/*
 * Calculate peak EMC bandwidth for each enabled window =
 * pixel_clock * win_bpp * (use_v_filter ? 2 : 1)) * H_scale_factor *
 * (windows_tiling ? 2 : 1)
 *
 * note:
 * (*) We use 2 tap V filter on T2x/T3x, so need double BW if use V filter
 * (*) Tiling mode on T30 and DDR3 requires double BW
 *
 * return:
 * bandwidth in kBps
 */
static unsigned long tegra_dc_calc_win_bandwidth(struct tegra_dc *dc,
	struct tegra_dc_win *w)
{
	unsigned long ret;
	int tiled_windows_bw_multiplier;
	unsigned long bpp;

	if (!WIN_IS_ENABLED(w))
		return 0;

	if (dfixed_trunc(w->w) == 0 || dfixed_trunc(w->h) == 0 ||
	    w->out_w == 0 || w->out_h == 0)
		return 0;

	tiled_windows_bw_multiplier =
		tegra_mc_get_tiled_memory_bandwidth_multiplier();

	/* all of tegra's YUV formats(420 and 422) fetch 2 bytes per pixel,
	 * but the size reported by tegra_dc_fmt_bpp for the planar version
	 * is of the luma plane's size only. */
	bpp = tegra_dc_is_yuv_planar(w->fmt) ?
		2 * tegra_dc_fmt_bpp(w->fmt) : tegra_dc_fmt_bpp(w->fmt);
	ret = dc->mode.pclk / 1000UL * bpp / 8 *
#if defined(CONFIG_ARCH_TEGRA_2x_SOC) || defined(CONFIG_ARCH_TEGRA_3x_SOC)
		(win_use_v_filter(dc, w) ? 2 : 1) *
#endif
		dfixed_trunc(w->w) / w->out_w * (WIN_IS_TILED(w) ?
		tiled_windows_bw_multiplier : 1);

	return ret;
}
/*
 * Calculate peak EMC bandwidth for each enabled window =
 * pixel_clock * win_bpp * (use_v_filter ? 2 : 1)) * H_scale_factor *
 * (windows_tiling ? 2 : 1)
 *
 * note:
 * (*) We use 2 tap V filter on T2x/T3x, so need double BW if use V filter
 * (*) Tiling mode on T30 and DDR3 requires double BW
 *
 * return:
 * bandwidth in kBps
 */
static unsigned long tegra_dc_calc_win_bandwidth(struct tegra_dc *dc,
	struct tegra_dc_win *w)
{
	unsigned long ret;
	int tiled_windows_bw_multiplier;
	unsigned long bpp;
	unsigned in_w;

	if (!WIN_IS_ENABLED(w))
		return 0;

	if (dfixed_trunc(w->w) == 0 || dfixed_trunc(w->h) == 0 ||
	    w->out_w == 0 || w->out_h == 0)
		return 0;
	if (w->flags & TEGRA_WIN_FLAG_SCAN_COLUMN)
		/* rotated: PRESCALE_SIZE swapped, but WIN_SIZE is unchanged */
		in_w = dfixed_trunc(w->h);
	else
		in_w = dfixed_trunc(w->w); /* normal output, not rotated */

	tiled_windows_bw_multiplier =
		tegra_mc_get_tiled_memory_bandwidth_multiplier();

	/* all of tegra's YUV formats(420 and 422) fetch 2 bytes per pixel,
	 * but the size reported by tegra_dc_fmt_bpp for the planar version
	 * is of the luma plane's size only. */
	bpp = tegra_dc_is_yuv_planar(w->fmt) ?
		2 * tegra_dc_fmt_bpp(w->fmt) : tegra_dc_fmt_bpp(w->fmt);
	ret = dc->mode.pclk / 1000UL * bpp / 8 *
#if defined(CONFIG_ARCH_TEGRA_2x_SOC) || defined(CONFIG_ARCH_TEGRA_3x_SOC)
		(win_use_v_filter(dc, w) ? 2 : 1) *
#endif
		in_w / w->out_w * (WIN_IS_TILED(w) ?
		tiled_windows_bw_multiplier : 1);

#ifdef CONFIG_ARCH_TEGRA_2x_SOC
	/*
	 * Assuming 60% efficiency: i.e. if we calculate we need 70MBps, we
	 * will request 117MBps from EMC.
	 */
	ret = ret + (17 * ret / 25);
#endif
	return ret;
}
int
nv50_calc_pll2(struct drm_device *dev, struct pll_lims *pll, int clk,
	       int *N, int *fN, int *M, int *P)
{
	fixed20_12 fb_div, a, b;

