set a few limits to lo=hi=0
      /*
      for (i=0; i<10; i++) {
      int j = dRandInt (n-nub) + nub;
      lo[j] = 0;
      hi[j] = 0;
      }
      */

      // solve the LCP. we must make copy of A,b,lo,hi (A2,b2,lo2,hi2) for
      // SolveLCP() to permute. also, we'll clear the upper triangle of A2 to
      // ensure that it doesn't get referenced (if it does, the answer will be
      // wrong).

      memcpy (A2,A,n*nskip*sizeof(dReal));
      dClearUpperTriangle (A2,n);
      memcpy (b2,b,n*sizeof(dReal));
      memcpy (lo2,lo,n*sizeof(dReal));
      memcpy (hi2,hi,n*sizeof(dReal));
      dSetZero (x,n);
      dSetZero (w,n);

 
      dSolveLCP (n,A2,x,b2,w,nub,lo2,hi2,0);

      // check the solution

      dMultiply0 (tmp1,A,x,n,n,1);
      for (i=0; i<n; i++) tmp2[i] = b[i] + w[i];
      dReal diff = dMaxDifference (tmp1,tmp2,n,1);
      // printf ("\tA*x = b+w, maximum difference = %.6e - %s (1)\n",diff,
      //	    diff > tol ? "FAILED" : "passed");
      if (diff > tol) dDebug (0,"A*x = b+w, maximum difference = %.6e",diff);
      int n1=0,n2=0,n3=0;
      for (i=0; i<n; i++) {
        if (x[i]==lo[i] && w[i] >= 0) {
          n1++;	// ok
        }
        else if (x[i]==hi[i] && w[i] <= 0) {
          n2++;	// ok
        }
        else if (x[i] >= lo[i] && x[i] <= hi[i] && w[i] == 0) {
          n3++;	// ok
        }
        else {
          dDebug (0,"FAILED: i=%d x=%.4e w=%.4e lo=%.4e hi=%.4e",i,
            x[i],w[i],lo[i],hi[i]);
        }
      }

      // pacifier
      printf ("passed: NL=%3d NH=%3d C=%3d   ",n1,n2,n3);
  }
 
  delete[] A;
  delete[] x;
  delete[] b;
  delete[] w;
  delete[] lo ;
  delete[] hi ;

  delete[] A2 ;
  delete[] b2 ;
  delete[] lo2;
  delete[] hi2;
  
  delete[] tmp1;
  delete[] tmp2;

  return 1;
}
Esempio n. 3
0
extern "C" ODE_API int dTestSolveLCP()
{
  const int n = 100;

  size_t memreq = EstimateTestSolveLCPMemoryReq(n);
  dxWorldProcessMemArena *arena = dxAllocateTemporaryWorldProcessMemArena(memreq, NULL, NULL);
  if (arena == NULL) {
    return 0;
  }

  int i,nskip = dPAD(n);
#ifdef dDOUBLE
  const dReal tol = REAL(1e-9);
#endif
#ifdef dSINGLE
  const dReal tol = REAL(1e-4);
#endif
  printf ("dTestSolveLCP()\n");

  dReal *A = arena->AllocateArray<dReal> (n*nskip);
  dReal *x = arena->AllocateArray<dReal> (n);
  dReal *b = arena->AllocateArray<dReal> (n);
  dReal *w = arena->AllocateArray<dReal> (n);
  dReal *lo = arena->AllocateArray<dReal> (n);
  dReal *hi = arena->AllocateArray<dReal> (n);
  
  dReal *A2 = arena->AllocateArray<dReal> (n*nskip);
  dReal *b2 = arena->AllocateArray<dReal> (n);
  dReal *lo2 = arena->AllocateArray<dReal> (n);
  dReal *hi2 = arena->AllocateArray<dReal> (n);
  
  dReal *tmp1 = arena->AllocateArray<dReal> (n);
  dReal *tmp2 = arena->AllocateArray<dReal> (n);

  double total_time = 0;
  for (int count=0; count < 1000; count++) {
    BEGIN_STATE_SAVE(arena, saveInner) {

