pulsesequence() { /* DECLARE VARIABLES */ char autocal[MAXSTR], /* auto-calibration flag */ fsat[MAXSTR], fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ f3180[MAXSTR], /* Flag to start t3 @ halfdwell */ fco180[MAXSTR], /* Flag for checking sequence */ fca180[MAXSTR], /* Flag for checking sequence */ spca180[MAXSTR], /* string for the waveform Ca 180 */ spco180[MAXSTR], /* string for the waveform Co 180 */ spchirp[MAXSTR], /* string for the waveform reburp 180 */ ddseq[MAXSTR], /* 2H decoupling seqfile */ shp_sl[MAXSTR], /* string for seduce shape */ sel_flg[MAXSTR]; int phase, phase2, phase3, ni2, ni3, icosel, t1_counter, /* used for states tppi in t1 */ t2_counter, /* used for states tppi in t2 */ t3_counter; /* used for states tppi in t3 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ tau3, /* t2 delay */ taua, /* ~ 1/4JNH = 2.25 ms */ taub, /* ~ 1/4JNH = 2.25 ms */ zeta, /* time for C'-N to refocuss set to 0.5*24.0 ms */ bigTN, /* nitrogen T period */ pwc90, /* PW90 for c nucleus @ d_c90 */ pwc180on, /* PW180 at @ d_c180 */ pwchirp, /* PW180 for ca nucleus @ d_creb */ pwc180off, /* PW180 at d_c180 + pad */ tsatpwr, /* low level 1H trans.power for presat */ d_c90, /* power level for 13C pulses(pwc90 = sqrt(15)/4delta) delta is the separation between Ca and Co */ d_c180, /* power level for 180 13C pulses (pwc180on=sqrt(3)/2delta */ d_chirp, sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ sw3, /* sweep width in f3 */ pw_sl, /* pw90 for H selective pulse on water ~ 2ms */ phase_sl, /* phase for pw_sl */ tpwrsl, /* power level for square pw_sl */ pwDlvl, /* Power for D decoupling */ pwD, /* pw90 at pwDlvl */ pwC, pwClvl, /* C-13 calibration */ compC, pwN, /* PW90 for 15N pulse */ pwNlvl, /* high dec2 pwr for 15N hard pulses */ gstab, /* delay to compensate for gradient gt5 */ gt1, gt2, gt3, gt4, gt5, gt6, gt7, gt8, gt9, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, gzlvl7, gzlvl8, gzlvl9; /* LOAD VARIABLES */ getstr("autocal",autocal); getstr("fsat",fsat); getstr("fco180",fco180); getstr("fca180",fca180); getstr("f1180",f1180); getstr("f2180",f2180); getstr("f3180",f3180); getstr("fscuba",fscuba); getstr("ddseq",ddseq); getstr("shp_sl",shp_sl); getstr("sel_flg",sel_flg); taua = getval("taua"); taub = getval("taub"); zeta = getval("zeta"); bigTN = getval("bigTN"); tpwr = getval("tpwr"); tsatpwr = getval("tsatpwr"); dpwr = getval("dpwr"); pwN = getval("pwN"); pwNlvl = getval("pwNlvl"); pwD = getval("pwD"); pwDlvl = getval("pwDlvl"); phase = (int) ( getval("phase") + 0.5); phase2 = (int) ( getval("phase2") + 0.5); phase3 = (int) ( getval("phase3") + 0.5); sw1 = getval("sw1"); sw2 = getval("sw2"); sw3 = getval("sw3"); ni2 = getval("ni2"); ni3 = getval("ni3"); pw_sl = getval("pw_sl"); phase_sl = getval("phase_sl"); tpwrsl = getval("tpwrsl"); gstab = getval("gstab"); gt1 = getval("gt1"); if (getval("gt2") > 0) gt2=getval("gt2"); else gt2=gt1*0.1; gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gt7 = getval("gt7"); gt8 = getval("gt8"); gt9 = getval("gt9"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); gzlvl7 = getval("gzlvl7"); gzlvl8 = getval("gzlvl8"); gzlvl9 = getval("gzlvl9"); if(autocal[0]=='n') { getstr("spca180",spca180); getstr("spco180",spco180); getstr("spchirp",spchirp); pwc90 = getval("pwc90"); pwc180on = getval("pwc180on"); pwc180off = getval("pwc180off"); d_c90 = getval("d_c90"); d_c180 = getval("d_c180"); pwchirp = getval("pwchirp"); d_chirp = getval("d_chirp"); } else { strcpy(spca180,"Phard180ca"); strcpy(spco180,"Phard180co"); strcpy(spchirp,"Pchirp180"); if (FIRST_FID) { pwC = getval("pwC"); compC = getval("compC"); pwClvl = getval("pwClvl"); co90 = pbox("cal", CO90, CO180ps, dfrq, pwC*compC, pwClvl); co180 = pbox("cal", CO180, CO180ps, dfrq, pwC*compC, pwClvl); ca180 = pbox(spca180, CA180, CA180ps, dfrq, pwC*compC, pwClvl); co180a = pbox(spco180, CO180a, CA180ps, dfrq, pwC*compC, pwClvl); chirp = pbox(spchirp, CHIRP, CHIRPps, dfrq, pwC*compC, pwClvl); } pwc90 = co90.pw; d_c90 = co90.pwr; pwc180on = co180.pw; d_c180 = co180.pwr; pwc180off = ca180.pw; pwchirp = chirp.pw; d_chirp = chirp.pwr; } /* LOAD PHASE TABLE */ settable(t1,2,phi1); settable(t2,2,phi2); settable(t3,4,phi3); settable(t4,1,phi4); settable(t5,4,phi5); settable(t6,4,rec); /* CHECK VALIDITY OF PARAMETER RANGES */ if( bigTN - (ni3-1)*0.5/sw3 - WFG3_START_DELAY < 0.2e-6 ) { text_error(" ni3 is too big\n"); text_error(" please set ni3 smaller or equal to %d\n", (int) ((bigTN -WFG3_START_DELAY)*sw3*2.0) +1 ); psg_abort(1); } if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' || dm[D] == 'y' )) { text_error("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' || dm2[D] == 'y')) { text_error("incorrect dec2 decoupler flags! Should be 'nnnn' "); psg_abort(1); } if( tsatpwr > 6 ) { text_error("TSATPWR too large !!! "); psg_abort(1); } if( dpwr > 46 ) { text_error("don't fry the probe, DPWR too large! "); psg_abort(1); } if( dpwr2 > 46 ) { text_error("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( dpwr3 > 50 ) { text_error("don't fry the probe, dpwr3 too large! "); psg_abort(1); } if( d_c90 > 62 ) { text_error("don't fry the probe, DHPWR too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { text_error("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 200.0e-6 ) { text_error("dont fry the probe, pwN too high ! "); psg_abort(1); } if( pwc90 > 200.0e-6 ) { text_error("dont fry the probe, pwc90 too high ! "); psg_abort(1); } if( pwc180off > 200.0e-6 ) { text_error("dont fry the probe, pwc180 too high ! "); psg_abort(1); } if( gt3 > 2.5e-3 ) { text_error("gt3 is too long\n"); psg_abort(1); } if( gt1 > 10.0e-3 || gt2 > 10.0e-3 || gt4 > 10.0e-3 || gt5 > 10.0e-3 || gt6 > 10.0e-3 || gt7 > 10.0e-3 || gt8 > 10.0e-3 || gt9 > 10.0e-3) { text_error("gt values are too long. Must be < 10.0e-3 or gt11=50us\n"); psg_abort(1); } if((fca180[A] == 'y') && (ni2 > 1)) { text_error("must set fca180='n' to allow Calfa evolution (ni2>1)\n"); psg_abort(1); } if((fco180[A] == 'y') && (ni > 1)) { text_error("must set fco180='n' to allow CO evolution (ni>1)\n"); psg_abort(1); } /* Phase incrementation for hypercomplex 2D data */ if (phase == 2) tsadd(t1,1,4); if (phase2 == 2) tsadd(t5,1,4); if (phase3 == 2) { tsadd(t4, 2, 4); icosel = 1; } else icosel = -1; /* Set up f1180 tau1 = t1 */ tau1 = d2; if((f1180[A] == 'y') && (ni > 1)) { if (pwc180off > 2.0*pwN) tau1 += (1.0/(2.0*sw1) - 4.0*pwc90/PI - pwc180off - WFG3_START_DELAY - WFG3_STOP_DELAY - 4.0e-6 - 2.0*POWER_DELAY - 4.0e-6); else tau1 += (1.0/(2.0*sw1) - 4.0*pwc90/PI - 2.0*pwN - WFG3_START_DELAY - WFG3_STOP_DELAY - 4.0e-6 - 2.0*POWER_DELAY - 4.0e-6); if(tau1 < 0.2e-6) { tau1 = 0.4e-6; text_error("tau1 could be negative"); } } else { if (pwc180off > 2.0*pwN) tau1 = tau1 - 4.0*pwc90/PI - pwc180off - WFG3_START_DELAY - WFG3_STOP_DELAY - 4.0e-6 - 2.0*POWER_DELAY - 4.0e-6; else tau1 = tau1 - 4.0*pwc90/PI - 2.0*pwN - WFG3_START_DELAY - WFG3_STOP_DELAY - 4.0e-6 - 2.0*POWER_DELAY - 4.0e-6; if(tau1 < 0.2e-6) tau1 = 0.4e-6; } tau1 = tau1/2.0; /* Set up f2180 tau2 = t2 */ tau2 = d3; if((f2180[A] == 'y') && (ni2 > 1)) { if (pwc180off > 2.0*pwN) tau2 += ( 1.0 / (2.0*sw2) - 4.0*pwc90/PI - 4.0e-6 - 2.0*POWER_DELAY - WFG3_START_DELAY - pwc180off - WFG3_STOP_DELAY - 4.0e-6); else tau2 += ( 1.0 / (2.0*sw2) - 4.0*pwc90/PI - 4.0e-6 - 2.0*POWER_DELAY - WFG3_START_DELAY - 2.0*pwN - WFG3_STOP_DELAY - 4.0e-6); if(tau2 < 0.2e-6) { tau2 = 0.4e-6; text_error("tau2 could be negative"); } } else { if (pwc180off > 2.0*pwN) tau2 = tau2 - 4.0*pwc90/PI - 4.0e-6 - 2.0*POWER_DELAY - WFG3_START_DELAY - pwc180off - WFG3_STOP_DELAY - 4.0e-6; else tau2 = tau2 - 4.0*pwc90/PI - 4.0e-6 - 2.0*POWER_DELAY - WFG3_START_DELAY - 2.0*pwN - WFG3_STOP_DELAY - 4.0e-6; if(tau2 < 0.2e-6) tau2 = 0.4e-6; } tau2 = tau2/2.0; /* Set up f3180 tau3 = t3 */ tau3 = d4; if ((f3180[A] == 'y') && (ni3 > 1)) { tau3 += ( 1.0 / (2.0*sw3) ); if(tau3 < 0.2e-6) tau3 = 0.4e-6; } tau3 = tau3/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t1,2,4); tsadd(t6,2,4); } if( ix == 1) d3_init = d3 ; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t5,2,4); tsadd(t6,2,4); } if( ix == 1) d4_init = d4 ; t3_counter = (int) ( (d4-d4_init)*sw3 + 0.5 ); if(t3_counter % 2) { tsadd(t2,2,4); tsadd(t6,2,4); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); obsoffset(tof); decoffset(dof); /* set Dec1 carrier at Co */ obspower(tsatpwr); /* Set transmitter power for 1H presaturation */ decpower(d_chirp); /* Set Dec1 power for hard 13C pulses */ dec2power(pwNlvl); /* Set Dec2 power for 15N hard pulses */ /* Presaturation Period */ if (fsat[0] == 'y') { delay(2.0e-5); rgpulse(d1,zero,2.0e-6,2.0e-6); /* presaturation */ obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if (fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(zero); dec2phase(zero); delay(1.0e-5); /* Begin Pulses */ status(B); rcvroff(); lk_hold(); delay(20.0e-6); initval(1.0,v2); obsstepsize(phase_sl); xmtrphase(v2); /* shaped pulse */ obspower(tpwrsl); shaped_pulse(shp_sl,pw_sl,one,4.0e-6,0.0); xmtrphase(zero); obspower(tpwr); txphase(zero); delay(4.0e-6); /* shaped pulse */ rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(2.0e-6); delay(taua - gt5 - 2.2e-6); /* taua <= 1/4JNH */ sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); txphase(three); dec2phase(zero); decphase(zero); delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(200.0e-6); delay(taua - gt5 - 200.2e-6 - 2.0e-6); if (sel_flg[A] == 'n') { rgpulse(pw,three,2.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(200.0e-6); dec2rgpulse(pwN,zero,0.0,0.0); delay( zeta ); dec2rgpulse(2.0*pwN,zero,0.0,0.0); decshaped_pulse(spchirp,pwchirp,zero,0.0,0.0); delay(zeta -WFG_START_DELAY -pwchirp -WFG_STOP_DELAY -2.0e-6); dec2rgpulse(pwN,zero,2.0e-6,0.0); } else { rgpulse(pw,one,2.0e-6,0.0); initval(1.0,v3); dec2stepsize(45.0); dcplr2phase(v3); delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(200.0e-6); dec2rgpulse(pwN,zero,0.0,0.0); dcplr2phase(zero); delay(1.34e-3 - SAPS_DELAY - 2.0*pw); rgpulse(pw,one,0.0,0.0); rgpulse(2.0*pw,zero,0.0,0.0); rgpulse(pw,one,0.0,0.0); delay( zeta - 1.34e-3 - 2.0*pw); dec2rgpulse(2.0*pwN,zero,0.0,0.0); decshaped_pulse(spchirp,pwchirp,zero,0.0,0.0); delay(zeta -WFG_START_DELAY -pwchirp -WFG_STOP_DELAY -2.0e-6); dec2rgpulse(pwN,zero,2.0e-6,0.0); } dec2phase(zero); decphase(t1); decpower(d_c90); delay(0.2e-6); zgradpulse(gzlvl8,gt8); delay(200.0e-6); decrgpulse(pwc90,t1,2.0e-6,0.0); /* t1 period for Co evolution begins */ if (fco180[A]=='n') { decpower(d_c180); delay(tau1); sim3shaped_pulse("",spca180,"",0.0,pwc180off,2.0*pwN,zero,zero,zero,4.0e-6,0.0); decpower(d_c90); delay(tau1); } else /* for checking sequence */ { decpower(d_c180); decrgpulse(pwc180on,zero,4.0e-6,0.0); decpower(d_c90); } /* t1 period for Co evolution ends */ decrgpulse(pwc90,zero,4.0e-6,0.0); decoffset(dof-(174-56)*dfrq); /* change Dec1 carrier to Ca (55 ppm) */ delay(0.2e-6); zgradpulse(gzlvl4,gt4); delay(150.0e-6); /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ decrgpulse(pwc90,t5,2.0e-6,0.0); /* t2 period for Ca evolution begins */ if (fca180[A]=='n') { decphase(zero); dec2phase(zero); decpower(d_c180); delay(tau2); sim3shaped_pulse("",spco180,"",0.0,pwc180off,2.0*pwN,zero,zero,zero,4.0e-6,0.0); decpower(d_c90); delay(tau2); } else /* for checking sequence */ { decpower(d_c180); decrgpulse(pwc180on,zero,4.0e-6,0.0); decpower(d_c90); } /* t2 period for Ca evolution ends */ decrgpulse(pwc90,zero,4.0e-6,0.0); /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3phase(three); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ decoffset(dof); /* set carrier back to Co */ decpower(d_chirp); delay(0.2e-6); zgradpulse(gzlvl9,gt9); delay(150.0e-6); /* t3 period begins */ dec2rgpulse(pwN,t2,2.0e-6,0.0); dec2phase(t3); delay(bigTN - tau3); dec2rgpulse(2.0*pwN,t3,0.0,0.0); decshaped_pulse(spchirp,pwchirp,zero,0.0,0.0); txphase(zero); dec2phase(t4); delay(0.2e-6); zgradpulse(gzlvl1,gt1); delay(500.0e-6); delay(bigTN - WFG_START_DELAY - pwchirp - WFG_STOP_DELAY -gt1 -500.2e-6 -2.0*GRADIENT_DELAY); delay(tau3); sim3pulse(pw,0.0e-6,pwN,zero,zero,t4,0.0,0.0); /* t3 period ends */ decpower(d_c90); decrgpulse(pwc90,zero,4.0e-6,0.0); decoffset(dof-(174-56)*dfrq); decrgpulse(pwc90,zero,20.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(2.0e-6); dec2phase(zero); delay(taub - POWER_DELAY - 4.0e-6 - pwc90 - 20.0e-6 - pwc90 - gt6 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); decoffset(dof); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(200.0e-6); txphase(one); dec2phase(one); delay(taub - gt6 - 200.2e-6); sim3pulse(pw,0.0e-6,pwN,one,zero,one,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(taub - gt7 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(200.0e-6); delay(taub - gt7 - 200.2e-6); sim3pulse(pw,0.0e-6,pwN,zero,zero,zero,0.0,0.0); delay(gt2 +gstab -0.5*(pwN -pw) -2.0*pw/PI); rgpulse(2*pw,zero,0.0,0.0); delay(2.0e-6); zgradpulse(icosel*gzlvl2,gt2); decpower(dpwr); dec2power(dpwr2); delay(gstab -2.0e-6 -2.0*GRADIENT_DELAY -2.0*POWER_DELAY); lk_sample(); /* BEGIN ACQUISITION */ status(C); setreceiver(t6); }