	*P = pll->vco1.maxfreq / clk;
	if (*P > pll->max_p)
		*P = pll->max_p;
	if (*P < pll->min_p)
		*P = pll->min_p;

	/* *M = ceil(refclk / pll->vco.max_inputfreq); */
	a.full = dfixed_const(pll->refclk);
	b.full = dfixed_const(pll->vco1.max_inputfreq);
	a.full = dfixed_div(a, b);
	a.full = dfixed_ceil(a);
	*M = dfixed_trunc(a);

	/* fb_div = (vco * *M) / refclk; */
	fb_div.full = dfixed_const(clk * *P);
	fb_div.full = dfixed_mul(fb_div, a);
	a.full = dfixed_const(pll->refclk);
	fb_div.full = dfixed_div(fb_div, a);

	/* *N = floor(fb_div); */
	a.full = dfixed_floor(fb_div);
	*N = dfixed_trunc(fb_div);

	/* *fN = (fmod(fb_div, 1.0) * 8192) - 4096; */
	b.full = dfixed_const(8192);
	a.full = dfixed_mul(a, b);
	fb_div.full = dfixed_mul(fb_div, b);
	fb_div.full = fb_div.full - a.full;
	*fN = dfixed_trunc(fb_div) - 4096;
	*fN &= 0xffff;

	return clk;
}
Esempio n. 4
0
static inline void tegra_dc_update_scaling(struct tegra_dc *dc,
				struct tegra_dc_win *win, unsigned Bpp,
				unsigned Bpp_bw, bool scan_column)
{
	u32 h_dda, h_dda_init;
	u32 v_dda, v_dda_init;

	h_dda_init = compute_initial_dda(win->x);
	v_dda_init = compute_initial_dda(win->y);

	if (scan_column) {
		tegra_dc_writel(dc,
			V_PRESCALED_SIZE(dfixed_trunc(win->w)) |
			H_PRESCALED_SIZE(dfixed_trunc(win->h) * Bpp),
			DC_WIN_PRESCALED_SIZE);

		tegra_dc_writel(dc, v_dda_init, DC_WIN_H_INITIAL_DDA);
		tegra_dc_writel(dc, h_dda_init, DC_WIN_V_INITIAL_DDA);
		h_dda = compute_dda_inc(win->h, win->out_w,
				false, Bpp_bw);
		v_dda = compute_dda_inc(win->w, win->out_h,
				true, Bpp_bw);
	} else {
		tegra_dc_writel(dc,
			V_PRESCALED_SIZE(dfixed_trunc(win->h)) |
			H_PRESCALED_SIZE(dfixed_trunc(win->w) * Bpp),
			DC_WIN_PRESCALED_SIZE);

		tegra_dc_writel(dc, h_dda_init, DC_WIN_H_INITIAL_DDA);
		tegra_dc_writel(dc, v_dda_init, DC_WIN_V_INITIAL_DDA);
		h_dda = compute_dda_inc(win->w, win->out_w,
				false, Bpp_bw);
		v_dda = compute_dda_inc(win->h, win->out_h,
				true, Bpp_bw);
	}
	tegra_dc_writel(dc, V_DDA_INC(v_dda) |
		H_DDA_INC(h_dda), DC_WIN_DDA_INCREMENT);
}
static void mods_tegra_dc_set_windowattr_basic(struct tegra_dc_win *win,
		       const struct MODS_TEGRA_DC_WINDOW *mods_win)
{
	win->global_alpha = 0;
	win->z            = 0;
	win->stride       = 0;
	win->stride_uv    = 0;

	win->flags = TEGRA_WIN_FLAG_ENABLED;
	if (mods_win->flags & MODS_TEGRA_DC_WINDOW_FLAG_TILED)
		win->flags |= TEGRA_WIN_FLAG_TILED;
#if defined(CONFIG_TEGRA_DC_SCAN_COLUMN)
	if (mods_win->flags & MODS_TEGRA_DC_WINDOW_FLAG_SCAN_COL)
		win->flags |= TEGRA_WIN_FLAG_SCAN_COLUMN;
#endif