      // form (A,b) = a random positive definite LCP problem
      dMakeRandomMatrix (A2,n,n,1.0);
      dMultiply2 (A,A2,A2,n,n,n);
      dMakeRandomMatrix (x,n,1,1.0);
      dMultiply0 (b,A,x,n,n,1);
      for (i=0; i<n; i++) b[i] += (dRandReal()*REAL(0.2))-REAL(0.1);

      // choose `nub' in the range 0..n-1
      int nub = 50; //dRandInt (n);

      // make limits
      for (i=0; i<nub; i++) lo[i] = -dInfinity;
      for (i=0; i<nub; i++) hi[i] = dInfinity;
      //for (i=nub; i<n; i++) lo[i] = 0;
      //for (i=nub; i<n; i++) hi[i] = dInfinity;
      //for (i=nub; i<n; i++) lo[i] = -dInfinity;
      //for (i=nub; i<n; i++) hi[i] = 0;
      for (i=nub; i<n; i++) lo[i] = -(dRandReal()*REAL(1.0))-REAL(0.01);
      for (i=nub; i<n; i++) hi[i] =  (dRandReal()*REAL(1.0))+REAL(0.01);

      // set a few limits to lo=hi=0
      /*
      for (i=0; i<10; i++) {
      int j = dRandInt (n-nub) + nub;
      lo[j] = 0;
      hi[j] = 0;
      }
      */

      // solve the LCP. we must make copy of A,b,lo,hi (A2,b2,lo2,hi2) for
      // SolveLCP() to permute. also, we'll clear the upper triangle of A2 to
      // ensure that it doesn't get referenced (if it does, the answer will be
      // wrong).

      memcpy (A2,A,n*nskip*sizeof(dReal));
      dClearUpperTriangle (A2,n);
      memcpy (b2,b,n*sizeof(dReal));
      memcpy (lo2,lo,n*sizeof(dReal));
      memcpy (hi2,hi,n*sizeof(dReal));
      dSetZero (x,n);
      dSetZero (w,n);

      dStopwatch sw;
      dStopwatchReset (&sw);
      dStopwatchStart (&sw);

      dSolveLCP (arena,n,A2,x,b2,w,nub,lo2,hi2,0);

      dStopwatchStop (&sw);
      double time = dStopwatchTime(&sw);
      total_time += time;
      double average = total_time / double(count+1) * 1000.0;

      // check the solution

      dMultiply0 (tmp1,A,x,n,n,1);
      for (i=0; i<n; i++) tmp2[i] = b[i] + w[i];
      dReal diff = dMaxDifference (tmp1,tmp2,n,1);
      // printf ("\tA*x = b+w, maximum difference = %.6e - %s (1)\n",diff,
      //	    diff > tol ? "FAILED" : "passed");
      if (diff > tol) dDebug (0,"A*x = b+w, maximum difference = %.6e",diff);
      int n1=0,n2=0,n3=0;
      for (i=0; i<n; i++) {
        if (x[i]==lo[i] && w[i] >= 0) {
          n1++;	// ok
        }
        else if (x[i]==hi[i] && w[i] <= 0) {
          n2++;	// ok
        }
        else if (x[i] >= lo[i] && x[i] <= hi[i] && w[i] == 0) {
          n3++;	// ok
        }
        else {
          dDebug (0,"FAILED: i=%d x=%.4e w=%.4e lo=%.4e hi=%.4e",i,
            x[i],w[i],lo[i],hi[i]);
        }
      }

      // pacifier
      printf ("passed: NL=%3d NH=%3d C=%3d   ",n1,n2,n3);
      printf ("time=%10.3f ms  avg=%10.4f\n",time * 1000.0,average);
    