pulsesequence() { char sel_flg[MAXSTR], autocal[MAXSTR], glyshp[MAXSTR]; int icosel, t1_counter, ni = getval("ni"); double d2_init=0.0, tau1, tau2, tau3, glypwr,glypwrf, /* Power levels for Cgly selective 90 */ pwgly, /* Pulse width for Cgly selective 90 */ waltzB1 = getval("waltzB1"), /* 1H decoupling strength (in Hz) */ timeTN = getval("timeTN"), /* constant time for 15N evolution */ tauCaCb = getval("tauCaCb"), tauNCa = getval("tauNCa"), tauNCo = getval("tauNCo"), tauCaCo = getval("tauCaCo"), compH = getval("compH"), /* adjustment for H1 amplifier compression */ tpwrs, /* power for the pwHs ("H2Osinc") pulse */ bw,ppm, pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ compC = getval("compC"), /* amplifier compression for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ dpwr2 = getval("dpwr2"), /* power for N15 decoupling */ pwCa90, /* length of square 90 on Ca */ pwCa180, pwCab90, pwCab180, phshift, /* phase shift induced on Ca by 180 on CO in middle of t1 */ pwCO180, /* length of 180 on CO */ pwS = getval("pwS"), /* used to change 180 on CO in t1 for 1D calibrations */ pwZ, /* the largest of pwCO180 and 2.0*pwN */ pwZ1, /* the largest of pwCO180 and 2.0*pwN for 1D experiments */ sw1 = getval("sw1"), swCb = getval("swCb"), swCa = getval("swCa"), swN = getval("swN"), swTilt, /* This is the sweep width of the tilt vector */ cos_N, cos_Ca, cos_Cb, angle_N, angle_Ca, angle_Cb, /* angle_N is calculated automatically */ gstab = getval("gstab"), gt0 = getval("gt0"), gzlvl0 = getval("gzlvl0"), gt1 = getval("gt1"), gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), gt3 = getval("gt3"), gzlvl3 = getval("gzlvl3"), gt4 = getval("gt4"), gzlvl4 = getval("gzlvl4"), gt5 = getval("gt5"), gzlvl5 = getval("gzlvl5"), gt6 = getval("gt6"), gzlvl6 = getval("gzlvl6"), gt7 = getval("gt7"), gzlvl7 = getval("gzlvl7"), gt10= getval("gt10"), gzlvl10= getval("gzlvl10"), gt11= getval("gt11"), gzlvl11= getval("gzlvl11"), gt12= getval("gt12"), gzlvl12= getval("gzlvl12"); angle_N = 0; glypwr = getval("glypwr"); pwgly = getval("pwgly"); tau1 = 0; tau2 = 0; tau3 = 0; cos_N = 0; cos_Cb = 0; cos_Ca = 0; getstr("autocal", autocal); getstr("glyshp", glyshp); getstr("sel_flg",sel_flg); pwHs = getval("pwHs"); /* H1 90 degree pulse length at tpwrs */ /* LOAD PHASE TABLE */ settable(t2,1,phy); settable(t3,2,phi3); settable(t4,1,phx); settable(t5,4,phi5); settable(t8,1,phy); settable(t9,8,phi9); settable(t10,1,phx); settable(t11,1,phy); settable(t12,4,rec); /* INITIALIZE VARIABLES */ kappa = 5.4e-3; lambda = 2.4e-3; /* selective H20 one-lobe sinc pulse */ tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /*needs 1.69 times more*/ tpwrs = (int) (tpwrs); /*power than a square pulse */ pwHs = 1.7e-3*500.0/sfrq; widthHd = 2.861*(waltzB1/sfrq); /* bandwidth of H1 WALTZ16 decoupling in ppm */ pwHd = h1dec90pw("WALTZ16", widthHd, 0.0); /* H1 90 length for WALTZ16 */ /* get calculated pulse lengths of shaped C13 pulses */ pwCa90 = c13pulsepw("ca", "co", "square", 90.0); pwCa180 = c13pulsepw("ca", "co", "square", 180.0); pwCO180 = c13pulsepw("co", "cab", "sinc", 180.0); pwCab90 = c13pulsepw("cab","co", "square", 90.0); pwCab180= c13pulsepw("cab","co", "square", 180.0); /* the 180 pulse on CO at the middle of t1 */ if (pwCO180 > 2.0*pwN) pwZ = pwCO180; else pwZ = 2.0*pwN; if ((pwS==0.0) && (pwCO180>2.0*pwN)) pwZ1=pwCO180-2.0*pwN; else pwZ1=0.0; if ( ni > 1 ) pwS = 180.0; if ( pwS > 0 ) phshift = 320.0; else phshift = 0.0; /* CHECK VALIDITY OF PARAMETER RANGES */ if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ) { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);} if ( dm2[A] == 'y' || dm2[B] == 'y' ) { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);} if ( dm3[A] == 'y' || dm3[C] == 'y' ) { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1);} if ( dpwr2 > 46 ) { printf("dpwr2 too large! recheck value "); psg_abort(1);} if ( pw > 20.0e-6 ) { printf(" pw too long ! recheck value "); psg_abort(1);} if ( pwN > 100.0e-6 ) { printf(" pwN too long! recheck value "); psg_abort(1);} /* PHASES AND INCREMENTED TIMES */ /* Set up angles and phases */ angle_Cb=getval("angle_Cb"); cos_Cb=cos(PI*angle_Cb/180.0); angle_Ca=getval("angle_Ca"); cos_Ca=cos(PI*angle_Ca/180.0); if ( (angle_Cb < 0) || (angle_Cb > 90) ) { printf ("angle_Cb must be between 0 and 90 degree.\n"); psg_abort(1); } if ( (angle_Ca < 0) || (angle_Ca > 90) ) { printf ("angle_Ca must be between 0 and 90 degree.\n"); psg_abort(1); } if ( 1.0 < (cos_Cb*cos_Cb + cos_Ca*cos_Ca) ) { printf ("Impossible angles.\n"); psg_abort(1); } else { cos_N=sqrt(1.0- (cos_Cb*cos_Cb + cos_Ca*cos_Ca)); angle_N = 180.0*acos(cos_N)/PI; } swTilt=swCb*cos_Cb + swCa*cos_Ca + swN*cos_N; if (ix ==1) { printf("\n\nn\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"); printf ("Maximum Sweep Width: \t\t %f Hz\n", swTilt); printf ("Angle_Cb:\t%6.2f\n", angle_Cb); printf ("Angle_Ca:\t%6.2f\n", angle_Ca); printf ("Angle_N :\t%6.2f\n", angle_N ); } /* Set up hyper complex */ /* sw1 is used as symbolic index */ if ( sw1 < 1000 ) { printf ("Please set sw1 to some value larger than 1000.\n"); psg_abort(1); } if (ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if (t1_counter % 2) { tsadd(t8,2,4); tsadd(t12,2,4); } if (phase1 == 1) { ;} /* CC */ else if (phase1 == 2) { tsadd(t3,3,4); tsadd(t2,3,4);} /* SC */ else if (phase1 == 3) { tsadd(t5,1,4); } /* CS */ else if (phase1 == 4) { tsadd(t3,3,4); tsadd(t2,3,4); tsadd(t5,1,4);} /* SS */ else { printf ("phase1 can only be 1,2,3,4. \n"); psg_abort(1); } if (phase2 == 2) { tsadd(t10,2,4); icosel = +1; } /* N */ else icosel = -1; tau1 = 1.0*t1_counter*cos_Cb/swTilt; tau2 = 1.0*t1_counter*cos_Ca/swTilt; tau3 = 1.0*t1_counter*cos_N/swTilt; tau1 = tau1/2.0; tau2 = tau2/2.0; tau3 = tau3/2.0; /* CHECK VALIDITY OF PARAMETER RANGES */ if (0.5*ni*(cos_N/swTilt) > timeTN - WFG3_START_DELAY) { printf(" ni is too big. Make ni equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*swTilt/cos_N))); psg_abort(1);} /* BEGIN PULSE SEQUENCE */ status(A); delay(d1); if ( dm3[B] == 'y' ) lk_hold(); rcvroff(); obsoffset(tof); obspower(tpwr); obspwrf(4095.0); set_c13offset("cab"); decpower(pwClvl); decpwrf(4095.0); dec2power(pwNlvl); txphase(zero); delay(1.0e-5); decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(gzlvl0, gt0); delay(gstab); decrgpulse(pwC, one, 0.0, 0.0); zgradpulse(0.7*gzlvl0, gt0); delay(gstab); txphase(one); delay(1.0e-5); shiftedpulse("sinc", pwHs, 90.0, 0.0, one, 2.0e-6, 0.0); txphase(zero); decphase(zero); dec2phase(zero); delay(2.0e-6); /* pulse sequence starts */ rgpulse(pw,zero,0.0,0.0); /* 1H pulse excitation */ dec2phase(zero); zgradpulse(gzlvl3, gt3); delay(lambda - gt3); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); if (sel_flg[A] == 'n') txphase(three); else txphase(one); zgradpulse(gzlvl3, gt3); delay(lambda - gt3); if (sel_flg[A] == 'n') { rgpulse(pw, three, 0.0, 0.0); txphase(zero); zgradpulse(gzlvl4, gt4); /* Crush gradient G4 */ delay(gstab); /* Begin of N to Ca transfer */ dec2rgpulse(pwN, one, 0.0, 0.0); decphase(zero); dec2phase(zero); delay(tauNCo - pwCO180/2 - 2.0e-6 - WFG3_START_DELAY); } else /* active suppresion */ { rgpulse(pw,one,2.0e-6,0.0); initval(1.0,v6); dec2stepsize(45.0); dcplr2phase(v6); zgradpulse(gzlvl4, gt4); /* Crush gradient G4 */ delay(gstab); /* Begin of N to Ca transfer */ dec2rgpulse(pwN,one,0.0,0.0); dcplr2phase(zero); /* SAPS_DELAY */ delay(1.34e-3 - SAPS_DELAY - 2.0*pw); rgpulse(pw,one,0.0,0.0); rgpulse(2.0*pw,zero,0.0,0.0); rgpulse(pw,one,0.0,0.0); delay(tauNCo - pwCO180/2 - 1.34e-3 - 2.0*pw - WFG3_START_DELAY); } /* Begin transfer from HzNz to N(i)zC'(i-1)zCa(i)zCa(i-1)z */ c13pulse("co", "cab", "sinc", 180.0, zero, 2.0e-6, 0.0); delay(tauNCa - tauNCo - pwCO180/2 - WFG3_START_DELAY - WFG3_STOP_DELAY - 2.0e-6); /* WFG3_START_DELAY */ sim3_c13pulse("", "cab", "co", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 2.0e-6); delay(tauNCa - 2.0e-6 - WFG3_STOP_DELAY); dec2rgpulse(pwN, zero, 0.0, 0.0); /* End transfer from HzNz to N(i)zC'(i-1)zCa(i)zCa(i-1)z */ zgradpulse(gzlvl5, gt5); delay(gstab); /* Begin removal of Ca(i-1) */ c13pulse("co", "cab", "sinc", 90.0, zero, 2.0e-6, 2.0e-6); zgradpulse(gzlvl6, gt6); delay(tauCaCo - gt6 - pwCab180 - pwCO180/2 - 6.0e-6); c13pulse("cab","co", "square", 180.0, zero, 2.0e-6, 2.0e-6); c13pulse("co","cab", "sinc", 180.0, zero, 2.0e-6, 2.0e-6); zgradpulse(gzlvl6, gt6); delay(tauCaCo - gt6 - pwCab180 - pwCO180/2 - 6.0e-6); c13pulse("cab","co", "square", 180.0, zero, 2.0e-6, 2.0e-6); c13pulse("co", "cab", "sinc", 90.0, one, 2.0e-6, 2.0e-6); /* End removal of Ca(i-1) */ /* xx Selective glycine pulse xx */ set_c13offset("gly"); setautocal(); if (autocal[A] == 'y') { if(FIRST_FID) { ppm = getval("dfrq"); bw=9*ppm; gly90 = pbox_make("gly90","eburp1",bw,0.0,compC*pwC,pwClvl); /* Gly selective 90 with null at 50ppm */ } pwgly=gly90.pw; glypwr=gly90.pwr; glypwrf=gly90.pwrf; decpwrf(glypwrf); decpower(glypwr); decshaped_pulse("gly90",pwgly,zero,2.0e-6,0.0); } else { decpwrf(4095.0); decpower(glypwr); decshaped_pulse(glyshp,pwgly,zero,2.0e-6,0.0); } /* xx End of glycine selecton xx */ zgradpulse(gzlvl7, gt7); set_c13offset("cab"); delay(gstab); decphase(t3); if ( dm3[B] == 'y' ) /* begins optional 2H decoupling */ { dec3unblank(); dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } /* ========== Ca to Cb transfer =========== */ c13pulse("cab", "co", "square", 90.0, t3, 2.0e-6, 2.0e-6); decphase(zero); delay(tauCaCb - 4.0e-6); c13pulse("cab", "co", "square", 180.0, zero, 2.0e-6, 2.0e-6); decphase(t2); delay(tauCaCb - 4.0e-6 ); /* xxxxxxxxxxxxxxxxxxxxxx 13Cb EVOLUTION xxxxxxxxxxxxxxxxxx */ c13pulse("cab", "co", "square", 90.0, t2, 2.0e-6, 0.0); /* pwCa90 */ decphase(zero); if ((ni>1.0) && (tau1>0.0)) { if (tau1 - 2.0*pwCab90/PI - WFG_START_DELAY - pwN - 2.0e-6 - PWRF_DELAY - POWER_DELAY > 0.0) { delay(tau1 - 2.0*pwCab90/PI - pwN - 2.0e-6 ); dec2rgpulse(2.0*pwN, zero, 2.0e-6, 0.0); delay(tau1 - 2.0*pwCab90/PI - pwN - WFG_START_DELAY - 2.0e-6 - PWRF_DELAY - POWER_DELAY); } else { tsadd(t12,2,4); delay(2.0*tau1); delay(10.0e-6); /* WFG_START_DELAY */ sim3_c13pulse("", "cab", "co", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 0.0); delay(10.0e-6); } } else { tsadd(t12,2,4); delay(10.0e-6); /* WFG_START_DELAY */ sim3_c13pulse("", "cab", "co", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 0.0); delay(10.0e-6); } decphase(one); c13pulse("cab", "co", "square", 90.0, one, 2.0e-6, 0.0); /* pwCa90 */ /* xxxxxxxxxxx End of 13Cb EVOLUTION - Start 13Ca EVOLUTION xxxxxxxxxxxx */ decphase(zero); delay(tau2); sim3_c13pulse("", "co", "cab", "sinc", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 0.0); decphase(zero); delay(tauCaCb - 2*pwN - pwCab180/2 - WFG2_START_DELAY - 2.0*PWRF_DELAY - 2.0*POWER_DELAY - WFG2_STOP_DELAY - 4.0e-6 ); c13pulse("cab", "co", "square", 180.0, zero, 2.0e-6, 0.0); delay(tauCaCb- tau2 - pwCO180 - pwCab180/2 - WFG2_START_DELAY - 2.0*PWRF_DELAY -2.0*POWER_DELAY - WFG2_STOP_DELAY - 4.0e-6); c13pulse("co", "cab", "sinc", 180.0, zero, 2.0e-6, 0.0); decphase(t5); c13pulse("cab", "co", "square", 90.0, t5, 2.0e-6, 0.0); /* xxxxxxxxxxxxxxxxxxx End of 13Ca EVOLUTION xxxxxxxxxxxxxxxxxx */ if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); } /* xxxxxxxxxxxxxxxxxxxx N15 EVOLUTION & SE TRAIN xxxxxxxxxxxxxxxxxxxxxxx */ dcplrphase(zero); dec2phase(t8); zgradpulse(gzlvl10, gt10); delay(gstab); dec2rgpulse(pwN, t8, 2.0e-6, 0.0); c13pulse("co", "cab", "sinc", 180.0, zero, 2.0e-6, 0.0); /*pwCO180*/ decphase(zero); dec2phase(t9); delay(timeTN - pwCO180 - WFG3_START_DELAY - tau3 - 4.0e-6); /* WFG3_START_DELAY */ sim3_c13pulse("", "cab", "co", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, t9, 2.0e-6, 2.0e-6); c13pulse("co", "cab", "sinc", 180.0, zero, 2.0e-6, 0.0); /*pwCO180*/ dec2phase(t10); txphase(t4); delay(timeTN - pwCO180 + tau3 - 500.0e-6 - gt1 - 2.0*GRADIENT_DELAY- WFG_START_DELAY - WFG_STOP_DELAY ); delay(0.2e-6); zgradpulse(gzlvl1, gt1); delay(gstab); sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl11, gt11); delay(lambda - 1.3*pwN - gt11); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); zgradpulse(gzlvl11, gt11); txphase(one); dec2phase(t11); delay(lambda - 1.3*pwN - gt11); sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl12, gt12); delay(lambda - 1.3*pwN - gt12); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); dec2phase(zero); zgradpulse(gzlvl12, gt12); delay(lambda - 1.3*pwN - gt12); sim3pulse(pw, 0.0, pwN, zero, zero, zero, 0.0, 0.0); delay((gt1/10.0) + 1.0e-4 + 2.0*GRADIENT_DELAY + POWER_DELAY); rgpulse(2.0*pw, zero, 0.0, 0.0); dec2power(dpwr2); /* POWER_DELAY */ zgradpulse(icosel*gzlvl2, gt1/10.0); /* 2.0*GRADIENT_DELAY */ statusdelay(C, 1.0e-4 ); setreceiver(t12); if (dm3[B]=='y') lk_sample(); }