	win->fmt = mods_win->pixformat;
	win->x.full = mods_win->x;
	win->y.full = mods_win->y;
	win->w.full = mods_win->w;
	win->h.full = mods_win->h;
	/* XXX verify that this doesn't go outside display's active region */
	win->out_x = mods_win->out_x;
	win->out_y = mods_win->out_y;
	win->out_w = mods_win->out_w;
	win->out_h = mods_win->out_h;

	mods_debug_printk(DEBUG_TEGRADC,
		"mods_tegra_dc_set_windowattr_basic window %u:\n"
		"\tflags : 0x%08x\n"
		"\tfmt   : %u\n"
		"\tinput : (%u, %u, %u, %u)\n"
		"\toutput: (%u, %u, %u, %u)\n",
		win->idx, win->flags, win->fmt, dfixed_trunc(win->x),
		dfixed_trunc(win->y), dfixed_trunc(win->w),
		dfixed_trunc(win->h), win->out_x, win->out_y, win->out_w,
		win->out_h);
}
/*
 * Calculate peak EMC bandwidth for each enabled window =
 * pixel_clock * win_bpp * (use_v_filter ? 2 : 1)) * H_scale_factor *
 * (windows_tiling ? 2 : 1)
 *
 * note:
 * (*) We use 2 tap V filter, so need double BW if use V filter
 * (*) Tiling mode on T30 and DDR3 requires double BW
 *
 * return:
 * bandwidth in kBps
 */
static unsigned long tegra_dc_calc_win_bandwidth(struct tegra_dc *dc,
	struct tegra_dc_win *w)
{
	unsigned long ret;
	int tiled_windows_bw_multiplier;
	unsigned long bpp;

	if (!WIN_IS_ENABLED(w))
		return 0;

	if (dfixed_trunc(w->w) == 0 || dfixed_trunc(w->h) == 0 ||
	    w->out_w == 0 || w->out_h == 0)
		return 0;

	tiled_windows_bw_multiplier =
		tegra_mc_get_tiled_memory_bandwidth_multiplier();

	/* all of tegra's YUV formats(420 and 422) fetch 2 bytes per pixel,
	 * but the size reported by tegra_dc_fmt_bpp for the planar version
	 * is of the luma plane's size only. */
	bpp = tegra_dc_is_yuv_planar(w->fmt) ?
		2 * tegra_dc_fmt_bpp(w->fmt) : tegra_dc_fmt_bpp(w->fmt);
	ret = dc->mode.pclk / 1000UL * bpp / 8 * (
		win_use_v_filter(dc, w) ? 2 : 1) *
		dfixed_trunc(w->w) / w->out_w * (WIN_IS_TILED(w) ?
		tiled_windows_bw_multiplier : 1);

#ifdef CONFIG_ARCH_TEGRA_2x_SOC
	/*
	 * Assuming 60% efficiency: i.e. if we calculate we need 70MBps, we
	 * will request 117MBps from EMC.
	 */
	ret = ret + (17 * ret / 25);
#endif
	return ret;
}
Esempio n. 7
0
/*
 * Calculate peak EMC bandwidth for each enabled window =
 * pixel_clock * win_bpp * (use_v_filter ? 2 : 1)) * H_scale_factor *
 * (windows_tiling ? 2 : 1)
 *
 * note:
 * (*) We use 2 tap V filter on T2x/T3x, so need double BW if use V filter
 * (*) Tiling mode on T30 and DDR3 requires double BW
 *
 * return:
 * bandwidth in kBps
 */
static unsigned long tegra_dc_calc_win_bandwidth(struct tegra_dc *dc,
	struct tegra_dc_win *w)
{
	unsigned in_w;
	unsigned in_h;
	unsigned bpp;
	unsigned long f_w;
	unsigned long f_h;
	unsigned long bw;
	int tiled_windows_bw_multiplier;

	/* ignore windows that are off or invalid */
	if (!WIN_IS_ENABLED(w) || dfixed_trunc(w->w) == 0 ||
		dfixed_trunc(w->h) == 0 || w->out_w == 0 || w->out_h == 0)
		return 0;

	if (w->flags & TEGRA_WIN_FLAG_SCAN_COLUMN) {
		/* rotated : prescaled size is swapped */
		in_w = dfixed_trunc(w->h);
		in_h = dfixed_trunc(w->w);
	} else {
		/* normal */
		in_w = dfixed_trunc(w->w);
		in_h = dfixed_trunc(w->h);
	}
	tiled_windows_bw_multiplier =
		tegra_mc_get_tiled_memory_bandwidth_multiplier();

