Esempio n. 1
0
/*
**
** DGESL benchmark
**
** We would like to declare a[][lda], but c does not allow it.  In this
** function, references to a[i][j] are written a[lda*i+j].
**
**   dgesl solves the double precision system
**   a * x = b  or  trans(a) * x = b
**   using the factors computed by dgeco or dgefa.
**
**   on entry
**
**      a       double precision[n][lda]
**              the output from dgeco or dgefa.
**
**      lda     integer
**              the leading dimension of the array  a .
**
**      n       integer
**              the order of the matrix  a .
**
**      ipvt    integer[n]
**              the pivot vector from dgeco or dgefa.
**
**      b       double precision[n]
**              the right hand side vector.
**
**      job     integer
**              = 0         to solve  a*x = b ,
**              = nonzero   to solve  trans(a)*x = b  where
**                          trans(a)  is the transpose.
**
**  on return
**
**      b       the solution vector  x .
**
**   error condition
**
**      a division by zero will occur if the input factor contains a
**      zero on the diagonal.  technically this indicates singularity
**      but it is often caused by improper arguments or improper
**      setting of lda .  it will not occur if the subroutines are
**      called correctly and if dgeco has set rcond .gt. 0.0
**      or dgefa has set info .eq. 0 .
**
**   to compute  inverse(a) * c  where  c  is a matrix
**   with  p  columns
**         dgeco(a,lda,n,ipvt,rcond,z)
**         if (!rcond is too small){
**              for (j=0,j<p,j++)
**                      dgesl(a,lda,n,ipvt,c[j][0],0);
**         }
**
**   linpack. this version dated 08/14/78 .
**   cleve moler, university of new mexico, argonne national lab.
**
**   functions
**
**   blas daxpy,ddot
*/
static void dgesl(REAL *a,int lda,int n,int *ipvt,REAL *b,int job,int roll)

    {
    REAL    t;
    int     k,kb,l,nm1;

    if (roll)
        {
        nm1 = n - 1;
        if (job == 0)
            {

            /* job = 0 , solve  a * x = b   */
            /* first solve  l*y = b         */

            if (nm1 >= 1)
                for (k = 0; k < nm1; k++)
                    {
                    l = ipvt[k];
                    t = b[l];
                    if (l != k)
                        {
                        b[l] = b[k];
                        b[k] = t;
                        }
                    daxpy_r(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1);
                    }

            /* now solve  u*x = y */

            for (kb = 0; kb < n; kb++)
                {
                k = n - (kb + 1);
                b[k] = b[k]/a[lda*k+k];
                t = -b[k];
                daxpy_r(k,t,&a[lda*k+0],1,&b[0],1);
                }
            }
        else
            {

            /* job = nonzero, solve  trans(a) * x = b  */
            /* first solve  trans(u)*y = b             */

            for (k = 0; k < n; k++)
                {
                t = ddot_r(k,&a[lda*k+0],1,&b[0],1);
                b[k] = (b[k] - t)/a[lda*k+k];
                }

            /* now solve trans(l)*x = y     */

            if (nm1 >= 1)
                for (kb = 1; kb < nm1; kb++)
                    {
                    k = n - (kb+1);
                    b[k] = b[k] + ddot_r(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1);
                    l = ipvt[k];
                    if (l != k)
                        {
                        t = b[l];
                        b[l] = b[k];
                        b[k] = t;
                        }
                    }
            }
        }
    else
        {
        nm1 = n - 1;
        if (job == 0)
            {

            /* job = 0 , solve  a * x = b   */
            /* first solve  l*y = b         */

            if (nm1 >= 1)
                for (k = 0; k < nm1; k++)
                    {
                    l = ipvt[k];
                    t = b[l];
                    if (l != k)
                        {
                        b[l] = b[k];
                        b[k] = t;
                        }
                    daxpy_ur(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1);
                    }

            /* now solve  u*x = y */

            for (kb = 0; kb < n; kb++)
                {
                k = n - (kb + 1);
                b[k] = b[k]/a[lda*k+k];
                t = -b[k];
                daxpy_ur(k,t,&a[lda*k+0],1,&b[0],1);
                }
            }
        else
            {

            /* job = nonzero, solve  trans(a) * x = b  */
            /* first solve  trans(u)*y = b             */

            for (k = 0; k < n; k++)
                {
                t = ddot_ur(k,&a[lda*k+0],1,&b[0],1);
                b[k] = (b[k] - t)/a[lda*k+k];
                }

            /* now solve trans(l)*x = y     */

            if (nm1 >= 1)
                for (kb = 1; kb < nm1; kb++)
                    {
                    k = n - (kb+1);
                    b[k] = b[k] + ddot_ur(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1);
                    l = ipvt[k];
                    if (l != k)
                        {
                        t = b[l];
                        b[l] = b[k];
                        b[k] = t;
                        }
                    }
            }
        }
    }
void dgesl(int *a,int lda,int n,int *ipvt,int *b,int job,int roll)