    } END_STATE_SAVE(arena, saveInner);
  }
Esempio n. 4
0
bool LCPSolver::Solve(const MatrixXd& _A, const VectorXd& _b, VectorXd& _x, double mu, int numDir, bool bUseODESolver)
{
    if (!bUseODESolver)
    {
        int err = Lemke(_A, _b, _x);
        return (err == 0);
    }
    else
    {
        assert(numDir >= 4);
        MatrixXd AODE;
        VectorXd bODE;
        transferToODEFormulation(_A, _b, AODE, bODE, numDir);
        double* A, *b, *x, *w, *lo, *hi;
        int n = AODE.rows();
        int nContacts = n / 3;

        int nSkip = dPAD(n);

        A = new double[n * nSkip];
        b = new double[n];
        x = new double[n];
        w = new double[n];
        lo = new double[n];
        hi = new double[n];
        int* findex = new int[n];

        memset(A, 0, n * nSkip * sizeof(double));
        for (int i = 0; i < n; ++i)
        {
            for (int j = 0; j < n; ++j)
            {
                A[i * nSkip + j] = AODE(i, j);
            }
        }
        for (int i = 0; i < n; ++i)
        {
            b[i] = -bODE[i];
            x[i] = w[i] = lo[i] = 0;
            hi[i] = dInfinity;
        }
        for (int i = 0; i < nContacts; ++i)
        {
            findex[i] = -1;
            findex[nContacts + i * 2 + 0] = i;
            findex[nContacts + i * 2 + 1] = i;

            lo[nContacts + i * 2 + 0] = -mu;
            lo[nContacts + i * 2 + 1] = -mu;

            hi[nContacts + i * 2 + 0] = mu;
            hi[nContacts + i * 2 + 1] = mu;

        }
        //		dClearUpperTriangle (A,n);
        dSolveLCP (n,A,x,b,w,0,lo,hi,findex);

        VectorXd xODE = VectorXd::Zero(n);
        for (int i = 0; i < n; ++i)
        {
            xODE[i] = x[i];
        }
        transferSolFromODEFormulation(xODE, _x, numDir);

        //		checkIfSolution(reducedA, reducedb, _x);

        delete[] A;
        delete[] b;
        delete[] x;
        delete[] w;
        delete[] lo;
        delete[] hi;
        delete[] findex;
        return 1;
    }

}
Esempio n. 5
0
//==============================================================================
void DantzigLCPSolver::solve(ConstrainedGroup* _group)
{
  // If there is no constraint, then just return true.
  size_t numConstraints = _group->getNumConstraints();
  if (numConstraints == 0)
    return;

  // Build LCP terms by aggregating them from constraints
  size_t n = _group->getTotalDimension();
  int nSkip = dPAD(n);
  double* A = new double[n * nSkip];
  double* x = new double[n];
  double* b = new double[n];
  double* w = new double[n];
  double* lo = new double[n];
  double* hi = new double[n];
  int* findex = new int[n];

  // Set w to 0 and findex to -1
#ifndef NDEBUG
  std::memset(A, 0.0, n * nSkip * sizeof(double));
#endif
  std::memset(w, 0.0, n * sizeof(double));
  std::memset(findex, -1, n * sizeof(int));

  // Compute offset indices
  size_t* offset = new size_t[n];
  offset[0] = 0;
//  std::cout << "offset[" << 0 << "]: " << offset[0] << std::endl;
  for (size_t i = 1; i < numConstraints; ++i)
  {
    ConstraintBase* constraint = _group->getConstraint(i - 1);
    assert(constraint->getDimension() > 0);
    offset[i] = offset[i - 1] + constraint->getDimension();
//    std::cout << "offset[" << i << "]: " << offset[i] << std::endl;
  }

  // For each constraint
  ConstraintInfo constInfo;
  constInfo.invTimeStep = 1.0 / mTimeStep;
  ConstraintBase* constraint;
  for (size_t i = 0; i < numConstraints; ++i)
  {
    constraint = _group->getConstraint(i);

    constInfo.x      = x      + offset[i];
    constInfo.lo     = lo     + offset[i];
    constInfo.hi     = hi     + offset[i];
    constInfo.b      = b      + offset[i];
    constInfo.findex = findex + offset[i];
    constInfo.w      = w      + offset[i];