pulsesequence() { /* DECLARE VARIABLES */ char satmode[MAXSTR], fscuba[MAXSTR], fc180[MAXSTR], /* Flag for checking sequence */ ddseq[MAXSTR], /* 2H decoupling seqfile */ fCTCa[MAXSTR], /* Flag for CT or non_CT on Ca dimension */ sel_flg[MAXSTR], cbdecseq[MAXSTR]; int icosel, ni = getval("ni"), t1_counter; /* used for states tppi in t1 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ tau3, /* t2 delay */ taua, /* ~ 1/4JNH = 2.25 ms */ taub, /* ~ 1/4JNH = 2.25 ms */ tauc, /* ~ 1/4JCaC' = 4 ms */ taud, /* ~ 1/4JCaC' = 4.5 ms if bigTCo can be set to be less than 4.5ms and then taud can be smaller*/ zeta, /* time for C'-N to refocuss set to 0.5*24.0 ms */ bigTCa, /* Ca T period */ bigTCo, /* Co T period */ bigTN, /* nitrogen T period */ BigT1, /* delay to compensate for gradient gt5 */ sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ sphase, /* small angle phase shift */ sphase1, sphase2, /* used only for constant t2 period */ pwS4, /* selective CO 180 */ pwS3, /* selective Ca 180 */ pwS1, /* selecive Ca 90 */ pwS2, /* selective CO 90 */ cbpwr, /* power level for selective CB decoupling */ cbdmf, /* pulse width for selective CB decoupling */ cbres, /* decoupling resolution of CB decoupling */ gt1, gt2, gt3, gt4, gt5, gt6, gt7, gt8, gt9, gt10, gt11, gt12, gstab, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, gzlvl7, gzlvl8, gzlvl9, gzlvl10, gzlvl11, gzlvl12, compH = getval("compH"), /* adjustment for amplifier compression */ pwHs = getval ("pwHs"), /* H1 90 degree pulse at tpwrs */ tpwrs, /* power for pwHs ("H2osinc") pulse */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ swCa = getval("swCa"), swCO = getval("swCO"), swN = getval("swN"), swTilt, /* This is the sweep width of the tilt vector */ cos_N, cos_CO, cos_Ca, angle_N, angle_CO, angle_Ca; angle_N=0.0; /*initialize variable*/ /* LOAD VARIABLES */ getstr("satmode",satmode); getstr("fc180",fc180); getstr("fscuba",fscuba); getstr("ddseq",ddseq); getstr("fCTCa",fCTCa); getstr("sel_flg",sel_flg); taua = getval("taua"); taub = getval("taub"); tauc = getval("tauc"); taud = getval("taud"); zeta = getval("zeta"); bigTCa = getval("bigTCa"); bigTCo = getval("bigTCo"); bigTN = getval("bigTN"); BigT1 = getval("BigT1"); tpwr = getval("tpwr"); dpwr = getval("dpwr"); dpwr3 = getval("dpwr3"); sw1 = getval("sw1"); sw2 = getval("sw2"); sphase = getval("sphase"); sphase1 = getval("sphase1"); sphase2 = getval("sphase2"); gt1 = getval("gt1"); gt2 = getval("gt2"); gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gt7 = getval("gt7"); gt8 = getval("gt8"); gt9 = getval("gt9"); gt10 = getval("gt10"); gt11 = getval("gt11"); gt12 = getval("gt12"); gstab = getval("gstab"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); gzlvl7 = getval("gzlvl7"); gzlvl8 = getval("gzlvl8"); gzlvl9 = getval("gzlvl9"); gzlvl10 = getval("gzlvl10"); gzlvl11 = getval("gzlvl11"); gzlvl12 = getval("gzlvl12"); /* Load variable */ cbpwr = getval("cbpwr"); cbdmf = getval("cbdmf"); cbres = getval("cbres"); tau1 = 0; tau2 = 0; tau3 = 0; cos_N = 0; cos_CO = 0; cos_Ca = 0; getstr("cbdecseq", cbdecseq); /* LOAD PHASE TABLE */ settable(t1,1,phi1); settable(t2,1,phi2); settable(t3,4,phi3); settable(t4,1,phi4); settable(t5,1,phi5); settable(t7,4,phi7); settable(t8,4,phi8); settable(t6,4,rec); pwS1=c13pulsepw("ca", "co", "square", 90.0); pwS2=c13pulsepw("co", "ca", "sinc", 90.0); pwS3=c13pulsepw("ca", "co", "square", 180.0); pwS4=c13pulsepw("co", "ca", "sinc", 180.0); tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /*needs 1.69 times more*/ tpwrs = (int) (tpwrs); /*power than a square pulse */ /* CHECK VALIDITY OF PARAMETER RANGES */ if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )) { printf("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y')) { printf("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); } if( satpwr > 6 ) { printf("TSATPWR too large !!! "); psg_abort(1); } if( dpwr > 46 ) { printf("don't fry the probe, DPWR too large! "); psg_abort(1); } if( dpwr2 > 46 ) { printf("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( pwClvl > 62 ) { printf("don't fry the probe, pwClvl too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 200.0e-6 ) { printf("dont fry the probe, pwN too high ! "); psg_abort(1); } if( pwC > 200.0e-6 ) { printf("dont fry the probe, pwC too high ! "); psg_abort(1); } if( gt3 > 2.5e-3 ) { printf("gt3 is too long\n"); psg_abort(1); } if( gt1 > 10.0e-3 || gt2 > 10.0e-3 || gt4 > 10.0e-3 || gt5 > 10.0e-3 || gt6 > 10.0e-3 || gt7 > 10.0e-3 || gt8 > 10.0e-3 || gt9 > 10.0e-3 || gt10 > 10.0e-3 || gt11 > 50.0e-6) { printf("gt values are too long. Must be < 10.0e-3 or gt11=50us\n"); psg_abort(1); } /* PHASES AND INCREMENTED TIMES */ /* Set up angles and phases */ angle_CO=getval("angle_CO"); cos_CO=cos(PI*angle_CO/180.0); angle_Ca=getval("angle_Ca"); cos_Ca=cos(PI*angle_Ca/180.0); if ( (angle_CO < 0) || (angle_CO > 90) ) { printf ("angle_CO must be between 0 and 90 degree.\n"); psg_abort(1); } if ( (angle_Ca < 0) || (angle_Ca > 90) ) { printf ("angle_Ca must be between 0 and 90 degree.\n"); psg_abort(1); } if ( 1.0 < (cos_CO*cos_CO + cos_Ca*cos_Ca) ) { printf ("Impossible angles.\n"); psg_abort(1); } else { cos_N=sqrt(1.0- (cos_CO*cos_CO + cos_Ca*cos_Ca)); angle_N = 180.0*acos(cos_N)/PI; } swTilt=swCO*cos_CO + swCa*cos_Ca + swN*cos_N; if (ix ==1) { printf("\n\nn\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"); printf ("Maximum Sweep Width: \t\t %f Hz\n", swTilt); printf ("Anlge_CO:\t%6.2f\n", angle_CO); printf ("Anlge_Ca:\t%6.2f\n", angle_Ca); printf ("Anlge_N :\t%6.2f\n", angle_N ); } /* Set up hyper complex */ /* sw1 is used as symbolic index */ if ( sw1 < 1000 ) { printf ("Please set sw1 to some value larger than 1000.\n"); psg_abort(1); } if (ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if (t1_counter % 2) { tsadd(t2,2,4); tsadd(t6,2,4); } if (phase1 == 1) { ;} /* CC */ else if (phase1 == 2) { tsadd(t5,1,4);} /* SC */ else if (phase1 == 3) { tsadd(t1,1,4); } /* CS */ else if (phase1 == 4) { tsadd(t5,1,4); tsadd(t1,1,4); } /* SS */ else { printf ("phase1 can only be 1,2,3,4. \n"); psg_abort(1); } if (phase2 == 2) { tsadd(t4,2,4); icosel = 1; } /* N */ else icosel = -1; tau1 = 1.0*t1_counter*cos_Ca/swTilt; tau2 = 1.0*t1_counter*cos_CO/swTilt; tau3 = 1.0*t1_counter*cos_N/swTilt; tau1 = tau1/2.0; tau2 = tau2/2.0; tau3 = tau3/2.0; /* CHECK VALIDITY OF PARAMETER RANGES */ if (bigTN - 0.5*ni*(cos_N/swTilt) + pwS4 < 0.2e-6) { printf(" ni is too big. Make ni equal to %d or less.\n", ((int)((bigTN + pwS4)*2.0*swTilt/cos_N))); psg_abort(1);} if ((fCTCa[A]=='y') && (bigTCa - 0.5*ni*(cos_Ca/swTilt) - WFG_STOP_DELAY - POWER_DELAY - gt11 - 50.2e-6 < 0.2e-6)) { printf(" ni is too big for Ca. Make ni equal to %d or less.\n", (int) ((bigTCa -WFG_STOP_DELAY - POWER_DELAY - gt11 - 50.2e-6)/(0.5*cos_Ca/swTilt)) ); psg_abort(1); } if (bigTCo - 0.5*ni*(cos_CO/swTilt) - 4.0e-6 - POWER_DELAY < 0.2e-6) { printf(" ni is too big for CO. Make ni equal to %d or less.\n", (int) ((bigTCo - 4.0e-6 - POWER_DELAY) / (0.5*cos_CO/swTilt)) ); psg_abort(1); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); obsoffset(tof); obspower(satpwr); /* Set transmitter power for 1H presaturation */ obspwrf(4095.0); decpower(pwClvl); /* Set Dec1 power for hard 13C pulses */ decpwrf(4095.0); dec2power(pwNlvl); /* Set Dec2 power for 15N hard pulses */ dec2pwrf(4095.0); set_c13offset("ca"); /* set Dec1 carrier at Ca */ sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 0.0, zero, zero, zero, 2.0e-6, 0.0); set_c13offset("co"); /* set Dec1 carrier at Co */ /* Presaturation Period */ if (satmode[0] == 'y') { delay(2.0e-5); rgpulse(d1,zero,2.0e-6,2.0e-6); /* presaturation */ obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if(fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(one); dec2phase(zero); delay(1.0e-5); /* Begin Pulses */ status(B); rcvroff(); lk_hold(); shiftedpulse("sinc", pwHs, 90.0, 0.0, one, 2.0e-6, 0.0); txphase(zero); delay(2.0e-6); /* xxxxxxxxxxxxxxxxxxxxxx 1HN to 15N TRANSFER xxxxxxxxxxxxxxxxxx */ rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(0.2e-6); zgradpulse(gzlvl1, gt1); delay(2.0e-6); delay(taua - gt1 - 2.2e-6); /* taua <= 1/4JNH */ sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); txphase(three); dec2phase(zero); decphase(zero); delay(taua - gt1 - gstab -0.2e-6 - 2.0e-6); delay(0.2e-6); zgradpulse(gzlvl1, gt1); delay(gstab); /* xxxxxxxxxxxxxxxxxxxxxx 15N to 13CO TRANSFER xxxxxxxxxxxxxxxxxx */ if(sel_flg[A] == 'n') { rgpulse(pw,three,2.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl2, gt2); delay(gstab); dec2rgpulse(pwN,zero,0.0,0.0); delay( zeta + pwS4 ); dec2rgpulse(2*pwN,zero,0.0,0.0); c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0); dec2phase(one); delay(zeta - 2.0e-6); dec2rgpulse(pwN,one,2.0e-6,0.0); } else { rgpulse(pw,one,2.0e-6,0.0); initval(1.0,v6); dec2stepsize(45.0); dcplr2phase(v6); delay(0.2e-6); zgradpulse(gzlvl2, gt2); delay(gstab); dec2rgpulse(pwN,zero,0.0,0.0); dcplr2phase(zero); dec2phase(zero); delay(1.34e-3 - SAPS_DELAY - 2.0*pw); rgpulse(pw,one,0.0,0.0); rgpulse(2.0*pw,zero,0.0,0.0); rgpulse(pw,one,0.0,0.0); delay( zeta - 1.34e-3 - 2.0*pw + pwS4 ); dec2rgpulse(2*pwN,zero,0.0,0.0); c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0); dec2phase(one); delay(zeta - 2.0e-6); dec2rgpulse(pwN,one,2.0e-6,0.0); } dec2phase(zero); decphase(zero); delay(0.2e-6); zgradpulse(gzlvl3, gt3); delay(gstab); /* xxxxxxxxxxxxxxxxxxxxx 13CO to 13CA TRANSFER xxxxxxxxxxxxxxxxxxxxxxx */ c13pulse("co", "ca", "sinc", 90.0, zero, 2.0e-6, 0.0); delay(2.0e-7); zgradpulse(gzlvl10, gt10); delay(100.0e-6); delay(tauc - POWER_DELAY - gt10 - 100.2e-6 - (0.5*10.933*pwC)); decrgpulse(pwC*158.0/90.0, zero, 0.0, 0.0); decrgpulse(pwC*171.2/90.0, two, 0.0, 0.0); decrgpulse(pwC*342.8/90.0, zero, 0.0, 0.0); /* Shaka 6 composite */ decrgpulse(pwC*145.5/90.0, two, 0.0, 0.0); decrgpulse(pwC*81.2/90.0, zero, 0.0, 0.0); decrgpulse(pwC*85.3/90.0, two, 0.0, 0.0); delay(2.0e-7); zgradpulse(gzlvl10, gt10); delay(100.0e-6); delay(tauc - POWER_DELAY - 4.0e-6 - gt10 - 100.2e-6 - (0.5*10.933*pwC)); c13pulse("co", "ca", "sinc", 90.0, one, 4.0e-6, 0.0); set_c13offset("ca"); /* change Dec1 carrier to Ca (55 ppm) */ delay(0.2e-6); zgradpulse(gzlvl9, gt9); delay(gstab); /* xxxxxxxxxxxxxxxxxx 13CA EVOLUTION xxxxxxxxxxxxxxxxxxxxxx */ /* Turn on D decoupling using the third decoupler */ dec3unblank(); dec3rgpulse(1/dmf3, one, 0.0, 0.0); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ c13pulse("ca", "co", "square", 90.0, t5, 2.0e-6, 0.0); if (fCTCa[A]=='y') { /* Constant t2 */ decpower(cbpwr); decphase(zero); decprgon(cbdecseq,1/cbdmf,cbres); decon(); delay(tau1); decoff(); decprgoff(); decpower(pwClvl); dec2rgpulse(pwN,one,0.0,0.0); dec2rgpulse(2*pwN,zero,0.0,0.0); dec2rgpulse(pwN,one,0.0,0.0); c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0); decpower(cbpwr); decphase(zero); decprgon(cbdecseq,1/cbdmf,cbres); decon(); delay(bigTCa - 4.0*pwN - WFG_START_DELAY - pwS4 - WFG_STOP_DELAY - POWER_DELAY - WFG_START_DELAY - gt11 - gstab -0.2e-6); decoff(); decprgoff(); decpower(pwClvl); delay(0.2e-6); zgradpulse(gzlvl11, gt11); delay(gstab); initval(1.0,v3); decstepsize(140); dcplrphase(v3); c13pulse("ca", "co", "square", 180.0, zero, 0.0, 0.0); delay(0.2e-6); zgradpulse(gzlvl11, gt11); delay(gstab); decpower(cbpwr); decphase(zero); decprgon(cbdecseq,1/cbdmf,cbres); decon(); delay(bigTCa - tau1 - WFG_STOP_DELAY - POWER_DELAY - gt11 - gstab -0.2e-6); decoff(); decprgoff(); } /* non_constant t2 */ else { if (fc180[A]=='n') { if ((ni>1.0) && (tau1>0.0)) { if (tau1 - 2.0*pwS1/PI - PRG_START_DELAY - 2*POWER_DELAY - PRG_STOP_DELAY - pwN > 0.0) { decpower(cbpwr); decphase(zero); decprgon(cbdecseq,1/cbdmf,cbres); decon(); delay(tau1 - 2.0*pwS1/PI - PRG_START_DELAY - 2*POWER_DELAY - PRG_STOP_DELAY - pwN); decoff(); decprgoff(); decphase(zero); dec2phase(zero); decpower(pwClvl); sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); decpower(cbpwr); decphase(zero); decprgon(cbdecseq,1/cbdmf,cbres); decon(); delay(tau1 - 2.0*pwS1/PI - PRG_START_DELAY - 2*POWER_DELAY - PRG_STOP_DELAY - pwN); decoff(); decprgoff(); decstepsize(1.0); initval(sphase1, v3); dcplrphase(v3); } else { tsadd(t6,2,4); delay(2.0*tau1); delay(10.0e-6); sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 0.0); delay(10.0e-6); } } else { tsadd(t6,2,4); delay(10.0e-6); sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 0.0); delay(10.0e-6); } } else { /* for checking sequence */ c13pulse("ca", "co", "square", 180.0, zero, 2.0e-6, 0.0); } } decpower(pwClvl); decphase(t7); c13pulse("ca", "co", "square", 90.0, t7, 4.0e-6, 0.0); dcplrphase(zero); /* Turn off D decoupling */ dec3rgpulse(1/dmf3, three, 0.0, 0.0); dec3blank(); setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3); dec3blank(); /* Turn off D decoupling */ set_c13offset("co"); /* set carrier back to Co */ delay(0.2e-6); zgradpulse(gzlvl12, gt12); delay(gstab); /* xxxxxxxxxxxxxxx 13CA to 13CO TRANSFER and CT 13CO EVOLUTION xxxxxxxxxxxxxxxxx */ c13pulse("co", "ca", "sinc", 90.0, t1, 2.0e-6, 0.0); delay(tau2); dec2rgpulse(pwN,one,0.0,0.0); dec2rgpulse(2*pwN,zero,0.0,0.0); dec2rgpulse(pwN,one,0.0,0.0); delay(taud - 4.0*pwN - POWER_DELAY - 0.5*(WFG_START_DELAY + pwS3 + WFG_STOP_DELAY)); c13pulse("ca", "co", "square", 180.0, zero, 0.0, 0.0); decphase(t8); initval(1.0,v4); decstepsize(sphase); dcplrphase(v4); delay(bigTCo - taud - 0.5*(WFG_START_DELAY + pwS3 + WFG_STOP_DELAY) ); c13pulse("co", "ca", "sinc", 180.0, t8, 0.0, 0.0); dcplrphase(zero); decphase(one); delay(bigTCo - tau2 - POWER_DELAY - 4.0e-6); c13pulse("co", "ca", "sinc", 90.0, one, 4.0e-6, 0.0); delay(0.2e-6); zgradpulse(gzlvl4, gt4); delay(gstab); /* t3 period */ dec2rgpulse(pwN,t2,2.0e-6,0.0); dec2phase(t3); delay(bigTN - tau3 + pwS4); dec2rgpulse(2*pwN,t3,0.0,0.0); c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0); txphase(zero); dec2phase(t4); delay(bigTN - gt5 - gstab -0.2e-6 - 2.0*GRADIENT_DELAY - 4.0e-6 - WFG_START_DELAY - pwS3 - WFG_STOP_DELAY); delay(0.2e-6); zgradpulse(icosel*gzlvl5, gt5); delay(gstab); c13pulse("ca", "co", "square", 180.0, zero, 4.0e-6, 0.0); delay(tau3); sim3pulse(pw,0.0,pwN,zero,zero,t4,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl6, gt6); delay(2.0e-6); dec2phase(zero); delay(taub - gt6 - 2.2e-6); sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl6, gt6); delay(200.0e-6); txphase(one); dec2phase(one); delay(taub - gt6 - 200.2e-6); sim3pulse(pw,0.0,pwN,one,zero,one,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7, gt7); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(taub - gt7 - 2.2e-6); sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7, gt7); delay(200.0e-6); delay(taub - gt7 - 200.2e-6); sim3pulse(pw,0.0,pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(-gzlvl8, gt8/2.0); delay(50.0e-6); delay(BigT1 - gt8/2.0 - 50.2e-6 - 0.5*(pwN - pw) - 2.0*pw/PI); rgpulse(2*pw,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl8, gt8/2.0); delay(50.0e-6); dec2power(dpwr2); decpower(dpwr); delay(BigT1 - gt8/2.0 - 50.2e-6 - 2.0*POWER_DELAY); lk_sample(); /* rcvron(); */ /* Turn on receiver to warm up before acq */ /* BEGIN ACQUISITION */ status(C); setreceiver(t6); }