    {
    int    t;
    int     k,kb,l,nm1;




    if (roll>=1)
        {
        nm1 = n - 1;
        if (job == 0)
            {

            if (nm1 >= 1)
                for (k = 0; k < nm1; k++)
                    {
                    l = ipvt[k];
                    t = b[l];
                    if (!(l == k))
                        {
                        b[l] = b[k];
                        b[k] = t;
                        }
                    daxpy_r(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1);
                    }



            for (kb = 0; kb < n; kb++)
                { 
                k = n - (kb + 1);
                b[k] = b[k]/a[lda*k+k];
                t = -b[k];
                daxpy_r(k,t,&a[lda*k+0],1,&b[0],1);
                }
            }

    
        else
            {

            for (k = 0; k < n; k++)
                {
                t = ddot_r(k,&a[lda*k+0],1,&b[0],1);
                b[k] = (b[k] - t)/a[lda*k+k];
                }



            if (nm1 >= 1)
                for (kb = 1; kb < nm1; kb++)
                    {
                    k = n - (kb+1);
                    b[k] = b[k] + ddot_r(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1);
                    l = ipvt[k];
                    if (!(l == k))
                        {
                        t = b[l];
                        b[l] = b[k];
                        b[k] = t;
                        }
                    }
            }
        }
    else
        {
        nm1 = n - 1;
        if (job == 0)
            {

            if (nm1 >= 1)
                for (k = 0; k < nm1; k++)
                    { 
                    l = ipvt[k];
                    t = b[l];
                    if (!(l == k))
                        {
                        b[l] = b[k];
                        b[k] = t;
                        }

                    daxpy_ur(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1);

                    }



            for (kb = 0; kb < n; kb++)
                {
                k = n - (kb + 1);
                b[k] = b[k]/a[lda*k+k];
                t = -b[k];
                daxpy_ur(k,t,&a[lda*k+0],1,&b[0],1);
                }
            }
        else
            {




            for (k = 0; k < n; k++)
                {
                t = ddot_ur(k,&a[lda*k+0],1,&b[0],1);
                b[k] = (b[k] - t)/a[lda*k+k];
                }



            if (nm1 >= 1)
                for (kb = 1; kb < nm1; kb++)
                    {
                    k = n - (kb+1);
                    b[k] = b[k] + ddot_ur(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1);
                    l = ipvt[k];
                    if (!(l == k))
                        {
                        t = b[l];
                        b[l] = b[k];
                        b[k] = t;
                        }
                    }
            }
        }
    }
Esempio n. 3
0
/*
**
** DGEFA benchmark
**
** We would like to declare a[][lda], but c does not allow it.  In this
** function, references to a[i][j] are written a[lda*i+j].
**
**   dgefa factors a double precision matrix by gaussian elimination.
**
**   dgefa is usually called by dgeco, but it can be called
**   directly with a saving in time if  rcond  is not needed.
**   (time for dgeco) = (1 + 9/n)*(time for dgefa) .
**
**   on entry
**
**      a       REAL precision[n][lda]
**              the matrix to be factored.
**
**      lda     integer
**              the leading dimension of the array  a .
**
**      n       integer
**              the order of the matrix  a .
**
**   on return
**
**      a       an upper triangular matrix and the multipliers
**              which were used to obtain it.
**              the factorization can be written  a = l*u  where
**              l  is a product of permutation and unit lower
**              triangular matrices and  u  is upper triangular.
**
**      ipvt    integer[n]
**              an integer vector of pivot indices.
**
**      info    integer
**              = 0  normal value.
**              = k  if  u[k][k] .eq. 0.0 .  this is not an error
**                   condition for this subroutine, but it does
**                   indicate that dgesl or dgedi will divide by zero
**                   if called.  use  rcond  in dgeco for a reliable
**                   indication of singularity.
**
**   linpack. this version dated 08/14/78 .
**   cleve moler, university of New Mexico, argonne national lab.
**
**   functions
**
**   blas daxpy,dscal,idamax
**
*/
static void dgefa(REAL *a,int lda,int n,int *ipvt,int *info,int roll)

    {
    REAL t;
    int /*idamax(),*/j,k,kp1,l,nm1;

    /* gaussian elimination with partial pivoting */

    if (roll)
        {
        *info = 0;
        nm1 = n - 1;
        if (nm1 >=  0)
            for (k = 0; k < nm1; k++)
                {
                kp1 = k + 1;

                /* find l = pivot index */

                l = idamax(n-k,&a[lda*k+k],1) + k;
                ipvt[k] = l;

                /* zero pivot implies this column already
                   triangularized */

                if (a[lda*k+l] != ZERO)
                    {

                    /* interchange if necessary */

                    if (l != k)
                        {
                        t = a[lda*k+l];
                        a[lda*k+l] = a[lda*k+k];
                        a[lda*k+k] = t;
                        }