    // Fill vectors: lo, hi, b, w
    constraint->getInformation(&constInfo);

    // Fill a matrix by impulse tests: A
    constraint->excite();
    for (size_t j = 0; j < constraint->getDimension(); ++j)
    {
      // Adjust findex for global index
      if (findex[offset[i] + j] >= 0)
        findex[offset[i] + j] += offset[i];

      // Apply impulse for mipulse test
      constraint->applyUnitImpulse(j);

      // Fill upper triangle blocks of A matrix
      int index = nSkip * (offset[i] + j) + offset[i];
      constraint->getVelocityChange(A + index, true);
      for (size_t k = i + 1; k < numConstraints; ++k)
      {
        index = nSkip * (offset[i] + j) + offset[k];
        _group->getConstraint(k)->getVelocityChange(A + index, false);
      }

      // Filling symmetric part of A matrix
      for (size_t k = 0; k < i; ++k)
      {
        for (size_t l = 0; l < _group->getConstraint(k)->getDimension(); ++l)
        {
          int index1 = nSkip * (offset[i] + j) + offset[k] + l;
          int index2 = nSkip * (offset[k] + l) + offset[i] + j;

          A[index1] = A[index2];
        }
      }
    }

    assert(isSymmetric(n, A, offset[i],
                       offset[i] + constraint->getDimension() - 1));

    constraint->unexcite();
  }

  assert(isSymmetric(n, A));

  // Print LCP formulation
//  dtdbg << "Before solve:" << std::endl;
//  print(n, A, x, lo, hi, b, w, findex);
//  std::cout << std::endl;

  // Solve LCP using ODE's Dantzig algorithm
  dSolveLCP(n, A, x, b, w, 0, lo, hi, findex);

  // Print LCP formulation
//  dtdbg << "After solve:" << std::endl;
//  print(n, A, x, lo, hi, b, w, findex);
//  std::cout << std::endl;

  // Apply constraint impulses
  for (size_t i = 0; i < numConstraints; ++i)
  {
    constraint = _group->getConstraint(i);
    constraint->applyImpulse(x + offset[i]);
    constraint->excite();
  }

  delete[] offset;

  delete[] A;
  delete[] x;
  delete[] b;
  delete[] w;
  delete[] lo;
  delete[] hi;
  delete[] findex;
}
Esempio n. 6
0
bool ODELCPSolver::Solve(const Eigen::MatrixXd& _A,
                      const Eigen::VectorXd& _b,
                      Eigen::VectorXd* _x,
                      int _numContacts,
                      double _mu,
                      int _numDir,
                      bool _bUseODESolver) {
  if (!_bUseODESolver) {
    int err = Lemke(_A, _b, _x);
    return (err == 0);
  } else {
    assert(_numDir >= 4);
    DART_UNUSED(_numDir);

    double* A, *b, *x, *w, *lo, *hi;
    int n = _A.rows();

    int nSkip = dPAD(n);

    A = new double[n * nSkip];
    b = new double[n];
    x = new double[n];
    w = new double[n];
    lo = new double[n];
    hi = new double[n];
    int* findex = new int[n];

    memset(A, 0, n * nSkip * sizeof(double));
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        A[i * nSkip + j] = _A(i, j);
      }
    }
    for (int i = 0; i < n; ++i) {
      b[i] = -_b[i];
      x[i] = w[i] = lo[i] = 0;
      hi[i] = dInfinity;
      findex[i] = -1;
    }
    for (int i = 0; i < _numContacts; ++i) {
      findex[_numContacts + i * 2 + 0] = i;
      findex[_numContacts + i * 2 + 1] = i;

      lo[_numContacts + i * 2 + 0] = -_mu;
      lo[_numContacts + i * 2 + 1] = -_mu;

      hi[_numContacts + i * 2 + 0] = _mu;
      hi[_numContacts + i * 2 + 1] = _mu;
    }
    // dClearUpperTriangle (A,n);
    dSolveLCP(n, A, x, b, w, 0, lo, hi, findex);