pulsesequence() { /* DECLARE VARIABLES */ char satmode[MAXSTR], fscuba[MAXSTR], cbdecseq[MAXSTR], chirp_shp[MAXSTR], /* name of variable containing name of Pbox shape */ fco180[MAXSTR], /* Flag for checking sequence */ fca180[MAXSTR], /* Flag for checking sequence */ sel_flg[MAXSTR]; int icosel, ni = getval("ni"), t1_counter; /* used for states tppi in t1 */ double d2_init=0.0, /* used for states tppi in t1 */ tau1, /* t1 delay */ tau2, /* t2 delay */ tau3, /* t2 delay */ taua, /* ~ 1/4JNH = 2.25 ms */ taub, /* ~ 1/4JNH = 2.25 ms */ zeta, /* time for C'-N to refocuss set to 0.5*24.0 ms */ bigTN, /* nitrogen T period */ BigT1, /* delay to compensate for gradient gt5 */ satpwr, /* low level 1H trans.power for presat */ sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ cophase, /* phase correction for CO evolution */ caphase, /* phase correction for Ca evolution */ cbpwr, /* power level for selective CB decoupling */ cbdmf, /* pulse width for selective CB decoupling */ cbres, /* decoupling resolution of CB decoupling */ pwS1, /* length of 90 on Ca */ pwS2, /* length of 90 on CO */ pwS3, /* length of 180 on Ca */ pwS4, /* length of 180 on CO */ pwS5, /* CHIRP inversion pulse on CO and CA */ pwrS5=0.0, /* power of CHIRP pulse */ gt1, gt2, gt3, gt4, gt5, gt6, gt7, gt8, gt9, gstab, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, gzlvl7, gzlvl8, gzlvl9, compH = getval("compH"), /* adjustment for amplifier compression */ pwHs = getval ("pwHs"), /* H1 90 degree pulse at tpwrs */ tpwrs, /* power for pwHs ("H2osinc") pulse */ waltzB1 = getval("waltzB1"), pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ compC = getval("compC"), /* ampl. compression */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ swCa = getval("swCa"), swCO = getval("swCO"), swN = getval("swN"), swTilt, /* This is the sweep width of the tilt vector */ cos_N, cos_CO, cos_Ca, angle_N, angle_CO, angle_Ca; angle_N=0.0; /* LOAD VARIABLES */ getstr("satmode",satmode); getstr("fco180",fco180); getstr("fca180",fca180); getstr("fscuba",fscuba); getstr("sel_flg",sel_flg); taua = getval("taua"); taub = getval("taub"); zeta = getval("zeta"); bigTN = getval("bigTN"); BigT1 = getval("BigT1"); tpwr = getval("tpwr"); satpwr = getval("tsatpwr"); dpwr = getval("dpwr"); sw1 = getval("sw1"); sw2 = getval("sw2"); cophase = getval("cophase"); caphase = getval("caphase"); gt1 = getval("gt1"); gt2 = getval("gt2"); gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gt7 = getval("gt7"); gt8 = getval("gt8"); gt9 = getval("gt9"); gstab = getval("gstab"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); gzlvl7 = getval("gzlvl7"); gzlvl8 = getval("gzlvl8"); gzlvl9 = getval("gzlvl9"); /* Load variable */ cbpwr = getval("cbpwr"); cbdmf = getval("cbdmf"); cbres = getval("cbres"); tau1 = 0; tau2 = 0; tau3 = 0; cos_N = 0; cos_CO = 0; cos_Ca = 0; getstr("cbdecseq", cbdecseq); /* LOAD PHASE TABLE */ settable(t1,2,phi1); settable(t2,2,phi2); settable(t3,1,phi3); settable(t4,8,phi4); settable(t5,4,phi5); settable(t6,8,rec); /* get calculated pulse lengths of shaped C13 pulses */ pwS1 = c13pulsepw("ca", "co", "square", 90.0); pwS2 = c13pulsepw("co", "ca", "sinc", 90.0); pwS3 = c13pulsepw("ca","co","square",180.0); pwS4 = c13pulsepw("co","ca","sinc",180.0); /*this section creates the chirp pulse inverting both co and ca*/ /*Pcoca180 is the name of the shapelib file created */ /*chirp180 is a file produced by Pbox psg containing parameter values from shape*/ strcpy(chirp_shp,"Pcoca180"); if (FIRST_FID) /* make shape once */ chirp180 = pbox(chirp_shp, CHIRP180, CHIRP180ps, dfrq, compC*pwC, pwClvl); pwrS5 = chirp180.pwr; /* get pulse power from file */ pwS5 = chirp180.pw; /* get pulse width from file */ tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /*needs 1.69 times more*/ tpwrs = (int) (tpwrs); /*power than a square pulse */ widthHd = 2.681*waltzB1/sfrq; /* bandwidth of H1 WALTZ16 decoupling */ pwHd = h1dec90pw("WALTZ16", widthHd, 0.0); /* H1 90 length for WALTZ16 */ /* CHECK VALIDITY OF PARAMETER RANGES */ if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )) { printf("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' )) { printf("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); } if( satpwr > 6 ) { printf("SATPWR too large !!! "); psg_abort(1); } if( dpwr > 46 ) { printf("don't fry the probe, DPWR too large! "); psg_abort(1); } if( dpwr2 > 46 ) { printf("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( pwClvl > 62 ) { printf("don't fry the probe, pwClvl too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 200.0e-6 ) { printf("dont fry the probe, pwN too high ! "); psg_abort(1); } if( pwC > 200.0e-6 ) { printf("dont fry the probe, pwC too high ! "); psg_abort(1); } if( gt3 > 2.5e-3 ) { printf("gt3 is too long\n"); psg_abort(1); } if( gt1 > 10.0e-3 || gt2 > 10.0e-3 || gt4 > 10.0e-3 || gt5 > 10.0e-3 || gt6 > 10.0e-3 || gt7 > 10.0e-3 || gt8 > 10.0e-3 || gt9 > 10.0e-3) { printf("gt values are too long. Must be < 10.0e-3 or gt11=50us\n"); psg_abort(1); } /* PHASES AND INCREMENTED TIMES */ /* Set up angles and phases */ angle_CO=getval("angle_CO"); cos_CO=cos(PI*angle_CO/180.0); angle_Ca=getval("angle_Ca"); cos_Ca=cos(PI*angle_Ca/180.0); if ( (angle_CO < 0) || (angle_CO > 90) ) { printf ("angle_CO must be between 0 and 90 degree.\n"); psg_abort(1); } if ( (angle_Ca < 0) || (angle_Ca > 90) ) { printf ("angle_Ca must be between 0 and 90 degree.\n"); psg_abort(1); } if ( 1.0 < (cos_CO*cos_CO + cos_Ca*cos_Ca) ) { printf ("Impossible angles.\n"); psg_abort(1); } else { cos_N=sqrt(1.0- (cos_CO*cos_CO + cos_Ca*cos_Ca)); angle_N = 180.0*acos(cos_N)/PI; } swTilt=swCO*cos_CO + swCa*cos_Ca + swN*cos_N; if (ix ==1) { printf("\n\nn\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"); printf ("Maximum Sweep Width: \t\t %f Hz\n", swTilt); printf ("Anlge_CO:\t%6.2f\n", angle_CO); printf ("Anlge_Ca:\t%6.2f\n", angle_Ca); printf ("Anlge_N :\t%6.2f\n", angle_N ); } /* Set up hyper complex */ /* sw1 is used as symbolic index */ if ( sw1 < 1000 ) { printf ("Please set sw1 to some value larger than 1000.\n"); psg_abort(1); } if (ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if (t1_counter % 2) { tsadd(t2,2,4); tsadd(t6,2,4); } if (phase1 == 1) { ;} /* CC */ else if (phase1 == 2) { tsadd(t1,1,4);} /* SC */ else if (phase1 == 3) { tsadd(t5,1,4); } /* CS */ else if (phase1 == 4) { tsadd(t1,1,4); tsadd(t5,1,4); } /* SS */ else { printf ("phase1 can only be 1,2,3,4. \n"); psg_abort(1); } if (phase2 == 2) { tsadd(t4,2,4); icosel = +1; } /* N */ else icosel = -1; tau1 = 1.0*t1_counter*cos_CO/swTilt; tau2 = 1.0*t1_counter*cos_Ca/swTilt; tau3 = 1.0*t1_counter*cos_N/swTilt; tau1 = tau1/2.0; tau2 = tau2/2.0; tau3 = tau3/2.0; /* CHECK VALIDITY OF PARAMETER RANGES */ if (bigTN - 0.5*ni*(cos_N/swTilt) < 0.2e-6) { printf(" ni is too big. Make ni equal to %d or less.\n", ((int)((bigTN )*2.0*swTilt/cos_N))); psg_abort(1);} /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); set_c13offset("co"); /* set Dec1 carrier at Co */ obspower(satpwr); /* Set transmitter power for 1H presaturation */ obspwrf(4095.0); decpower(pwClvl); /* Set Dec1 power for hard 13C pulses */ decpwrf(4095.0); dec2power(pwNlvl); /* Set Dec2 power for 15N hard pulses */ dec2pwrf(4095.0); /* Presaturation Period */ if (satmode[0] == 'y') { delay(2.0e-5); rgpulse(d1,zero,2.0e-6,2.0e-6); /* presaturation */ obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if(fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(one); dec2phase(zero); delay(1.0e-5); /* Begin Pulses */ status(B); rcvroff(); lk_hold(); delay(20.0e-6); shiftedpulse("sinc", pwHs, 90.0, 0.0, one, 2.0e-6, 2.0e-6); txphase(zero); rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(0.2e-6); zgradpulse(gzlvl1, gt1); delay(2.0e-6); delay(taua - gt1 - 2.2e-6); /* taua <= 1/4JNH */ sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); txphase(three); dec2phase(zero); decphase(zero); delay(0.2e-6); zgradpulse(gzlvl1, gt1); delay(gstab); delay(taua - gt1 - gstab - 2.0e-6); if(sel_flg[A] == 'n') { rgpulse(pw,three,2.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl2, gt2); delay(gstab); dec2rgpulse(pwN,zero,0.0,0.0); decpower(pwrS5); delay( zeta -POWER_DELAY); dec2rgpulse(2.0*pwN,zero,0.0,0.0); decshapedpulse(chirp_shp, pwS5, zero, 0.0, 0.0); decpower(pwClvl); delay(zeta - pwS5 - POWER_DELAY - 2.0e-6); dec2rgpulse(pwN,zero,2.0e-6,0.0); } else { rgpulse(pw,one,2.0e-6,0.0); initval(1.0,v3); dec2stepsize(45.0); dcplr2phase(v3); delay(0.2e-6); zgradpulse(gzlvl2, gt2); delay(gstab); dec2rgpulse(pwN,zero,0.0,0.0); dcplr2phase(zero); delay(1.34e-3 - SAPS_DELAY - 2.0*pw); rgpulse(pw,one,0.0,0.0); rgpulse(2.0*pw,zero,0.0,0.0); rgpulse(pw,one,0.0,0.0); decpower(pwrS5); delay( zeta - 1.34e-3 - 2.0*pw -POWER_DELAY); dec2rgpulse(2.0*pwN,zero,0.0,0.0); decshapedpulse(chirp_shp, pwS5, zero, 0.0, 0.0); decpower(pwClvl); delay(zeta - pwS5 - POWER_DELAY - 2.0e-6); dec2rgpulse(pwN,zero,2.0e-6,0.0); } dec2phase(zero); decphase(t1); delay(0.2e-6); zgradpulse(gzlvl3, gt3); delay(gstab); /* t1 period for CO evolution */ c13pulse("co", "ca", "sinc", 90.0, t1, 0.0, 0.0); if (!strcmp(fco180, "y")) { delay(10.0e-6); sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 2.0e-6); decstepsize(1.0); initval(cophase,v4); dcplrphase(v4); delay(10.0e-6); } else { if (tau1-2.0*pwS2/PI-pwN-WFG3_START_DELAY-POWER_DELAY-2.0e-6 > 0.0) { delay(tau1-2.0*pwS2/PI-pwN-WFG3_START_DELAY-POWER_DELAY-2.0e-6); sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 2.0e-6); decstepsize(1.0); initval(cophase,v4); dcplrphase(v4); delay(tau1-2.0*pwS2/PI-pwN-SAPS_DELAY-WFG3_STOP_DELAY-POWER_DELAY-2.0e-6); } else { c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0); } } c13pulse("co", "ca", "sinc", 90.0, zero, 4.0e-6, 0.0); dcplrphase(zero); set_c13offset("ca"); /* change Dec1 carrier to Ca (55 ppm) */ delay(0.2e-6); zgradpulse(gzlvl4, gt4); delay(gstab); /* t2 period for Ca evolution*/ /* Turn on D decoupling using the third decoupler */ dec3unblank(); dec3rgpulse(1/dmf3, one, 0.0, 0.0); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ c13pulse("ca", "co", "square", 90.0, t5, 0.0, 0.0); if (!strcmp(fca180, "y")) { delay(10.0e-6); sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 2.0e-6); decstepsize(1.0); initval(caphase,v5); dcplrphase(v5); delay(10.0e-6); } else { if (tau2-pwN-2.0*pwS1/PI-WFG3_START_DELAY-2*POWER_DELAY- -WFG_STOP_DELAY-WFG_START_DELAY-2.0e-6 > 0.0) { decpower(cbpwr); decphase(zero); decprgon(cbdecseq,1/cbdmf,cbres); decon(); delay(tau2-pwN-2.0*pwS1/PI-WFG3_START_DELAY-2*POWER_DELAY- WFG_STOP_DELAY-WFG_START_DELAY-2.0e-6); decoff(); decprgoff(); decphase(zero); dec2phase(zero); decpower(pwClvl); sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 2.0e-6); decpower(cbpwr); decphase(zero); decprgon(cbdecseq,1/cbdmf,cbres); decon(); delay(tau2-pwN-2.0*pwS1/PI-SAPS_DELAY-WFG3_STOP_DELAY-2*POWER_DELAY- WFG_STOP_DELAY-WFG_START_DELAY-2.0e-6); decoff(); decprgoff(); decstepsize(1.0); initval(caphase,v5); dcplrphase(v5); decpower(pwClvl); } else { c13pulse("ca", "co", "square", 180.0, zero, 0.0, 0.0); } } c13pulse("ca", "co", "square", 90.0, zero, 4.0e-6, 0.0); dcplrphase(zero); /* Turn off D decoupling */ dec3rgpulse(1/dmf3, three, 0.0, 0.0); dec3blank(); setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3); dec3blank(); /* Turn off D decoupling */ set_c13offset("co"); /* set carrier back to Co */ delay(0.2e-6); zgradpulse(gzlvl9, gt9); delay(gstab); /* t3 period */ dec2rgpulse(pwN,t2,2.0e-6,0.0); dec2phase(t3); decpower(pwrS5); delay(bigTN - tau3 -POWER_DELAY); dec2rgpulse(2.0*pwN,t3,0.0,0.0); decshapedpulse(chirp_shp, pwS5, zero, 0.0, 0.0); decpower(pwClvl); txphase(zero); dec2phase(t4); delay(0.2e-6); zgradpulse(icosel*gzlvl5, gt5); delay(gstab); delay(bigTN - WFG_START_DELAY - pwS5 - WFG_STOP_DELAY - gt5 - gstab - 2.0*GRADIENT_DELAY); delay(tau3); sim3pulse(pw,0.0,pwN,zero,zero,t4,0.0,0.0); c13pulse("co", "ca", "sinc", 90.0, zero, 4.0e-6, 0.0); set_c13offset("ca"); c13pulse("ca", "co", "square", 90.0, zero, 20.0e-6, 0.0); delay(0.2e-6); zgradpulse(gzlvl6, gt6); delay(2.0e-6); dec2phase(zero); delay(taub - POWER_DELAY - 4.0e-6 - pwS1 - 20.0e-6 - pwS2 - gt6 - 2.2e-6); sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); set_c13offset("co"); delay(0.2e-6); zgradpulse(gzlvl6, gt6); delay(gstab); txphase(one); dec2phase(one); delay(taub - gt6 - gstab); sim3pulse(pw,0.0,pwN,one,zero,one,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7, gt7); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(taub - gt7 - 2.2e-6); sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7, gt7); delay(gstab); delay(taub - gt7 - gstab); sim3pulse(pw,0.0,pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(-gzlvl8, gt8/2.0); delay(gstab); delay(BigT1 - gt8/2.0 - gstab - 0.5*(pwN - pw) - 2.0*pw/PI); rgpulse(2*pw,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl8, gt8/2.0); delay(gstab); dec2power(dpwr2); decpower(dpwr); delay(BigT1 - gt8/2.0 - gstab - 2.0*POWER_DELAY); lk_sample(); status(C); setreceiver(t6); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES; parameters used in the last half of the */ /* sequence are declared and initialized as 0.0 in bionmr.h, and */ /* reinitialized below */ char sel_flg[MAXSTR], autocal[MAXSTR], glyshp[MAXSTR]; int t1_counter, /* used for states tppi in t1 */ ni = getval("ni"); double d2_init=0.0, /* used for states tppi in t1 */ tau1, tau2, tau3, glypwr,glypwrf, /* Power levels for Cgly selective 90 */ pwgly, /* Pulse width for Cgly selective 90 */ bw,ppm, /* Used for autocal Cgly selective 90*/ tauCC = getval("tauCC"), /* delay for Ca to Cb cosy */ timeTN = getval("timeTN"), /* constant time for 15N evolution */ waltzB1 = getval("waltzB1"), pwC = getval("pwC"), /* C13 pulse at pwClvl */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ compC = getval("compC"), /* correction for amplifier compression*/ pwCa180, pwCO180, pwCab90, pwCab180, pwS1, /* length of square 90 on Cab */ phshift = getval("phshift"), /* phase shift on Cab by 180 on CO in t1 */ pwS2, /* length of 180 on CO */ pwS3, pwS = getval("pwS"), /*used to change 180 on CO in t1 for 1D calibration */ pwZ, /* the largest of pwS2 and 2.0*pwN */ pwZ1, /* the largest of pwS2 and 2.0*pwN for 1D experiments */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), swCb = getval("swCb"), swCa = getval("swCa"), swN = getval("swN"), swTilt, /* This is the sweep width of the tilt vector */ cos_N, cos_Ca, cos_Cb, angle_N, angle_Ca, angle_Cb, /* angle_N is calculated automatically */ gstab = getval("gstab"), gt1 = getval("gt1"), gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), gt3 = getval("gt3"), gzlvl3 = getval("gzlvl3"), gt4 = getval("gt4"), gzlvl4 = getval("gzlvl4"), gt5 = getval("gt5"), gzlvl5 = getval("gzlvl5"), gt6 = getval("gt6"), gzlvl6 = getval("gzlvl6"), gt7 = getval("gt7"), gzlvl7 = getval("gzlvl7"), gt8 = getval("gt8"), gzlvl8 = getval("gzlvl8"); angle_N=0.0; /* Load variables */ glypwrf = getval("glypwrf"); glypwr = getval("glypwr"); pwgly = getval("pwgly"); tau1 = 0; tau2 = 0; tau3 = 0; cos_N = 0; cos_Ca = 0; cos_Cb = 0; getstr("autocal", autocal); getstr("glyshp", glyshp); getstr("sel_flg",sel_flg); /* LOAD PHASE TABLE */ settable(t2,1,phy); settable(t3,2,phi3); settable(t5,4,phi5); settable(t6,8,phi6); settable(t8,1,phy); settable(t9,1,phx); settable(t10,1,phx); settable(t11,1,phx); settable(t12,8,recT); /* INITIALIZE VARIABLES */ lambda = 2.4e-3; pwCa180=c13pulsepw("ca", "co", "square", 180.0); pwCO180=c13pulsepw("co", "ca", "sinc", 180.0); pwCab90=c13pulsepw("cab","co","square",90.0); pwCab180=c13pulsepw("cab","co","square",180.0); pwHs = 1.7e-3*500.0/sfrq; /* length of H2O flipback, 1.7ms at 500 MHz*/ widthHd = 2.861*(waltzB1/sfrq); /* bw of H1 WALTZ16 decoupling */ pwHd = h1dec90pw("WALTZ16", widthHd, 0.0); /* H1 90 length for WALTZ16 */ /* get calculated pulse lengths of shaped C13 pulses */ pwS1 = c13pulsepw("cab", "co", "square", 90.0); pwS2 = c13pulsepw("co", "cab", "sinc", 180.0); pwS3 = c13pulsepw("cab", "co", "square", 180.0); /* the 180 pulse on CO at the middle of t1 */ if (pwS2 > 2.0*pwN) pwZ = pwS2; else pwZ = 2.0*pwN; if ((pwS==0.0) && (pwS2>2.0*pwN)) pwZ1=pwS2-2.0*pwN; else pwZ1=0.0; if ( ni > 1 ) pwS = 180.0; if ( pwS > 0 ) phshift = 140.0; else phshift = 0.0; /* CHECK VALIDITY OF PARAMETER RANGES */ if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ) { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);} if ( dm2[A] == 'y' || dm2[B] == 'y' || dm3[C] == 'y' ) { printf("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1);} if ( dm3[A] == 'y' || dm3[C] == 'y' ) { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1);} if ( dpwr2 > 46 ) { printf("dpwr2 too large! recheck value "); psg_abort(1);} if ( pw > 20.0e-6 ) { printf(" pw too long ! recheck value "); psg_abort(1);} if ( pwN > 100.0e-6 ) { printf(" pwN too long! recheck value "); psg_abort(1);} /* PHASES AND INCREMENTED TIMES */ /* Set up angles and phases */ angle_Cb=getval("angle_Cb"); cos_Cb=cos(PI*angle_Cb/180.0); angle_Ca=getval("angle_Ca"); cos_Ca=cos(PI*angle_Ca/180.0); if ( (angle_Cb < 0) || (angle_Cb > 90) ) { printf ("angle_Cb must be between 0 and 90 degree.\n"); psg_abort(1); } if ( (angle_Ca < 0) || (angle_Ca > 90) ) { printf ("angle_Ca must be between 0 and 90 degree.\n"); psg_abort(1); } if ( 1.0 < (cos_Cb*cos_Cb + cos_Ca*cos_Ca) ) { printf ("Impossible angles.\n"); psg_abort(1); } else { cos_N=sqrt(1.0- (cos_Cb*cos_Cb + cos_Ca*cos_Ca)); angle_N = 180.0*acos(cos_N)/PI; } swTilt=swCb*cos_Cb + swCa*cos_Ca + swN*cos_N; if (ix ==1) { if ( 0.5*ni*(cos_N/swTilt) > timeTN - WFG3_START_DELAY) { printf(" ni is too big. Make ni equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*swTilt/cos_N))); psg_abort(1);} if ( (0.5*ni*cos_Ca/swTilt) > (tauCC - pwCO180 - pwCab180/2 - WFG2_START_DELAY - 2.0*PWRF_DELAY - 2.0*POWER_DELAY - WFG2_STOP_DELAY - 4.0e-6)) { printf (" ni is too big. Make ni equal to %d or less. \n", (int) ((tauCC - pwCO180 - pwCab180/2 - WFG2_START_DELAY - 2.0*PWRF_DELAY -2.0*POWER_DELAY - WFG2_STOP_DELAY -14.0e-6)/(0.5*cos_Ca/swTilt))); psg_abort(1); } printf("\n\nn\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"); printf ("Maximum Sweep Width: \t\t %f Hz\n", swTilt); printf ("Angle_Cb:\t%6.2f\n", angle_Cb); printf ("Angle_Ca:\t%6.2f\n", angle_Ca); printf ("Angle_N :\t%6.2f\n", angle_N ); } /* Set up hyper complex */ /* sw1 is used as symbolic index */ if ( sw1 < 1000 ) { printf ("Please set sw1 to some value larger than 1000.\n"); psg_abort(1); } if (ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if (t1_counter % 2) { tsadd(t8,2,4); tsadd(t12,2,4); } if (phase1 == 1) { ;} /* CC */ else if (phase1 == 2) { tsadd(t3,3,4); tsadd(t2,3,4);} /* SC */ else if (phase1 == 3) { tsadd(t5,1,4); } /* CS */ else if (phase1 == 4) { tsadd(t3,3,4); tsadd(t2,3,4); tsadd(t5,1,4); } /* SS */ else { printf ("phase1 can only be 1,2,3,4. \n"); psg_abort(1); } if (phase2 == 2) { tsadd(t10,2,4); icosel = +1; } /* N */ else icosel = -1; tau1 = 1.0*t1_counter*cos_Cb/swTilt; tau2 = 1.0*t1_counter*cos_Ca/swTilt; tau3 = 1.0*t1_counter*cos_N/swTilt; tau1 = tau1/2.0; tau2 = tau2/2.0; tau3 = tau3/2.0; /* BEGIN PULSE SEQUENCE */ status(A); delay(d1); if (dm3[B] == 'y') lk_hold(); rcvroff(); obsoffset(tof); obspower(tpwr); obspwrf(4095.0); set_c13offset("cab"); decpower(pwClvl); decpwrf(4095.0); dec2power(pwNlvl); txphase(one); delay(1.0e-5); shiftedpulse("sinc", pwHs, 90.0, 0.0, one, 2.0e-6, 0.0); txphase(zero); decphase(zero); dec2phase(zero); delay(2.0e-6); /* xxxxxxxxxxxxxxxxxxxxxx HN to N to Ca TRANSFER xxxxxxxxxxxxxxxxxx */ rgpulse(pw, zero, 0.0, 0.0); /* 1H pulse excitation */ dec2phase(zero); zgradpulse(gzlvl3, gt3); /* G3 */ delay(lambda - gt3); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); if (sel_flg[A] == 'n') txphase(three); else txphase(one); zgradpulse(gzlvl3, gt3); /* G3 */ delay(lambda - gt3); if (sel_flg[A] == 'n') { rgpulse(pw, three, 0.0, 0.0); zgradpulse(gzlvl4, gt4); /* Crush gradient G4 */ delay(gstab); /* Begin of N to Ca transfer */ dec2rgpulse(pwN, zero, 0.0, 0.0); delay(timeTN - WFG3_START_DELAY); } else /* active suppresion */ { rgpulse(pw,one,2.0e-6,0.0); initval(1.0,v6); dec2stepsize(45.0); dcplr2phase(v6); zgradpulse(gzlvl4, gt4); /* Crush gradient G4 */ delay(gstab); /* Begin of N to Ca transfer */ dec2rgpulse(pwN,zero,0.0,0.0); dcplr2phase(zero); /* SAPS_DELAY */ delay(1.34e-3 - SAPS_DELAY - 2.0*pw); rgpulse(pw,one,0.0,0.0); rgpulse(2.0*pw,zero,0.0,0.0); rgpulse(pw,one,0.0,0.0); delay(timeTN -1.34e-3 - 2.0*pw - WFG3_START_DELAY); } sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 2.0e-6); dec2phase(one); delay(timeTN); dec2rgpulse(pwN, one, 0.0, 0.0); /* xxxxxxxxxxxxxxxxxxxxxxxx END of N to CA TRANSFER xxxxxxxxxxxxxxxxxxxx */ setautocal(); set_c13offset("gly"); if (autocal[A] == 'n') { decpower(glypwr); decpwrf(4095.0); decphase(zero); decshaped_pulse(glyshp,pwgly,zero,2.0e-6,0.0); } else { if(FIRST_FID) { ppm = getval("dfrq"); bw=9*ppm; gly90 = pbox_make("gly90","eburp1",bw,0.0,compC*pwC,pwClvl); /* Gly selective 90 with null at 50ppm */ } pwgly=gly90.pw; glypwr=gly90.pwr; glypwrf=gly90.pwrf; decpwrf(glypwrf); decpower(glypwr); decshaped_pulse("gly90",pwgly,zero,2.0e-6,0.0); } zgradpulse(gzlvl5, gt5); /* Crush gradient G5 */ set_c13offset("cab"); decphase(t3); delay(gstab); if (dm3[B] == 'y') /*optional 2H decoupling on */ { dec3unblank(); dec3rgpulse(1/dmf3, one, 0.0, 0.0); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } /* xxxxxxxxxxxxxxxxxxxxxx 13CA to 13CB TRANSFER xxxxxxxxxxxxxxxxxx */ c13pulse("cab", "co", "square", 90.0, t3, 2.0e-6, 0.0); decphase(zero); delay(tauCC); c13pulse("cab", "co", "square", 180.0, zero, 2.0e-6, 0.0); decphase(t2); delay(tauCC - POWER_DELAY - PWRF_DELAY - PRG_START_DELAY); /* xxxxxxxxxxxxxxxxxxxxxx 13CB EVOLUTION xxxxxxxxxxxxxxxxxx */ c13pulse("cab", "co", "square", 90.0, t2, 2.0e-6, 0.0); /* pwS1 */ decphase(zero); if ((ni>1.0) && (tau1>0.0)) { if (tau1 - 2.0*pwCab90/PI - WFG_START_DELAY - pwN - 2.0e-6 - PWRF_DELAY - POWER_DELAY > 0.0) { delay(tau1 - 2.0*pwCab90/PI - pwN - 2.0e-6 ); dec2rgpulse(2.0*pwN, zero, 2.0e-6, 0.0); delay(tau1 - 2.0*pwS1/PI - pwN - WFG_START_DELAY - 2.0e-6 - PWRF_DELAY - POWER_DELAY); } else { tsadd(t12,2,4); delay(2.0*tau1); delay(10.0e-6); /* WFG_START_DELAY */ sim3_c13pulse("", "cab", "co", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 0.0); delay(10.0e-6); } } else { tsadd(t12,2,4); delay(10.0e-6); /* WFG_START_DELAY */ sim3_c13pulse("", "cab", "co", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 0.0); delay(10.0e-6); } decphase(t6); c13pulse("cab", "co", "square", 90.0, t6, 2.0e-6, 0.0); /* pwS1 */ /* xxxxxxxxxxxx 13CB to 13CA BACK TRANSFER - CA EVOLUTION xxxxxxxxxxxxxx */ decphase(zero); delay(tau2); sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 0.0); decphase(zero); delay(tauCC- 2*pwN - pwCab180/2 - WFG2_START_DELAY - 2.0*PWRF_DELAY - 2.0*POWER_DELAY - WFG2_STOP_DELAY - 4.0e-6 ); c13pulse("cab", "co", "square", 180.0, zero, 2.0e-6, 0.0); delay(tauCC - tau2 - pwCO180 - pwCab180/2 - WFG2_START_DELAY - 2.0*PWRF_DELAY -2.0*POWER_DELAY - WFG2_STOP_DELAY - 4.0e-6 ); c13pulse("co", "ca", "sinc", 180.0, zero, 2.0e-6, 0.0); decphase(t5); c13pulse("cab", "co", "square", 90.0, t5, 2.0e-6, 0.0); /* pwS1 */ /* xxxxxxxxxxx END of 13CB to 13CA BACK TRANSFER - CA EVOLUTION xxxxxxxxxxxx */ if (dm3[B] == 'y') /*optional 2H decoupling off */ { dec3rgpulse(1/dmf3, three, 0.0, 0.0); dec3blank(); setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3); dec3blank(); } dec2phase(t8); zgradpulse(gzlvl6, gt6); /* Crush gradient G6 */ delay(gstab); /* xxxxxxxxxxxxxxxx 13CA to 15N BACK TRANSFER - 15N EVOLUTION xxxxxxxxxxxxxx */ dec2rgpulse(pwN, t8, 2.0e-6, 2.0e-6); decphase(zero); dec2phase(t9); delay(timeTN - WFG3_START_DELAY - tau3); /* WFG3_START_DELAY */ sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, t9, 2.0e-6, 2.0e-6); dec2phase(t10); delay (timeTN - pwCO180 - WFG_START_DELAY - 2.0*POWER_DELAY - 2.0*PWRF_DELAY - 2.0e-6 - gt1 - 2.0*GRADIENT_DELAY - gstab); zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ delay(gstab - POWER_DELAY - PWRF_DELAY); c13pulse("co", "ca", "sinc", 180.0, zero, 2.0e-6, 0.0); /*pwCO180*/ delay(tau3); sim3pulse(pw, 0.0, pwN, zero, zero, t10, 0.0, 0.0); /* t4??*/ zgradpulse(gzlvl7, gt7); /* G7 */ txphase(zero); dec2phase(zero); delay (lambda - 1.3*pwN - gt7); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); zgradpulse(gzlvl7, gt7); /* G7 */ txphase(one); dec2phase(one); delay (lambda - 1.3*pwN - gt7); sim3pulse(pw, 0.0, pwN, one, zero, one, 0.0, 0.0); zgradpulse(gzlvl8, gt8); /* G8 */ txphase(zero); dec2phase(zero); delay (lambda - 1.3*pwN - gt8); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); zgradpulse(gzlvl8, gt8); /* G8 */ delay (lambda - 1.3*pwN - gt8); sim3pulse(pw, 0.0, pwN, zero, zero, zero, 0.0, 0.0); dec2power(dpwr2); decpower(dpwr); delay ( (gt1/10.0) + 1.0e-4 + 2.0*GRADIENT_DELAY + POWER_DELAY); rgpulse(2.0*pw, zero, 0.0, 0.0); zgradpulse(icosel*gzlvl2, gt1/10.0); /* 2.0*GRADIENT_DELAY */ statusdelay(C, 1.0e-4); setreceiver(t12); if (dm3[B] == 'y') lk_sample(); }
pulsesequence() { /* DECLARE VARIABLES */ char autocal[MAXSTR], /* auto-calibration flag */ fsat[MAXSTR], fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ ddseq[MAXSTR], /* deuterium decoupling sequence */ shp_sl[MAXSTR], shcreb[MAXSTR], /* reburp shape for center of t1 period */ shcgcob[MAXSTR], /* g3 inversion at 154 ppm (350 us) */ shcgcoib[MAXSTR], /* g3 time inversion at 154 ppm (350 us) */ shca180[MAXSTR], /* Ca 180 [D/sq(3)] during 15N CT */ shco180[MAXSTR], /* Co 180 [D/sq(15)] during 15N CT */ sel_flg[MAXSTR], /* active/passive purging of undesired component */ fCT[MAXSTR], /* Flag for constant time C13 evolution */ fc180[MAXSTR], cal_sphase[MAXSTR], shared_CT[MAXSTR], nietl_flg[MAXSTR]; int phase, phase2, ni2, icosel, t1_counter, /* used for states tppi in t1 */ t2_counter; /* used for states tppi in t2 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ taua, /* ~ 1/4JNH = 2.25 ms */ del1, /* time for C'-N to refocus set to 0.5*24.0 ms */ bigTN, /* nitrogen T period */ bigTC, /* carbon T period */ zeta, /* delay for transfer from ca to cb = 3.5 ms */ tsatpwr, /* low level 1H trans.power for presat */ sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ tauf, /* 1/2J NH value */ pw_sl, /* selective pulse on water */ phase_sl, /* phase on water */ tpwrsl, /* power for pw_sl */ at, d_cgcob, /* power level for g3 pulses at 154 ppm */ d_creb, /* power level for reburp 180 at center of t1 */ pwcgcob, /* g3 ~ 35o us 180 pulse */ pwcreb, /* reburp ~ 400us 180 pulse */ pwD, /* 2H 90 pulse, about 125 us */ pwDlvl, /* 2H 90 pulse, about 125 us */ pwca180, /* Ca 180 during N CT at d_ca180 */ pwco180, /* Co 180 during N CT at d_co180 */ d_ca180, d_co180, compC = getval("compC"), /* C-13 RF calibration parameters */ pwC = getval("pwC"), pwClvl = getval("pwClvl"), pwN, pwNlvl, sphase, pw_sl1, tpwrsl1, gstab, gt1, gt2, gt3, gt4, gt5, gt6, gt7, gt8, gt9, gt11, gt13, gt14, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, gzlvl7, gzlvl8, gzlvl9, gzlvl11, gzlvl13, gzlvl14; /* variables commented out are already defined by the system */ /* LOAD VARIABLES */ getstr("autocal",autocal); getstr("fsat",fsat); getstr("f1180",f1180); getstr("f2180",f2180); getstr("fscuba",fscuba); getstr("ddseq",ddseq); getstr("shp_sl",shp_sl); getstr("sel_flg",sel_flg); getstr("fCT",fCT); getstr("fc180",fc180); getstr("cal_sphase",cal_sphase); getstr("shared_CT",shared_CT); getstr("nietl_flg",nietl_flg); taua = getval("taua"); del1 = getval("del1"); bigTN = getval("bigTN"); bigTC = getval("bigTC"); zeta = getval("zeta"); pwN = getval("pwN"); tpwr = getval("tpwr"); tsatpwr = getval("tsatpwr"); dpwr = getval("dpwr"); pwNlvl = getval("pwNlvl"); pwD = getval("pwD"); pwDlvl = getval("pwDlvl"); phase = (int) ( getval("phase") + 0.5); phase2 = (int) ( getval("phase2") + 0.5); sw1 = getval("sw1"); sw2 = getval("sw2"); ni2 = getval("ni2"); tauf = getval("tauf"); pw_sl = getval("pw_sl"); phase_sl = getval("phase_sl"); tpwrsl = getval("tpwrsl"); at = getval("at"); sphase = getval("sphase"); pw_sl1 = getval("pw_sl1"); tpwrsl1 = getval("tpwrsl1"); gstab = getval("gstab"); gt1 = getval("gt1"); if (getval("gt2") > 0) gt2=getval("gt2"); else gt2=gt1*0.1; gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gt7 = getval("gt7"); gt8 = getval("gt8"); gt9 = getval("gt9"); gt11 = getval("gt11"); gt13 = getval("gt13"); gt14 = getval("gt14"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); gzlvl7 = getval("gzlvl7"); gzlvl8 = getval("gzlvl8"); gzlvl9 = getval("gzlvl9"); gzlvl11 = getval("gzlvl11"); gzlvl13 = getval("gzlvl13"); gzlvl14 = getval("gzlvl14"); if(autocal[0]=='n') { getstr("shcgcob",shcgcob); getstr("shcgcoib",shcgcoib); getstr("shcreb",shcreb); getstr("shca180",shca180); getstr("shco180",shco180); d_ca180 = getval("d_ca180"); d_co180 = getval("d_co180"); d_cgcob = getval("d_cgcob"); d_creb = getval("d_creb"); pwca180 = getval("pwca180"); pwco180 = getval("pwco180"); pwcgcob = getval("pwcgcob"); pwcreb = getval("pwcreb"); } else { strcpy(shcgcob,"Pg3_107p"); strcpy(shcgcoib,"Pg3i_107p"); strcpy(shcreb,"Preb_on"); strcpy(shca180,"Phard_15p"); strcpy(shco180,"Phard_133p"); if (FIRST_FID) { cgcob = pbox(shcgcob, G3CGCOB, CAB180ps, dfrq, compC*pwC, pwClvl); cgcoib = pbox(shcgcoib, G3CGCOBi, CAB180ps, dfrq, compC*pwC, pwClvl); creb = pbox(shcreb, CREB180, CAB180ps, dfrq, compC*pwC, pwClvl); ca180 = pbox(shca180, CA180, CA180ps, dfrq, compC*pwC, pwClvl); co180 = pbox(shco180, CO180, CA180ps, dfrq, compC*pwC, pwClvl); } d_ca180 = ca180.pwr; d_co180 = co180.pwr; d_cgcob = cgcob.pwr; d_creb = creb.pwr; pwca180 = ca180.pw; pwco180 = co180.pw; pwcgcob = cgcob.pw; pwcreb = creb.pw; } /* LOAD PHASE TABLE */ settable(t1,2,phi1); settable(t2,4,phi2); settable(t3,8,phi3); settable(t4,1,phi4); settable(t5,16,phi5); settable(t6,8,phi6); settable(t7,1,phi7); settable(t8,16,rec); /* CHECK VALIDITY OF PARAMETER RANGES */ if(shared_CT[A] == 'n') if(bigTN - 0.5*(ni2 -1)/sw2 - POWER_DELAY < 0.2e-6) { text_error(" ni2 is too big\n"); text_error(" please set ni2 smaller or equal to %d\n", (int) ((bigTN -POWER_DELAY)*sw2*2.0) +1 ); psg_abort(1); } if(fCT[A] == 'y') if(bigTC - 0.5*(ni-1)/sw1 - WFG_STOP_DELAY - gt14 - 102.0e-6 - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwcgcob - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 < 0.2e-6) { text_error("ni is too big\n"); text_error(" please set ni smaller or equal to %d\n", (int) ((bigTC - WFG_STOP_DELAY - gt14 - 102.0e-6 - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwcgcob - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6)*sw1*2.0) +1 ); psg_abort(1); } if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y')) { text_error("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y')) { text_error("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); } if( tsatpwr > 6 ) { text_error("TSATPWR too large !!! "); psg_abort(1); } if( dpwr > 46 ) { text_error("don't fry the probe, DPWR too large! "); psg_abort(1); } if( dpwr2 > 47 ) { text_error("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( pwClvl > 63 ) { text_error("don't fry the probe, pwClvl too large! "); psg_abort(1); } if( pwNlvl > 63 ) { text_error("don't fry the probe, pwNlvl too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { text_error("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 200.0e-6 ) { text_error("dont fry the probe, pwN too high ! "); psg_abort(1); } if( pwC > 200.0e-6 ) { text_error("dont fry the probe, pwC too high ! "); psg_abort(1); } if( f1180[A] != 'n' && f2180[A] != 'n' ) { text_error("flags may be set wrong: set f1180=n and f2180=n for 3d\n"); psg_abort(1); } if(d_ca180 > 58) { text_error("dont fry the probe, d_ca180 too high ! "); psg_abort(1); } if(d_co180 > 58) { text_error("dont fry the probe, d_ca180 too high ! "); psg_abort(1); } if( gt1 > 15e-3 || gt2 > 15e-3 || gt3 > 15e-3 || gt4 > 15e-3 || gt5 > 15e-3 || gt6 > 15e-3 || gt7 > 15e-3 || gt8 > 15e-3 || gt9 > 15e-3 || gt11 > 15e-3 || gt13 > 15e-3 || gt14 > 15e-3) { text_error("gti values must be < 15e-3\n"); psg_abort(1); } if(tpwrsl > 25) { text_error("tpwrsl must be less than 25\n"); psg_abort(1); } if(tpwrsl1 > 25) { text_error("tpwrsl1 must be less than 25\n"); psg_abort(1); } if( dpwr3 > 50) { text_error("dpwr3 too high\n"); psg_abort(1); } if( del1 > 0.1 ) { text_error("too long del1\n"); psg_abort(1); } if( zeta > 0.1 ) { text_error("too long zeta\n"); psg_abort(1); } if( bigTN > 0.1) { text_error("too long bigTN\n"); psg_abort(1); } if( bigTC > 0.1) { text_error("too long bigTC\n"); psg_abort(1); } if( pw_sl > 10e-3) { text_error("too long pw_sl\n"); psg_abort(1); } if( pw_sl1 > 10e-3) { text_error("too long pw_sl1\n"); psg_abort(1); } if( at > 0.1 && dm2[D] == 'y') { text_error("too long at with dec2\n"); psg_abort(1); } if(pwDlvl > 59) { text_error("pwDlvl is too high; <= 59\n"); psg_abort(1); } if(d_creb > 62) { text_error("d_creb is too high; <= 62\n"); psg_abort(1); } if(d_cgcob > 60) { text_error("d_cgcob is too high; <=60\n"); psg_abort(1); } if(cal_sphase[A] == 'y') { text_error("Use only to calibrate sphase\n"); text_error("Set zeta to 600 us, gt11=gt13=0, fCT=y, fc180=n\n"); } if(nietl_flg[A] == 'y' && sel_flg[A] == 'y') { text_error("Both nietl_flg and sel_flg cannot by y\n"); psg_abort(1); } if (fCT[A] == 'n' && fc180[A] =='y' && ni > 1.0) { text_error("must set fc180='n' to allow Calfa/Cbeta evolution (ni>1)\n"); psg_abort(1); } /* Phase incrementation for hypercomplex 2D data */ /* changed from 1 to 3; spect. rev. not needed */ if (phase == 2) { tsadd(t2,3,4); tsadd(t3,3,4); } if (shared_CT[A] == 'n') { if (phase2 == 2) { tsadd(t7,2,4); icosel = 1; } else icosel = -1; } else { if (phase2 == 2) { tsadd(t7,2,4); icosel = -1; } else icosel = 1; } if (nietl_flg[A] == 'y') icosel = -1*icosel; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t2,2,4); tsadd(t8,2,4); } if( ix == 1) d3_init = d3 ; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t5,2,4); tsadd(t8,2,4); } /* Set up f1180 tau1 = t1 */ tau1 = d2; if(f1180[A] == 'y' && fCT[A] == 'y') tau1 += ( 1.0 / (2.0*sw1) ); if(f1180[A] == 'y' && fCT[A] == 'n') tau1 += (1.0 / (2.0*sw1) - 4.0/PI*pwC - POWER_DELAY - 4.0e-6); if(f1180[A] == 'n' && fCT[A] == 'n') tau1 = (tau1 - 4.0/PI*pwC - POWER_DELAY - 4.0e-6); if(tau1 < 0.2e-6) tau1 = 4.0e-7; tau1 = tau1/2.0; /* Set up f2180 tau2 = t2 */ tau2 = d3; if(f2180[A] == 'y') { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.2e-6; } tau2 = tau2/2.0; /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); obspower(tsatpwr); /* Set transmitter power for 1H presaturation */ decpower(pwClvl); /* Set Dec1 power to high power */ dec2power(pwNlvl); /* Set Dec2 power for 15N hard pulses */ dec3power(pwDlvl); /* Set Dec3 for 2H hard pulses */ /* Presaturation Period */ if (fsat[0] == 'y') { delay(2.0e-5); rgpulse(d1,zero,0.0,2.0e-6); obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if (fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(zero); dec2phase(zero); delay(1.0e-5); /* Begin Pulses */ status(B); rcvroff(); lk_hold(); delay(20.0e-6); rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(2.0e-6); delay(taua - gt5 - 2.2e-6); /* taua <= 1/4JNH */ sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); dec2phase(t1); decphase(zero); delay(taua - gt5 - 200.2e-6); delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(200.0e-6); if (sel_flg[A] == 'y') { rgpulse(pw,one,4.0e-6,0.0); initval(1.0,v2); obsstepsize(phase_sl); xmtrphase(v2); /* shaped pulse */ obspower(tpwrsl); shaped_pulse(shp_sl,pw_sl,two,2.0e-6,0.0); xmtrphase(zero); delay(2.0e-6); obspower(tpwr); /* shaped pulse */ initval(1.0,v6); dec2stepsize(45.0); dcplr2phase(v6); delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(200.0e-6); dec2rgpulse(pwN,t1,0.0,0.0); dcplr2phase(zero); delay(1.34e-3 - SAPS_DELAY); rgpulse(pw,zero,0.0,0.0); rgpulse(2.0*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); decpower(d_ca180); dec2phase(zero); delay(del1 - 1.34e-3 - 4.0*pw - 4.0e-6 - POWER_DELAY + WFG_START_DELAY + pwca180 + WFG_STOP_DELAY); } else { rgpulse(pw,three,4.0e-6,0.0); initval(1.0,v2); obsstepsize(phase_sl); xmtrphase(v2); /* shaped pulse */ obspower(tpwrsl); shaped_pulse(shp_sl,pw_sl,zero,2.0e-6,0.0); xmtrphase(zero); delay(2.0e-6); obspower(tpwr); /* shaped pulse */ delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(200.0e-6); dec2rgpulse(pwN,t1,0.0,0.0); dec2phase(zero); decpower(d_ca180); delay(del1 - POWER_DELAY + WFG_START_DELAY + pwca180 + WFG_STOP_DELAY); } decphase(zero); dec2rgpulse(2*pwN,zero,0.0,0.0); decshaped_pulse(shca180,pwca180,zero,0.0,0.0); dec2phase(one); delay(del1); dec2rgpulse(pwN,one,0.0,0.0); decpower(pwClvl); decphase(t2); delay(0.2e-6); zgradpulse(gzlvl4,gt4); delay(200.0e-6); dec2phase(t5); /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ decrgpulse(pwC,t2,0.0,0.0); delay(zeta - PRG_STOP_DELAY - DELAY_BLANK - POWER_DELAY - 4.0e-6 - pwD - gt11 - 102.0e-6 - POWER_DELAY - WFG_START_DELAY); /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3phase(three); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ decphase(zero); delay(2.0e-6); zgradpulse(gzlvl11,gt11); delay(100.0e-6); if (cal_sphase[A] == 'y') { decpower(pwClvl); decshaped_pulse("hard",2.0*pwC,zero,4.0e-6,4.0e-6); } else { initval(1.0,v3); decstepsize(sphase); dcplrphase(v3); decpower(d_creb); decshaped_pulse(shcreb,pwcreb,zero,4.0e-6,4.0e-6); dcplrphase(zero); } delay(2.0e-6); zgradpulse(gzlvl11,gt11); delay(100.0e-6); /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ delay(zeta - WFG_STOP_DELAY - gt11 - 102.0e-6 - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY - DELAY_BLANK - POWER_DELAY - 4.0e-6); decpower(pwClvl); decrgpulse(pwC,t3,4.0e-6,0.0); if (fCT[A] == 'y') { delay(tau1); decpower(d_cgcob); decshaped_pulse(shcgcob,pwcgcob,zero,4.0e-6,0.0); delay(bigTC - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwcgcob - WFG_STOP_DELAY - 102.0e-6 - gt14 - PRG_STOP_DELAY - DELAY_BLANK - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - WFG_START_DELAY); /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3phase(three); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ delay(2.0e-6); zgradpulse(gzlvl14,gt14); delay(100.0e-6); initval(1.0,v4); decstepsize(sphase); dcplrphase(v4); decpower(d_creb); decshaped_pulse(shcreb,pwcreb,zero,4.0e-6,4.0e-6); dcplrphase(zero); delay(2.0e-6); zgradpulse(gzlvl14,gt14); delay(100.0e-6); /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ delay(bigTC - tau1 - WFG_STOP_DELAY - gt14 - 102.0e-6 - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwcgcob - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6); decpower(d_cgcob); decshaped_pulse(shcgcoib,pwcgcob,zero,4.0e-6,0.0); decphase(t4); } else if(fCT[A] == 'n' && fc180[A] == 'n') { delay(tau1); delay(tau1); } else if(fCT[A] == 'n' && fc180[A] == 'y') { initval(1.0,v4); decstepsize(sphase); dcplrphase(v4); decpower(d_creb); decshaped_pulse(shcreb,pwcreb,zero,4.0e-6,0.0); dcplrphase(zero); } decpower(pwClvl); decrgpulse(pwC,t4,4.0e-6,0.0); delay(zeta - POWER_DELAY - 4.0e-6 - pwD - PRG_STOP_DELAY - DELAY_BLANK - gt13 - 102.0e-6 - POWER_DELAY - WFG_START_DELAY); /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ delay(2.0e-6); zgradpulse(gzlvl13,gt13); delay(100.0e-6); if (cal_sphase[A] == 'y') { decpower(pwClvl); decshaped_pulse("hard",2.0*pwC,zero,4.0e-6,4.0e-6); } else { initval(1.0,v5); decstepsize(sphase); dcplrphase(v5); decpower(d_creb); decshaped_pulse(shcreb,pwcreb,zero,4.0e-6,4.0e-6); dcplrphase(zero); } delay(2.0e-6); zgradpulse(gzlvl13,gt13); delay(100.0e-6); /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ delay(zeta - WFG_STOP_DELAY - gt13 - 102.0e-6 - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY - DELAY_BLANK - POWER_DELAY - 4.0e-6); decpower(pwClvl); decrgpulse(pwC,zero,4.0e-6,0.0); /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3phase(three); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ delay(0.2e-6); zgradpulse(gzlvl9,gt9); delay(200.0e-6); if (shared_CT[A] == 'n') { dec2rgpulse(pwN,t5,2.0e-6,0.0); decpower(d_ca180); dec2phase(t6); delay(bigTN - tau2 - POWER_DELAY); dec2rgpulse(2*pwN,t6,0.0,0.0); decshaped_pulse(shca180,pwca180,zero,0.0,0.0); dec2phase(t7); delay(bigTN - WFG_START_DELAY - pwca180 - WFG_STOP_DELAY - gt1 - 2.0*GRADIENT_DELAY - 500.2e-6 - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwco180 - WFG_STOP_DELAY); delay(0.2e-6); zgradpulse(gzlvl1,gt1); delay(500.0e-6); decpower(d_co180); decshaped_pulse(shco180,pwco180,zero,4.0e-6,0.0); delay(tau2); sim3pulse(pw,0.0,pwN,zero,zero,t7,0.0,0.0); } else if (shared_CT[A] == 'y') { dec2rgpulse(pwN,t5,2.0e-6,0.0); decpower(d_co180); dec2phase(t6); if (bigTN - tau2 >= 0.2e-6) { delay(tau2); decshaped_pulse(shco180,pwco180,zero,4.0e-6,0.0); decpower(d_ca180); delay(0.2e-6); zgradpulse(gzlvl1,gt1); delay(500.0e-6); delay(bigTN - 4.0e-6 - WFG_START_DELAY - pwco180 - WFG_STOP_DELAY - POWER_DELAY - gt1 - 500.2e-6 - 2.0*GRADIENT_DELAY - WFG_START_DELAY - pwca180 - WFG_STOP_DELAY); decshaped_pulse(shca180,pwca180,zero,0.0,0.0); dec2rgpulse(2*pwN,t6,0.0,0.0); delay(bigTN - tau2); } else { delay(tau2); decshaped_pulse(shco180,pwco180,zero,4.