	/* all of tegra's YUV formats(420 and 422) fetch 2 bytes per pixel,
	 * but the size reported by tegra_dc_fmt_bpp for the planar version
	 * is of the luma plane's size only. */
	bpp = tegra_dc_is_yuv_planar(w->fmt) ?
		2 * tegra_dc_fmt_bpp(w->fmt) : tegra_dc_fmt_bpp(w->fmt);

	bw = dc->mode.pclk / 1000UL * bpp / 8;

	if (WIN_IS_TILED(w))
		bw *= tiled_windows_bw_multiplier;

#if defined(CONFIG_ARCH_TEGRA_2x_SOC) || defined(CONFIG_ARCH_TEGRA_3x_SOC)
	if (win_use_v_filter(dc, w, false))
		bw *= 2;
#endif

	/* calculate H & V scaling factor. treat upscaling as 1.00 */
	f_w = max(in_w * 100 / w->out_w, 100u);
	f_h = max(in_h * 100 / w->out_h, 100u);
	bw *= f_w;
	bw /= 100;
	if (win_use_v_filter(dc, w, w->flags & TEGRA_WIN_FLAG_SCAN_COLUMN)) {
		bw *= f_h;
		bw /= 100;
	}

	return bw;
}
Esempio n. 8
0
/* does not support updating windows on multiple dcs in one call */
int tegra_dc_update_windows(struct tegra_dc_win *windows[], int n)
{
	struct tegra_dc *dc;
	unsigned long update_mask = GENERAL_ACT_REQ;
	unsigned long win_options;
	bool update_blend = false;
	int i;

	dc = windows[0]->dc;

	if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE) {
		/* Acquire one_shot_lock to avoid race condition between
		 * cancellation of old delayed work and schedule of new
		 * delayed work. */
		mutex_lock(&dc->one_shot_lock);
		cancel_delayed_work_sync(&dc->one_shot_work);
	}
	mutex_lock(&dc->lock);

	if (!dc->enabled) {
		mutex_unlock(&dc->lock);
		if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE)
			mutex_unlock(&dc->one_shot_lock);
		return -EFAULT;
	}

	tegra_dc_hold_dc_out(dc);

	if (no_vsync)
		tegra_dc_writel(dc, WRITE_MUX_ACTIVE | READ_MUX_ACTIVE,
			DC_CMD_STATE_ACCESS);
	else
		tegra_dc_writel(dc, WRITE_MUX_ASSEMBLY | READ_MUX_ASSEMBLY,
			DC_CMD_STATE_ACCESS);

	for (i = 0; i < n; i++) {
		struct tegra_dc_win *win = windows[i];
		bool scan_column = 0;
		fixed20_12 h_offset, v_offset;
		bool invert_h = (win->flags & TEGRA_WIN_FLAG_INVERT_H) != 0;
		bool invert_v = (win->flags & TEGRA_WIN_FLAG_INVERT_V) != 0;
		bool yuv = tegra_dc_is_yuv(win->fmt);
		bool yuvp = tegra_dc_is_yuv_planar(win->fmt);
		unsigned Bpp = tegra_dc_fmt_bpp(win->fmt) / 8;
		/* Bytes per pixel of bandwidth, used for dda_inc calculation */
		unsigned Bpp_bw = Bpp * (yuvp ? 2 : 1);
		const bool filter_h = win_use_h_filter(dc, win);
		const bool filter_v = win_use_v_filter(dc, win);
#if defined(CONFIG_TEGRA_DC_SCAN_COLUMN)
		scan_column = (win->flags & TEGRA_WIN_FLAG_SCAN_COLUMN);
#endif

		if (win->z != dc->blend.z[win->idx]) {
			dc->blend.z[win->idx] = win->z;
			update_blend = true;
		}
		if ((win->flags & TEGRA_WIN_BLEND_FLAGS_MASK) !=
			dc->blend.flags[win->idx]) {
			dc->blend.flags[win->idx] =
				win->flags & TEGRA_WIN_BLEND_FLAGS_MASK;
			update_blend = true;
		}

		tegra_dc_writel(dc, WINDOW_A_SELECT << win->idx,
				DC_CMD_DISPLAY_WINDOW_HEADER);

		if (!no_vsync)
			update_mask |= WIN_A_ACT_REQ << win->idx;