//    for (int i = 0; i < n; i++) {
//      if (w[i] < 0.0 && abs(x[i] - hi[i]) > 0.000001)
//        cout << "w[" << i << "] is negative, but x is " << x[i] << endl;
//      else if (w[i] > 0.0 && abs(x[i] - lo[i]) > 0.000001)
//        cout << "w[" << i << "] is positive, but x is " << x[i]
//                << " lo is " <<  lo[i] << endl;
//      else if (abs(w[i]) < 0.000001 && (x[i] > hi[i] || x[i] < lo[i]))
//        cout << "w[i] " << i << " is zero, but x is " << x[i] << endl;
//    }

    *_x = Eigen::VectorXd(n);
    for (int i = 0; i < n; ++i) {
      (*_x)[i] = x[i];
    }

    // checkIfSolution(reducedA, reducedb, _x);

    delete[] A;
    delete[] b;
    delete[] x;
    delete[] w;
    delete[] lo;
    delete[] hi;
    delete[] findex;
    return 1;
  }
}
Esempio n. 7
0
void
dInternalStepFast (dxWorld * /*world*/, dxBody * body[2], dReal * /*GI*/[2], dReal * GinvI[2], dxJoint * joint, dxJoint::Info1 info, dxJoint::Info2 Jinfo, dReal stepsize)
{
	int i, j, k;

	dReal stepsize1 = dRecip (stepsize);

	int m = info.m;
	// nothing to do if no constraints.
	if (m <= 0)
		return;

	int nub = 0;
	if (info.nub == info.m)
		nub = m;

	// compute A = J*invM*J'. first compute JinvM = J*invM. this has the same
	// format as J so we just go through the constraints in J multiplying by
	// the appropriate scalars and matrices.
	dReal JinvM[2 * 6 * 8];
	//dSetZero (JinvM, 2 * m * 8);

	dReal *Jsrc = Jinfo.J1l;
	dReal *Jdst = JinvM;
	if (body[0])
	{
		for (j = m - 1; j >= 0; j--)
		{
			for (k = 0; k < 3; k++)
				Jdst[k] = dMUL(Jsrc[k],body[0]->invMass);
			dMULTIPLY0_133 (Jdst + 4, Jsrc + 4, GinvI[0]);
			Jsrc += 8;
			Jdst += 8;
		}
	}
	if (body[1])
	{
		Jsrc = Jinfo.J2l;
		Jdst = JinvM + 8 * m;
		for (j = m - 1; j >= 0; j--)
		{
			for (k = 0; k < 3; k++)
				Jdst[k] = dMUL(Jsrc[k],body[1]->invMass);
			dMULTIPLY0_133 (Jdst + 4, Jsrc + 4, GinvI[1]);
			Jsrc += 8;
			Jdst += 8;
		}
	}


	// now compute A = JinvM * J'.
	int mskip = dPAD (m);
	dReal A[6 * 8];
	//dSetZero (A, 6 * 8);

	if (body[0]) {
		Multiply2_sym_p8p (A, JinvM, Jinfo.J1l, m, mskip);
		if (body[1])
			MultiplyAdd2_sym_p8p (A, JinvM + 8 * m, Jinfo.J2l,
                                              m, mskip);
	} else {
		if (body[1])
			Multiply2_sym_p8p (A, JinvM + 8 * m, Jinfo.J2l,
                                           m, mskip);
	}

	// add cfm to the diagonal of A
	for (i = 0; i < m; i++)
		A[i * mskip + i] += dMUL(Jinfo.cfm[i],stepsize1);