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl1,gt1); delay(500.0e-6); decpower(d_ca180); delay(bigTN - 4.0e-6 - WFG_START_DELAY - pwco180 - WFG_STOP_DELAY - gt1 - 500.2e-6 - 2.0*GRADIENT_DELAY - POWER_DELAY - WFG_START_DELAY - pwca180 - WFG_STOP_DELAY); decshaped_pulse(shca180,pwca180,zero,0.0,0.0); delay(tau2 - bigTN); dec2rgpulse(2.0*pwN,t6,0.0,0.0); } sim3pulse(pw,0.0,pwN,zero,zero,t7,0.0,0.0); } /* end of shared_CT */ if (nietl_flg[A] == 'n') { decpower(pwClvl); decrgpulse(pwC,zero,4.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(2.0e-6); dec2phase(zero); delay(tauf - POWER_DELAY - 4.0e-6 - pwC - gt6 - 2.2e-6); sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); txphase(one); dec2phase(one); delay(tauf - gt6 - 200.2e-6); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(200.0e-6); sim3pulse(pw,0.0,pwN,one,zero,one,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(tauf - gt7 - 2.2e-6); sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); delay(tauf - gt7 - 200.2e-6); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(200.0e-6); sim3pulse(pw,0.0e-6,pwN,zero,zero,zero,0.0,0.0); } else { /* nietl_flg == y */ /* shaped pulse */ obspower(tpwrsl1); shaped_pulse(shp_sl,pw_sl1,zero,2.0e-6,0.0); delay(2.0e-6); obspower(tpwr); /* shaped pulse */ decpower(pwClvl); decrgpulse(pwC,zero,4.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(2.0e-6); dec2phase(zero); delay(tauf - POWER_DELAY - 2.0e-6 - WFG_START_DELAY - pw_sl1 - WFG_STOP_DELAY - 2.0e-6 - POWER_DELAY - POWER_DELAY - 4.0e-6 - pwC - gt6 - 2.2e-6); sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); txphase(one); dec2phase(zero); delay(tauf - gt6 - 200.2e-6); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(200.0e-6); sim3pulse(pw,0.0,pwN,one,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(tauf - gt7 - 2.2e-6); sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); txphase(one); dec2phase(one); delay(tauf - gt7 - 200.2e-6); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(200.0e-6); sim3pulse(pw,0.0e-6,pwN,one,zero,one,0.0,0.0); txphase(zero); } /* end of nietl_flg == y */ delay(gt2 +gstab -0.5*(pwN-pw) -2.0*pw/PI); rgpulse(2*pw,zero,0.0,0.0); delay(2.0e-6); zgradpulse(icosel*gzlvl2,gt2); decpower(dpwr); /* NO 13C decoupling */ dec2power(dpwr2); /* NO 15N decoupling */ delay(gstab -2.0e-6 -2.0*GRADIENT_DELAY -2.0*POWER_DELAY); lk_sample(); /* BEGIN ACQUISITION */ status(C); setreceiver(t8); }
pulsesequence() { /* DECLARE VARIABLES */ char autocal[MAXSTR], /* auto-calibration flag */ fsat[MAXSTR], fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ fc180[MAXSTR], /* Flag for checking sequence */ ddseq[MAXSTR], /* deuterium decoupling sequence */ spcosed[MAXSTR], /* waveform Co seduce 180 */ spcareb[MAXSTR], /* waveform Ca reburp 180 */ spca180[MAXSTR], /* waveform Ca hard 180 */ sel_flg[MAXSTR], shp_sl[MAXSTR], cacb_dec[MAXSTR], cacbdecseq[MAXSTR], nietl_flg[MAXSTR]; int phase, phase2, ni, icosel, t1_counter, /* used for states tppi in t1 */ t2_counter; /* used for states tppi in t2 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ taua, /* ~ 1/4JNH = 2.25 ms */ taub, /* ~ 1/4JNH = 2.25 ms */ tauc, /* ~ 1/4JNCa = ~13 ms */ taud, /* ~ 1/4JCaC' = 3~4.5 ms ms */ bigTN, /* nitrogen T period */ pwc90, /* PW90 for ca nucleus @ d_c90 */ pwca180, /* PW180 for ca nucleus @ d_c180 */ pwca180dec, /* pwca180+pad */ pwcareb, /* pw180 at d_creb ~ 1.6 ms at 600 MHz */ pwcosed, /* PW180 at d_csed ~ 200us at 600 MHz */ tsatpwr, /* low level 1H trans.power for presat */ d_c90, /* power level for 13C pulses(pwc90=sqrt(15)/4delta delta is the separation between Ca and Co */ d_c180, /* power level for pwca180(sqrt(3)/2delta) */ d_creb, /* power level for pwcareb */ d_csed, /* power level for pwcosed */ sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ pw_sl, /* selective pulse on water */ tpwrsl, /* power for pw_sl */ at, sphase, /* small angle phase shift */ sphase1, phase_sl, d_cacbdec, pwcacbdec, dres_dec, pwD, /* PW90 for higher power (pwDlvl) deut 90 */ pwDlvl, /* high power for deut 90 hard pulse */ compC, /* C-13 RF calibration parameters */ pwC, pwClvl, pwN, /* PW90 for 15N pulse */ pwNlvl, /* high dec2 pwr for 15N hard pulses */ gstab, gt1, gt2, gt3, gt4, gt5, gt6, gt7, gt8, gt9, gt10, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, gzlvl7, gzlvl8, gzlvl9, gzlvl10; /* LOAD VARIABLES */ getstr("autocal",autocal); getstr("fsat",fsat); getstr("f1180",f1180); getstr("f2180",f2180); getstr("fc180",fc180); getstr("fscuba",fscuba); getstr("ddseq",ddseq); getstr("shp_sl",shp_sl); getstr("sel_flg",sel_flg); getstr("cacb_dec",cacb_dec); getstr("nietl_flg",nietl_flg); taua = getval("taua"); taub = getval("taub"); tauc = getval("tauc"); taud = getval("taud"); bigTN = getval("bigTN"); pwN = getval("pwN"); tpwr = getval("tpwr"); tsatpwr = getval("tsatpwr"); dpwr = getval("dpwr"); pwNlvl = getval("pwNlvl"); pwD = getval("pwD"); pwDlvl = getval("pwDlvl"); phase = (int) ( getval("phase") + 0.5); phase2 = (int) ( getval("phase2") + 0.5); sw1 = getval("sw1"); sw2 = getval("sw2"); ni = getval("ni"); pw_sl = getval("pw_sl"); tpwrsl = getval("tpwrsl"); at = getval("at"); sphase = getval("sphase"); sphase1 = getval("sphase1"); phase_sl = getval("phase_sl"); gstab = getval("gstab"); gt1 = getval("gt1"); if (getval("gt2") > 0) gt2=getval("gt2"); else gt2=gt1*0.1; gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gt7 = getval("gt7"); gt8 = getval("gt8"); gt9 = getval("gt9"); gt10 = getval("gt10"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); gzlvl7 = getval("gzlvl7"); gzlvl8 = getval("gzlvl8"); gzlvl9 = getval("gzlvl9"); gzlvl10 = getval("gzlvl10"); if(autocal[0]=='n') { getstr("spcosed",spcosed); getstr("spcareb",spcareb); getstr("spca180",spca180); getstr("cacbdecseq",cacbdecseq); d_c90 = getval("d_c90"); d_c180 = getval("d_c180"); d_creb = getval("d_creb"); d_csed = getval("d_csed"); pwc90 = getval("pwc90"); pwca180 = getval("pwca180"); pwca180dec = getval("pwca180dec"); pwcareb = getval("pwcareb"); pwcosed = getval("pwcosed"); d_cacbdec = getval("d_cacbdec"); pwcacbdec = getval("pwcacbdec"); dres_dec = getval("dres_dec"); } else { strcpy(spcosed,"Phard_118p"); strcpy(spcareb,"Preburp_-15p"); strcpy(spca180,"Phard_-118p"); strcpy(cacbdecseq,"Pcb_dec"); if (FIRST_FID) { compC = getval("compC"); pwC = getval("pwC"); pwClvl = getval("pwClvl"); co180 = pbox(spcosed, CO180, CA180ps, dfrq, compC*pwC, pwClvl); creb = pbox(spcareb, CREB180, CAB180ps, dfrq, compC*pwC, pwClvl); ca180 = pbox(spca180, CA180, CA180ps, dfrq, compC*pwC, pwClvl); cbdec = pbox(cacbdecseq, CBDEC,CBDECps, dfrq, compC*pwC, pwClvl); c90 = pbox("Phard90", C90, CA180ps, dfrq, compC*pwC, pwClvl); } d_c90 = c90.pwr; d_c180 = ca180.pwr; d_creb = creb.pwr; d_csed = co180.pwr; pwc90 = c90.pw; pwca180 = ca180.pw; pwca180dec = ca180.pw; pwcareb = creb.pw; pwcosed = co180.pw; d_cacbdec = cbdec.pwr; pwcacbdec = 1.0/cbdec.dmf; dres_dec = cbdec.dres; } /* LOAD PHASE TABLE */ settable(t1,2,phi1); settable(t2,4,phi2); settable(t3,8,phi3); settable(t4,2,phi4); settable(t5,1,phi5); settable(t6,8,rec); /* CHECK VALIDITY OF PARAMETER RANGES */ if(ix==1) printf("Uses shared AT in the N dimension. Choose ni2 as desired\n"); if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )) { printf("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y')) { printf("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); } if( tsatpwr > 6 ) { printf("TSATPWR too large !!! "); psg_abort(1); } if( dpwr > -16 ) { printf("DPWR too large! "); psg_abort(1); } if( dpwr2 > -16 ) { printf("DPWR2 too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 200.0e-6 ) { printf("dont fry the probe, pwN too high ! "); psg_abort(1); } if( gt1 > 3e-3 || gt2 > 3e-3 || gt3 > 3e-3 || gt4 > 3e-3 || gt5 > 3e-3 || gt6 > 3e-3 || gt7 > 3e-3 || gt8 > 3e-3 || gt9 > 3e-3 || gt10 > 3e-3) { printf("gti values must be < 3e-3\n"); psg_abort(1); } if(tpwrsl > 30) { printf("tpwrsl must be less than 25\n"); psg_abort(1); } if( pwDlvl > 59) { printf("pwDlvl too high\n"); psg_abort(1); } if( dpwr3 > 50) { printf("dpwr3 too high\n"); psg_abort(1); } if( pw_sl > 10e-3) { printf("too long pw_sl\n"); psg_abort(1); } if(d_cacbdec > 40) { printf("d_cacbdec is too high; < 41\n"); psg_abort(1); } if(nietl_flg[A] == 'y' && sel_flg[A] == 'y') { printf("nietl_flg and sel_flg cannot both be y\n"); psg_abort(1); } if (fc180[A] =='y' && ni > 1.0) { text_error("must set fc180='n' to allow C' evolution (ni>1)\n"); psg_abort(1); } /* Phase incrementation for hypercomplex 2D data */ if (phase == 2) tsadd(t2,1,4); if (phase2 == 2) { tsadd(t5,2,4); icosel = 1; } else icosel = -1; if (nietl_flg[A] == 'y') icosel = -1*icosel; /* Set up f1180 tau2 = t1 */ tau1 = d2; if(f1180[A] == 'y') { tau1 += ( 1.0 / (2.0*sw1) - 4.0/PI*pwc90 - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwca180dec - WFG_STOP_DELAY - 2.0*pwN - POWER_DELAY - 4.0e-6); } if(f1180[A] == 'n') tau1 = ( tau1 - 4.0/PI*pwc90 - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwca180dec - WFG_STOP_DELAY - 2.0*pwN - POWER_DELAY - 4.0e-6); if(tau1 < 0.2e-6) tau1 = 0.2e-6; tau1 = tau1/2.0; /* Set up f2180 tau2 = t2 */ tau2 = d3; if(f2180[A] == 'y') { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.2e-6; } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t2,2,4); tsadd(t6,2,4); } if( ix == 1) d3_init = d3 ; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t3,2,4); tsadd(t6,2,4); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); obspower(tsatpwr); /* Set transmitter power for 1H presaturation */ decpower(d_c180); /* Set Dec1 power to high power */ dec2power(pwNlvl); /* Set Dec2 power for 15N hard pulses */ decoffset(dof); /* Presaturation Period */ if (fsat[0] == 'y') { delay(2.0e-5); rgpulse(d1,zero,2.0e-6,2.0e-6); obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if(fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(zero); dec2phase(zero); delay(1.0e-5); /* Begin Pulses */ status(B); rcvroff(); lk_hold(); delay(20.0e-6); initval(1.0,v2); obsstepsize(phase_sl); xmtrphase(v2); /* shaped pulse */ obspower(tpwrsl); shaped_pulse(shp_sl,pw_sl,one,4.0e-6,0.0); xmtrphase(zero); obspower(tpwr); txphase(zero); delay(4.0e-6); /* shaped pulse */ rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(2.0e-6); delay(taua - gt5 - 2.2e-6); /* taua <= 1/4JNH */ sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0); txphase(three); dec2phase(zero); decphase(zero); delay(taua - gt5 - 200.2e-6 - 2.0e-6); delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(200.0e-6); if (sel_flg[A] == 'n') { rgpulse(pw,three,2.0e-6,0.0); decpower(d_c180); delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(200.0e-6); dec2rgpulse(pwN,zero,0.0,0.0); delay(tauc); dec2rgpulse(2*pwN,zero,0.0,0.0); decrgpulse(pwca180,zero,0.0,0.0); dec2phase(one); delay(tauc - pwca180); dec2rgpulse(pwN,one,0.0,0.0); } else { rgpulse(pw,one,2.0e-6,0.0); decpower(d_c180); initval(1.0,v5); dec2stepsize(45.0); dcplr2phase(v5); delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(200.0e-6); dec2rgpulse(pwN,zero,0.0,0.0); dcplr2phase(zero); delay(1.34e-3 - SAPS_DELAY - 2.0*pw); rgpulse(pw,one,0.0,0.0); rgpulse(2.0*pw,zero,0.0,0.0); rgpulse(pw,one,0.0,0.0); delay(tauc - 1.34e-3 - 2.0*pw); dec2rgpulse(2*pwN,zero,0.0,0.0); decrgpulse(pwca180,zero,0.0,0.0); dec2phase(one); delay(tauc - pwca180); dec2rgpulse(pwN,one,0.0,0.0); } /* END sel_flg */ decphase(t1); decpower(d_c90); delay(0.2e-6); zgradpulse(gzlvl8,gt8); delay(200.0e-6); /* Cay to CaxC'z */ dec2phase(zero); txphase(zero); /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ if (cacb_dec[A] == 'n') { decrgpulse(pwc90,t1,2.0e-6,0.0); delay(taud -POWER_DELAY -4.0e-6 -WFG_START_DELAY); initval(1.0,v3); decstepsize(sphase); dcplrphase(v3); decpower(d_creb); decshaped_pulse(spcareb,pwcareb,zero,4.0e-6,0.0); dcplrphase(zero); decpower(d_csed); decshaped_pulse(spcosed,pwcosed,zero,4.0e-6,0.0); delay(taud - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwcosed - WFG_STOP_DELAY - POWER_DELAY - 2.0e-6); decpower(d_c90); decrgpulse(pwc90,one,2.0e-6,0.0); } else { decrgpulse(pwc90,t1,2.0e-6,0.0); /* CaCb dec on */ decpower(d_cacbdec); decprgon(cacbdecseq,pwcacbdec,dres_dec); decon(); /* CaCb dec on */ delay(taud - POWER_DELAY - PRG_START_DELAY - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY); /* CaCb dec off */ decoff(); decprgoff(); /* CaCb dec off */ initval(1.0,v3); decstepsize(sphase); dcplrphase(v3); decpower(d_creb); decshaped_pulse(spcareb,pwcareb,zero,4.0e-6,0.0); dcplrphase(zero); decpower(d_csed); decshaped_pulse(spcosed,pwcosed,zero,4.0e-6,0.0); /* CaCb dec on */ decpower(d_cacbdec); decprgon(cacbdecseq,pwcacbdec,dres_dec); decon(); /* CaCb dec on */ delay(taud - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwcosed - WFG_STOP_DELAY - POWER_DELAY - PRG_START_DELAY - PRG_STOP_DELAY - POWER_DELAY - 2.0e-6); /* CaCb dec off */ decoff(); decprgoff(); /* CaCb dec off */ decpower(d_c90); decrgpulse(pwc90,one,2.0e-6,0.0); } /* END cacb_dec */ /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3phase(three); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ decoffset(dof+(174-56)*dfrq); /* change Dec1 carrier to Co */ delay(2.0e-7); zgradpulse(gzlvl4,gt4); delay(100.0e-6); /* t1 period for C' chemical shift evolution; Ca 180 and N 180 are used to decouple */ decrgpulse(pwc90,t2,2.0e-6,0.0); if (fc180[A]=='n') { decpower(d_c180); delay(tau1); decshaped_pulse(spca180,pwca180dec,zero,4.0e-6,0.0); dec2rgpulse(2*pwN,zero,0.0,0.0); delay(tau1); decpower(d_c90); } else decrgpulse(2*pwc90,zero,0.0,0.0); decrgpulse(pwc90,zero,4.0e-6,0.0); decoffset(dof); /* set carrier to Ca */ delay(2.0e-7); zgradpulse(gzlvl9,gt9); delay(100.0e-6); /* Refocusing