		if (!WIN_IS_ENABLED(win)) {
			/*dc->windows[i].dirty = 1;  NV patch, but Now we do not use it */
			tegra_dc_writel(dc, 0, DC_WIN_WIN_OPTIONS);
			continue;
		}

		tegra_dc_writel(dc, win->fmt & 0x1f, DC_WIN_COLOR_DEPTH);
		tegra_dc_writel(dc, win->fmt >> 6, DC_WIN_BYTE_SWAP);

		tegra_dc_writel(dc,
			V_POSITION(win->out_y) | H_POSITION(win->out_x),
			DC_WIN_POSITION);
		tegra_dc_writel(dc,
			V_SIZE(win->out_h) | H_SIZE(win->out_w),
			DC_WIN_SIZE);

		/* Check scan_column flag to set window size and scaling. */
		win_options = WIN_ENABLE;
		if (scan_column) {
			win_options |= WIN_SCAN_COLUMN;
			win_options |= H_FILTER_ENABLE(filter_v);
			win_options |= V_FILTER_ENABLE(filter_h);
		} else {
			win_options |= H_FILTER_ENABLE(filter_h);
			win_options |= V_FILTER_ENABLE(filter_v);
		}

		/* Update scaling registers if window supports scaling. */
		if (likely(tegra_dc_feature_has_scaling(dc, win->idx)))
			tegra_dc_update_scaling(dc, win, Bpp, Bpp_bw,
								scan_column);

		tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
		tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
		tegra_dc_writel(dc, (unsigned long)win->phys_addr,
			DC_WINBUF_START_ADDR);

		if (!yuvp) {
			tegra_dc_writel(dc, win->stride, DC_WIN_LINE_STRIDE);
		} else {
			tegra_dc_writel(dc,
				(unsigned long)win->phys_addr_u,
				DC_WINBUF_START_ADDR_U);
			tegra_dc_writel(dc,
				(unsigned long)win->phys_addr_v,
				DC_WINBUF_START_ADDR_V);
			tegra_dc_writel(dc,
				LINE_STRIDE(win->stride) |
				UV_LINE_STRIDE(win->stride_uv),
				DC_WIN_LINE_STRIDE);
		}

		if (invert_h) {
			h_offset.full = win->x.full + win->w.full;
			h_offset.full = dfixed_floor(h_offset) * Bpp;
			h_offset.full -= dfixed_const(1);
		} else {
			h_offset.full = dfixed_floor(win->x) * Bpp;
		}

		v_offset = win->y;
		if (invert_v) {
			v_offset.full += win->h.full - dfixed_const(1);
		}

		tegra_dc_writel(dc, dfixed_trunc(h_offset),
				DC_WINBUF_ADDR_H_OFFSET);
		tegra_dc_writel(dc, dfixed_trunc(v_offset),
				DC_WINBUF_ADDR_V_OFFSET);

		if (tegra_dc_feature_has_tiling(dc, win->idx)) {
			if (WIN_IS_TILED(win))
				tegra_dc_writel(dc,
					DC_WIN_BUFFER_ADDR_MODE_TILE |
					DC_WIN_BUFFER_ADDR_MODE_TILE_UV,
					DC_WIN_BUFFER_ADDR_MODE);
			else
				tegra_dc_writel(dc,
					DC_WIN_BUFFER_ADDR_MODE_LINEAR |
					DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV,
					DC_WIN_BUFFER_ADDR_MODE);
		}

		if (yuv)
			win_options |= CSC_ENABLE;
		else if (tegra_dc_fmt_bpp(win->fmt) < 24)
			win_options |= COLOR_EXPAND;

#if  defined(CONFIG_ARCH_TEGRA_3x_SOC)
		if (win->global_alpha == 255) {
			tegra_dc_writel(dc, 0, DC_WIN_GLOBAL_ALPHA);
		} else {
			tegra_dc_writel(dc, GLOBAL_ALPHA_ENABLE |
				win->global_alpha, DC_WIN_GLOBAL_ALPHA);
			win_options |= CP_ENABLE;
		}
#endif

		if (win->ppflags & TEGRA_WIN_PPFLAG_CP_ENABLE)
			win_options |= CP_ENABLE;

		win_options |= H_DIRECTION_DECREMENT(invert_h);
		win_options |= V_DIRECTION_DECREMENT(invert_v);