                    /* compute multipliers */

                    t = -ONE/a[lda*k+k];
                    dscal_r(n-(k+1),t,&a[lda*k+k+1],1);

                    /* row elimination with column indexing */

                    for (j = kp1; j < n; j++)
                        {
                        t = a[lda*j+l];
                        if (l != k)
                            {
                            a[lda*j+l] = a[lda*j+k];
                            a[lda*j+k] = t;
                            }
                        daxpy_r(n-(k+1),t,&a[lda*k+k+1],1,&a[lda*j+k+1],1);
                        }
                    }
                else
                    (*info) = k;
                }
        ipvt[n-1] = n-1;
        if (a[lda*(n-1)+(n-1)] == ZERO)
            (*info) = n-1;
        }
    else
        {
        *info = 0;
        nm1 = n - 1;
        if (nm1 >=  0)
            for (k = 0; k < nm1; k++)
                {
                kp1 = k + 1;

                /* find l = pivot index */

                l = idamax(n-k,&a[lda*k+k],1) + k;
                ipvt[k] = l;

                /* zero pivot implies this column already
                   triangularized */

                if (a[lda*k+l] != ZERO)
                    {

                    /* interchange if necessary */

                    if (l != k)
                        {
                        t = a[lda*k+l];
                        a[lda*k+l] = a[lda*k+k];
                        a[lda*k+k] = t;
                        }

                    /* compute multipliers */

                    t = -ONE/a[lda*k+k];
                    dscal_ur(n-(k+1),t,&a[lda*k+k+1],1);

                    /* row elimination with column indexing */

                    for (j = kp1; j < n; j++)
                        {
                        t = a[lda*j+l];
                        if (l != k)
                            {
                            a[lda*j+l] = a[lda*j+k];
                            a[lda*j+k] = t;
                            }
                        daxpy_ur(n-(k+1),t,&a[lda*k+k+1],1,&a[lda*j+k+1],1);
                        }
                    }
                else
                    (*info) = k;
                }
        ipvt[n-1] = n-1;
        if (a[lda*(n-1)+(n-1)] == ZERO)
            (*info) = n-1;
        }
    }
void dgefa(int *a,int lda,int n,int *ipvt,int *info,int roll)

    {
    int t;
    int idamax(),j,k,kp1,l,nm1;

    if (roll>=1)
        {
        *info = 0;
        nm1 = n - 1;
        if (nm1 >=  0)
            for (k = 0; k < nm1; k++)
                {
                kp1 = k + 1;



               l = idamax(n-k,&a[lda*k+k],1) + k;
           
                ipvt[k] = l;


                if (!(a[lda*k+l] == ZERO))
                    {



                    if (!(l == k))
                        {
                        t = a[lda*k+l];
                        a[lda*k+l] = a[lda*k+k];
                        a[lda*k+k] = t;
                        }



                    t = -ONE/a[lda*k+k];
                    dscal_r(n-(k+1),t,&a[lda*k+k+1],1);



                    for (j = kp1; j < n; j++)
                        {
                        t = a[lda*j+l];
                        if (!(l == k))
                            {
                            a[lda*j+l] = a[lda*j+k];
                            a[lda*j+k] = t;
                            }
                        daxpy_r(n-(k+1),t,&a[lda*k+k+1],1,&a[lda*j+k+1],1);
                        }
                    }
                else
                    (*info) = k;
                }
        ipvt[n-1] = n-1;
        if (a[lda*(n-1)+(n-1)] == ZERO)
            (*info) = n-1;
        }
    else
        {
        *info = 0;
        nm1 = n - 1;
        if (nm1 >=  0)
            for (k = 0; k < nm1; k++)
                {
                kp1 = k + 1;



                l = idamax(n-k,&a[lda*k+k],1) + k;
               
                ipvt[k] = l;




                if (!(a[lda*k+l] == ZERO))
                    {



                    if (!(l == k))
                        {
                        t = a[lda*k+l];
                        a[lda*k+l] = a[lda*k+k];
                        a[lda*k+k] = t;
                        }



                    t = -ONE/a[lda*k+k];
                    dscal_ur(n-(k+1),t,&a[lda*k+k+1],1);



                    for (j = kp1; j < n; j++)
                        {
                        t = a[lda*j+l];
                        if (!(l == k))
                            {
                            a[lda*j+l] = a[lda*j+k];
                            a[lda*j+k] = t;
                            }
                        daxpy_ur(n-(k+1),t,&a[lda*k+k+1],1,&a[lda*j+k+1],1);
                        }
                    }
                else
                    (*info) = k;
                }
        ipvt[n-1] = n-1;
        if (a[lda*(n-1)+(n-1)] == ZERO)
            (*info) = n-1;
        }
    }