CayC'z to Cax */ /* Turn on D decoupling using the third decoupler */ dec3phase(one); dec3power(pwDlvl); dec3rgpulse(pwD,one,4.0e-6,0.0); dec3phase(zero); dec3power(dpwr3); dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); /* Turn on D decoupling */ if (cacb_dec[A] == 'n') { decrgpulse(pwc90,zero,0.0e-6,0.0); delay(taud - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwcosed - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY); decpower(d_csed); decshaped_pulse(spcosed,pwcosed,zero,4.0e-6,0.0); decpower(d_creb); initval(1.0,v4); decstepsize(sphase1); dcplrphase(v4); decshaped_pulse(spcareb,pwcareb,zero,4.0e-6,0.0); dcplrphase(zero); delay(taud - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6); decpower(d_c90); decrgpulse(pwc90,one,4.0e-6,0.0); } else { decrgpulse(pwc90,zero,0.0e-6,0.0); /* CaCb dec on */ decpower(d_cacbdec); decprgon(cacbdecseq,pwcacbdec,dres_dec); decon(); /* CaCb dec on */ delay(taud - POWER_DELAY - PRG_START_DELAY - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwcosed - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 - WFG_START_DELAY); /* CaCb dec off */ decoff(); decprgoff(); /* CaCb dec off */ decpower(d_csed); decshaped_pulse(spcosed,pwcosed,zero,4.0e-6,0.0); decpower(d_creb); initval(1.0,v4); decstepsize(sphase1); dcplrphase(v4); decshaped_pulse(spcareb,pwcareb,zero,4.0e-6,0.0); dcplrphase(zero); /* CaCb dec on */ decpower(d_cacbdec); decprgon(cacbdecseq,pwcacbdec,dres_dec); decon(); /* CaCb dec on */ delay(taud - WFG_STOP_DELAY - POWER_DELAY - PRG_START_DELAY - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6); /* CaCb dec off */ decoff(); decprgoff(); /* CaCb dec off */ decpower(d_c90); decrgpulse(pwc90,one,4.0e-6,0.0); } /* END cacb_dec */ /* Turn off D decoupling */ setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3blank(); dec3phase(three); dec3power(pwDlvl); dec3rgpulse(pwD,three,4.0e-6,0.0); /* Turn off D decoupling */ decpower(d_c180); txphase(zero); delay(2.0e-7); zgradpulse(gzlvl10,gt10); delay(100.0e-6); /* Constant t2 period */ if (bigTN - tau2 >= 0.2e-6) { dec2rgpulse(pwN,t3,2.0e-6,0.0); dec2phase(t4); delay(bigTN - tau2 + pwca180); dec2rgpulse(2*pwN,t4,0.0,0.0); decrgpulse(pwca180,zero,0.0,0.0); dec2phase(t5); decpower(d_csed); delay(bigTN - gt1 - 502.0e-6 - 2.0*GRADIENT_DELAY - POWER_DELAY - WFG_START_DELAY - pwcosed - WFG_STOP_DELAY); delay(2.0e-6); zgradpulse(gzlvl1,gt1); delay(500.0e-6); decshaped_pulse(spcosed,pwcosed,zero,0.0,0.0); delay(tau2); sim3pulse(pw,0.0e-6,pwN,zero,zero,t5,0.0,0.0); } else { dec2rgpulse(pwN,t3,2.0e-6,0.0); dec2rgpulse(2.0*pwN,t4,2.0e-6,2.0e-6); dec2phase(t5); delay(tau2 - bigTN); decrgpulse(pwca180,zero,0.0,0.0); decpower(d_csed); delay(bigTN - pwca180 - POWER_DELAY - gt1 - 502.0e-6 - 2.0*GRADIENT_DELAY - WFG_START_DELAY - pwcosed - WFG_STOP_DELAY); delay(2.0e-6); zgradpulse(gzlvl1,gt1); delay(500.0e-6); decshaped_pulse(spcosed,pwcosed,zero,0.0,0.0); delay(tau2); sim3pulse(pw,0.0e-6,pwN,zero,zero,t5,0.0,0.0); } if (nietl_flg[A] == 'n') { delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(2.0e-6); dec2phase(zero); delay(taub - gt6 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(200.0e-6); delay(taub - gt6 - 200.2e-6); txphase(one); dec2phase(one); sim3pulse(pw,0.0e-6,pwN,one,zero,one,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(taub - gt7 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(200.0e-6); delay(taub - gt7 - 200.2e-6); sim3pulse(pw,0.0e-6,pwN,zero,zero,zero,0.0,0.0); } else { /* shaped pulse */ obspower(tpwrsl); shaped_pulse(shp_sl,pw_sl,zero,4.0e-6,0.0); obspower(tpwr); txphase(zero); delay(4.0e-6); /* shaped pulse */ delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(2.0e-6); dec2phase(zero); delay(taub - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pw_sl - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 - gt6 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); txphase(one); dec2phase(zero); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(200.0e-6); delay(taub - gt6 - 200.2e-6); sim3pulse(pw,0.0e-6,pwN,one,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(taub - gt7 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); txphase(one); dec2phase(one); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(200.0e-6); delay(taub - gt7 - 200.2e-6); sim3pulse(pw,0.0e-6,pwN,one,zero,one,0.0,0.0); txphase(zero); } delay(gt2 +gstab -0.5*(pwN -pw) -2.0*pw/PI); rgpulse(2*pw,zero,0.0,0.0); delay(2.0e-6); zgradpulse(icosel*gzlvl2, gt2); decpower(dpwr); dec2power(dpwr2); delay(gstab -2.0e-6 -2.0*GRADIENT_DELAY -2.0*POWER_DELAY); lk_sample(); status(C); setreceiver(t6); }
pulsesequence() { /* DECLARE VARIABLES */ char autocal[MAXSTR], fsat[MAXSTR], fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ spca180[MAXSTR], /* string for the waveform 180 */ fc180[MAXSTR], shp_sl[MAXSTR], /* string for shape of water pulse */ sel_flg[MAXSTR]; int phase, phase2, ni2, icosel, /* icosel changes sign with gds */ t1_counter, /* used for states tppi in t1 */ t2_counter; /* used for states tppi in t2 */ double pwC, pwClvl, compC, compN, tau1, /* t1 delay */ tau2, /* t2 delay */ taua, /* ~ 1/4JNH = 2.25 ms */ taub, /* ~ 1/4JNH = 2.25 ms */ zeta, /* time for C'-N to refocuss set to 0.5*24.0 ms */ timeTN, /* nitrogen T period */ BigT1, /* delay to compensate for gradient */ pwN, /* PW90 for 15N pulse */ pwco90, /* PW90 for co nucleus @ dhpwr */ pwca180h, /* PW180 for ca at dvhpwr */ pwco180, /* PW180 for co at dhpwr180 */ tsatpwr, /* low level 1H trans.power for presat */ dhpwr, /* power level for 13C pulses on dec1 - 64 us 90 for part a of the sequence */ dhpwr180, /* power level for 13C pulses on dec1 - 64 us 180 for part a of the sequence */ dvhpwr, /* power level for 180 13C pulses at 54 ppm using a 55.6 us 180 so that get null in co at 178 ppm */ pwNlvl, /* high dec2 pwr for 15N hard pulses */ sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ pw_sl, /* pw90 for H selective pulse on water ~ 2ms */ phase_sl, /* pw90 for H selective pulse on water ~ 2ms */ tpwrsl, /* power level for square pw_sl */ Jf, /* scale factor for JNCo, set to 4-5 */ gt0, gt1, gt2, gt3, gt4, gt5, gt6, gt7, gt8, gstab, gzlvl0, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, gzlvl7, gzlvl8; /* LOAD VARIABLES */ getstr("autocal",autocal); getstr("fsat",fsat); getstr("f1180",f1180); getstr("f2180",f2180); getstr("fscuba",fscuba); getstr("spca180",spca180); getstr("fc180",fc180); getstr("shp_sl",shp_sl); getstr("sel_flg",sel_flg); taua = getval("taua"); taub = getval("taub"); zeta = getval("zeta"); timeTN = getval("timeTN"); BigT1 = getval("BigT1"); pwca180h = getval("pwca180h"); pwco180 = getval("pwco180"); pwco90 = getval("pwco90"); pwN = getval("pwN"); tpwr = getval("tpwr"); tsatpwr = getval("tsatpwr"); dhpwr = getval("dhpwr"); dhpwr180 = getval("dhpwr180"); dpwr = getval("dpwr"); pwNlvl = getval("pwNlvl"); phase = (int) ( getval("phase") + 0.5); phase2 = (int) ( getval("phase2") + 0.5); sw1 = getval("sw1"); sw2 = getval("sw2"); dvhpwr = getval("dvhpwr"); ni = getval("ni"); ni2 = getval("ni2"); pw_sl = getval("pw_sl"); phase_sl = getval("phase_sl"); tpwrsl = getval("tpwrsl"); Jf = getval("Jf"); gt0 = getval("gt0"); gt1 = getval("gt1"); gt2 = getval("gt2"); gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gt7 = getval("gt7"); gt8 = getval("gt8"); gstab = getval("gstab"); gzlvl0 = getval("gzlvl0"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); gzlvl7 = getval("gzlvl7"); gzlvl8 = getval("gzlvl8"); if (autocal[0] == 'y') { strcpy(spca180,"Phard_-118p"); if (FIRST_FID) { compC = getval("compC"); pwC = getval("pwC"); pwClvl = getval("pwClvl"); ca180 = pbox(spca180, CA180, CA180ps, dfrq, compC*pwC, pwClvl); co90 = pbox("Phard90", CO90, CA180ps, dfrq, compC*pwC, pwClvl); co180 = pbox("Phard180",CO180,CA180ps, dfrq, compC*pwC, pwClvl); pwN = getval("pwN"); compN = getval("compN"); pwNlvl = getval("pwNlvl"); } pwca180h = ca180.pw; dvhpwr = ca180.pwr; pwco90 = co90.pw; dhpwr = co90.pwr; pwco180 = co180.pw; dhpwr180 = co180.pwr; } /* LOAD PHASE TABLE */ settable(t1,4,phi1); settable(t2,2,phi2); settable(t3,4,phi3); settable(t4,1,phi4); settable(t6,4,rec); /* CHECK VALIDITY OF PARAMETER RANGES */ if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )) { printf("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' )) { printf("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); } if( tsatpwr > 6 ) { printf("TSATPWR too large !!! "); psg_abort(1); } if( dpwr > 46 ) { printf("don't fry the probe, DPWR too large! "); psg_abort(1); } if( dpwr2 > 46 ) { printf("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( dhpwr > 62 ) { printf("don't fry the probe, DHPWR too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 200.0e-6 ) { printf("dont fry the probe, pwN too high ! "); psg_abort(1); } if( pwco90 > 200.0e-6 ) { printf("dont fry the probe, pwco90 too high ! "); psg_abort(1); } if( pwca180h > 200.0e-6 ) { printf("dont fry the probe, pwca180h too high ! "); psg_abort(1); } if( gt3 > 2.5e-3 ) { printf("gt3 is too long\n"); psg_abort(1); } if( gt0 > 10.0e-3 || gt1 > 10.0e-3 || gt2 > 10.0e-3 || gt4 > 10.0e-3 || gt5 > 10.0e-3 || gt6 > 10.0e-3 || gt7 > 10.0e-3 || gt8 > 10.0e-3) { printf("gti values are too long. Must be < 10.0e-3\n"); psg_abort(1); } /* Phase incrementation for hypercomplex 2D data */ if (phase == 2) tsadd(t1,1,4); if (phase2 == 2) { tsadd(t4, 2, 4); icosel = 1; } /* change sign of gradient */ else icosel = -1; /* Set up f1180 tau1 = t1 */ tau1 = d2; if(f1180[A] == 'y') { tau1 += ( 1.0 / (2.0*sw1) - 2*pwN - pwca180h - 4.0/PI*pwco90 - 2*POWER_DELAY - WFG_START_DELAY - 8.0e-6 - WFG_STOP_DELAY ); if(tau1 < 0.2e-6) tau1 = 0.4e-6; } tau1 = tau1/2.0; /* Set up f2180 tau2 = t2 */ tau2 = d3; if(f2180[A] == 'y') { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.4e-6; } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t1,2,4); tsadd(t6,2,4); } if( ix == 1) d3_init = d3 ; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t2,2,4); tsadd(t6,2,4); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); obspower(tsatpwr); /* Set transmitter power for 1H presaturation */ decpower(dvhpwr); /* Set Dec1 power for hard 13C pulses */ dec2power(pwNlvl); /* Set Dec2 power for 15N hard pulses */ /* Presaturation Period */ if (fsat[0] == 'y') { rgpulse(d1,zero,2.0e-6,2.0e-6); /* presaturation */ obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if(fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(zero); dec2phase(zero); delay(1.0e-5); /* Begin Pulses */ status(B); rcvroff(); delay(20.0e-6); initval(1.0,v2); obsstepsize(phase_sl); xmtrphase(v2); /* shaped pulse */ obspower(tpwrsl); shaped_pulse(shp_sl,pw_sl,one,2.0e-6,0.0); xmtrphase(zero); delay(2.0e-6); obspower(tpwr); txphase(zero); /* shaped pulse */ rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(0.2e-6); zgradpulse(gzlvl5*1.3,gt5); delay(taua - gt5 - 0.2e-6); /* taua <= 1/4JNH */ sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); dec2phase(zero); decphase(zero); delay(taua -gt5 -gstab -4.0e-6); zgradpulse(gzlvl5*1.3,gt5); delay(gstab); if(sel_flg[A] == 'y') { /* active suppression of one of the two components */ rgpulse(pw,one,4.0e-6,0.0); /* shaped pulse */ initval(1.0,v3); obsstepsize(45.0); dcplr2phase(v3); delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(gstab); dec2rgpulse(pwN,zero,0.0,0.0); dcplr2phase(zero); delay( 1.34e-3 - SAPS_DELAY - 2.0*pw); rgpulse(pw,one,0.0,0.0); rgpulse(2*pw,zero,0.0,0.0); rgpulse(pw,one,0.0,0.0); delay( zeta - 1.34e-3 - 2.0*pw + pwco180 ); } else { rgpulse(pw,three,4.0e-6,0.0); delay(0.2e-6); zgradpulse(gzlvl4,gt4); delay(gstab); dec2rgpulse(pwN,zero,0.0,0.0); delay( zeta + pwco180 ); } dec2rgpulse(2*pwN,zero,0.0,0.0); decpower(dhpwr180); decrgpulse(pwco180,zero,0.0,0.0); delay(zeta - 2.0e-6); dec2rgpulse(pwN,one,2.0e-6,0.0); dec2phase(zero); decphase(t1); decpower(dhpwr); delay(0.2e-6); zgradpulse(gzlvl7,gt7); delay(gstab); decpower(dhpwr); decrgpulse(pwco90,t1,2.0e-6,0.0); if( fc180[A] == 'n' ) { decphase(zero); delay(tau1); dec2rgpulse(2*pwN,zero,0.0,0.0); decpower(dvhpwr); decshaped_pulse(spca180,pwca180h,zero,4.0e-6,0.0); decpower(dhpwr); delay(tau1); } else decrgpulse(2*pwco90,zero,2.0e-7,2.0e-7); decrgpulse(pwco90,zero,4.0e-6,0.0); decpower(dvhpwr); delay(0.2e-6); zgradpulse(gzlvl3,gt3); delay(gstab); dec2rgpulse(pwN,t2,2.0e-6,0.0); delay(tau2); decshaped_pulse(spca180,pwca180h,zero,0.0,0.0); delay(tau2); decpower(dhpwr180); delay(tau2*Jf); decrgpulse(pwco180,zero,0.0,0.0); delay(0.2e-6); zgradpulse(-icosel*gzlvl1,gt1/2.0); delay(50.0e-6); delay(timeTN - 50.0e-6 -0.2e-6 - 2.0*GRADIENT_DELAY - gt1/2.0); dec2rgpulse(2*pwN,t3,0.0,0.0); delay(0.2e-6); zgradpulse(icosel*gzlvl1,gt1/2.0); delay(50.0e-6); delay(tau2*Jf + timeTN - 50.0e-6 -0.2e-6 - 2.0*GRADIENT_DELAY - gt1/2.0 + WFG_START_DELAY + pwca180h + WFG_STOP_DELAY + pwco180 ); sim3pulse(pw,0.0e-6,pwN,zero,zero,t4,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(2.0e-6); dec2phase(zero); delay(taub - gt6 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl6,gt6); delay(gstab); txphase(one); dec2phase(one); delay(taub - gt6 - gstab -0.2e-6); sim3pulse(pw,0.0e-6,pwN,one,zero,one,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(2.0e-6); txphase(zero); dec2phase(zero); delay(taub - gt5 - 2.2e-6); sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0); delay(0.2e-6); zgradpulse(gzlvl5,gt5); delay(gstab); delay(taub - gt5 - gstab -0.2e-6); sim3pulse(pw,0.0e-6,pwN,zero,zero,zero,0.0,0.0); delay(gt2 +gstab +2.0*GRADIENT_DELAY +2.0*POWER_DELAY -0.5*(pwN - pw) -2.0*pw/PI); rgpulse(2.0*pw,zero,0.0,0.0); dec2power(dpwr2); decpower(dpwr); zgradpulse(gzlvl2,gt2); delay(gstab); status(C); setreceiver(t6); }