		tegra_dc_writel(dc, win_options, DC_WIN_WIN_OPTIONS);

		win->dirty = no_vsync ? 0 : 1;

		dev_dbg(&dc->ndev->dev, "%s():idx=%d z=%d x=%d y=%d w=%d h=%d "
			"out_x=%u out_y=%u out_w=%u out_h=%u "
			"fmt=%d yuvp=%d Bpp=%u filter_h=%d filter_v=%d",
			__func__, win->idx, win->z,
			dfixed_trunc(win->x), dfixed_trunc(win->y),
			dfixed_trunc(win->w), dfixed_trunc(win->h),
			win->out_x, win->out_y, win->out_w, win->out_h,
			win->fmt, yuvp, Bpp, filter_h, filter_v);
		trace_printk("%s:win%u in:%ux%u out:%ux%u fmt=%d\n",
			dc->ndev->name, win->idx, dfixed_trunc(win->w),
			dfixed_trunc(win->h), win->out_w, win->out_h, win->fmt);
	}

	if (update_blend) {
		tegra_dc_set_blending(dc, &dc->blend);
		for (i = 0; i < DC_N_WINDOWS; i++) {
			if (!no_vsync)
				dc->windows[i].dirty = 1;
			update_mask |= WIN_A_ACT_REQ << i;
		}
	}

	tegra_dc_set_dynamic_emc(windows, n);

	tegra_dc_writel(dc, update_mask << 8, DC_CMD_STATE_CONTROL);

	tegra_dc_writel(dc, FRAME_END_INT | V_BLANK_INT, DC_CMD_INT_STATUS);
	if (!no_vsync) {
		set_bit(V_BLANK_FLIP, &dc->vblank_ref_count);
		tegra_dc_unmask_interrupt(dc,
			FRAME_END_INT | V_BLANK_INT | ALL_UF_INT);
	} else {
		clear_bit(V_BLANK_FLIP, &dc->vblank_ref_count);
		tegra_dc_mask_interrupt(dc,
			FRAME_END_INT | V_BLANK_INT | ALL_UF_INT);
	}

	if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE) {
		atomic_set(&update_frame,1);
		schedule_delayed_work(&dc->one_shot_work,
				msecs_to_jiffies(dc->one_shot_delay_ms));
	}

	/* update EMC clock if calculated bandwidth has changed */
	tegra_dc_program_bandwidth(dc, false);

	if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE)
		update_mask |= NC_HOST_TRIG;

	tegra_dc_writel(dc, update_mask, DC_CMD_STATE_CONTROL);
	trace_printk("%s:update_mask=%#lx\n", dc->ndev->name, update_mask);

	tegra_dc_release_dc_out(dc);
	mutex_unlock(&dc->lock);
	if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE)
		mutex_unlock(&dc->one_shot_lock);

	bool is_yuvp = 0;
	for (i = 0; i < n; i++) {
		struct tegra_dc_win *win = windows[i];
		bool yuvp = tegra_dc_is_yuv_planar(win->fmt);
		is_yuvp |= yuvp;
	}

	if (dc->ndev->id == 0) {
		struct tegra_dc_out *out = dc->out;
		struct tegra_dsi_out *dsi = out->dsi;
		struct tegra_dsi_cmd *cur = NULL;
		int n = dsi->n_cabc_cmd;
		if (out && dsi && dc->out_ops && dc->out_ops->send_cmd) {
			if (is_yuvp && !dc->isyuv_lasttime) {
				printk(KERN_INFO "[DISP] YUV\r\n");
				cur = dsi->dsi_cabc_still_mode;
				dc->isyuv_lasttime = is_yuvp;
			}
			else if (!is_yuvp && dc->isyuv_lasttime) {
				printk(KERN_INFO "[DISP] RGB\r\n");
				cur = dsi->dsi_cabc_moving_mode;
				dc->isyuv_lasttime = is_yuvp;
			}
			if (cur) {
				dc->out_ops->send_cmd(dc, cur, n);
			}
		}
	}

	return 0;
}
Esempio n. 9
0
/* does not support updating windows on multiple dcs in one call */
int tegra_dc_update_windows(struct tegra_dc_win *windows[], int n)
{
	struct tegra_dc *dc;
	unsigned long update_mask = GENERAL_ACT_REQ;
	unsigned long val;
	bool update_blend = false;
	int i;

	dc = windows[0]->dc;