	// compute the right hand side `rhs'
	dReal tmp1[16];
	//dSetZero (tmp1, 16);
	// put v/h + invM*fe into tmp1
	for (i = 0; i < 2; i++)
	{
		if (!body[i])
			continue;
		for (j = 0; j < 3; j++)
			tmp1[i * 8 + j] = dMUL(body[i]->facc[j],body[i]->invMass) + dMUL(body[i]->lvel[j],stepsize1);
		dMULTIPLY0_331 (tmp1 + i * 8 + 4, GinvI[i], body[i]->tacc);
		for (j = 0; j < 3; j++)
			tmp1[i * 8 + 4 + j] += dMUL(body[i]->avel[j],stepsize1);
	}
	// put J*tmp1 into rhs
	dReal rhs[6];
	//dSetZero (rhs, 6);

	if (body[0]) {
		Multiply0_p81 (rhs, Jinfo.J1l, tmp1, m);
		if (body[1])
			MultiplyAdd0_p81 (rhs, Jinfo.J2l, tmp1 + 8, m);
	} else {
		if (body[1])
			Multiply0_p81 (rhs, Jinfo.J2l, tmp1 + 8, m);
	}

	// complete rhs
	for (i = 0; i < m; i++)
		rhs[i] = dMUL(Jinfo.c[i],stepsize1) - rhs[i];

#ifdef SLOW_LCP
	// solve the LCP problem and get lambda.
	// this will destroy A but that's okay
	dReal *lambda = (dReal *) ALLOCA (m * sizeof (dReal));
	dReal *residual = (dReal *) ALLOCA (m * sizeof (dReal));
	dReal lo[6], hi[6];
	memcpy (lo, Jinfo.lo, m * sizeof (dReal));
	memcpy (hi, Jinfo.hi, m * sizeof (dReal));
	dSolveLCP (m, A, lambda, rhs, residual, nub, lo, hi, Jinfo.findex);
#endif


	// compute the constraint force `cforce'
	// compute cforce = J'*lambda
	dJointFeedback *fb = joint->feedback;
	dReal cforce[16];
	//dSetZero (cforce, 16);

	if (fb)
	{
		// the user has requested feedback on the amount of force that this
		// joint is applying to the bodies. we use a slightly slower
		// computation that splits out the force components and puts them
		// in the feedback structure.
		dReal data1[8], data2[8];
		if (body[0])
		{
			Multiply1_8q1 (data1, Jinfo.J1l, lambda, m);
			dReal *cf1 = cforce;
			cf1[0] = (fb->f1[0] = data1[0]);
			cf1[1] = (fb->f1[1] = data1[1]);
			cf1[2] = (fb->f1[2] = data1[2]);
			cf1[4] = (fb->t1[0] = data1[4]);
			cf1[5] = (fb->t1[1] = data1[5]);
			cf1[6] = (fb->t1[2] = data1[6]);
		}
		if (body[1])
		{
			Multiply1_8q1 (data2, Jinfo.J2l, lambda, m);
			dReal *cf2 = cforce + 8;
			cf2[0] = (fb->f2[0] = data2[0]);
			cf2[1] = (fb->f2[1] = data2[1]);
			cf2[2] = (fb->f2[2] = data2[2]);
			cf2[4] = (fb->t2[0] = data2[4]);
			cf2[5] = (fb->t2[1] = data2[5]);
			cf2[6] = (fb->t2[2] = data2[6]);
		}
	}
	else
	{
		// no feedback is required, let's compute cforce the faster way
		if (body[0])
			Multiply1_8q1 (cforce, Jinfo.J1l, lambda, m);
		if (body[1])
			Multiply1_8q1 (cforce + 8, Jinfo.J2l, lambda, m);
	}

	for (i = 0; i < 2; i++)
	{
		if (!body[i])
			continue;
		for (j = 0; j < 3; j++)
		{
			body[i]->facc[j] += cforce[i * 8 + j];
			body[i]->tacc[j] += cforce[i * 8 + 4 + j];
		}
	}
}