	if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE) {
		/* Acquire one_shot_lock to avoid race condition between
		 * cancellation of old delayed work and schedule of new
		 * delayed work. */
		mutex_lock(&dc->one_shot_lock);
		cancel_delayed_work_sync(&dc->one_shot_work);
	}
	mutex_lock(&dc->lock);

	if (!dc->enabled) {
		mutex_unlock(&dc->lock);
		if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE)
			mutex_unlock(&dc->one_shot_lock);
		return -EFAULT;
	}

	tegra_dc_hold_dc_out(dc);

	if (no_vsync)
		tegra_dc_writel(dc, WRITE_MUX_ACTIVE | READ_MUX_ACTIVE,
			DC_CMD_STATE_ACCESS);
	else
		tegra_dc_writel(dc, WRITE_MUX_ASSEMBLY | READ_MUX_ASSEMBLY,
			DC_CMD_STATE_ACCESS);

	for (i = 0; i < n; i++) {
		struct tegra_dc_win *win = windows[i];
		unsigned h_dda;
		unsigned v_dda;
		fixed20_12 h_offset, v_offset;
		bool invert_h = (win->flags & TEGRA_WIN_FLAG_INVERT_H) != 0;
		bool invert_v = (win->flags & TEGRA_WIN_FLAG_INVERT_V) != 0;
		bool yuv = tegra_dc_is_yuv(win->fmt);
		bool yuvp = tegra_dc_is_yuv_planar(win->fmt);
		unsigned Bpp = tegra_dc_fmt_bpp(win->fmt) / 8;
		/* Bytes per pixel of bandwidth, used for dda_inc calculation */
		unsigned Bpp_bw = Bpp * (yuvp ? 2 : 1);
		const bool filter_h = win_use_h_filter(dc, win);
		const bool filter_v = win_use_v_filter(dc, win);

		if (win->z != dc->blend.z[win->idx]) {
			dc->blend.z[win->idx] = win->z;
			update_blend = true;
		}
		if ((win->flags & TEGRA_WIN_BLEND_FLAGS_MASK) !=
			dc->blend.flags[win->idx]) {
			dc->blend.flags[win->idx] =
				win->flags & TEGRA_WIN_BLEND_FLAGS_MASK;
			update_blend = true;
		}

		tegra_dc_writel(dc, WINDOW_A_SELECT << win->idx,
				DC_CMD_DISPLAY_WINDOW_HEADER);

		if (!no_vsync)
			update_mask |= WIN_A_ACT_REQ << win->idx;

		if (!WIN_IS_ENABLED(win)) {
			dc->windows[i].dirty = 1;
			tegra_dc_writel(dc, 0, DC_WIN_WIN_OPTIONS);
			continue;
		}

		tegra_dc_writel(dc, win->fmt & 0x1f, DC_WIN_COLOR_DEPTH);
		tegra_dc_writel(dc, win->fmt >> 6, DC_WIN_BYTE_SWAP);

		tegra_dc_writel(dc,
			V_POSITION(win->out_y) | H_POSITION(win->out_x),
			DC_WIN_POSITION);
		tegra_dc_writel(dc,
			V_SIZE(win->out_h) | H_SIZE(win->out_w),
			DC_WIN_SIZE);

		if (tegra_dc_feature_has_scaling(dc, win->idx)) {
			tegra_dc_writel(dc,
				V_PRESCALED_SIZE(dfixed_trunc(win->h)) |
				H_PRESCALED_SIZE(dfixed_trunc(win->w) * Bpp),
				DC_WIN_PRESCALED_SIZE);

			h_dda = compute_dda_inc(win->w, win->out_w, false,
				Bpp_bw);
			v_dda = compute_dda_inc(win->h, win->out_h, true,
				Bpp_bw);
			tegra_dc_writel(dc, V_DDA_INC(v_dda) |
				H_DDA_INC(h_dda), DC_WIN_DDA_INCREMENT);
			h_dda = compute_initial_dda(win->x);
			v_dda = compute_initial_dda(win->y);
			tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
			tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
		}

		tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
		tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
		tegra_dc_writel(dc, (unsigned long)win->phys_addr,
			DC_WINBUF_START_ADDR);

		if (!yuvp) {
			tegra_dc_writel(dc, win->stride, DC_WIN_LINE_STRIDE);
		} else {
			tegra_dc_writel(dc,
				(unsigned long)win->phys_addr_u,
				DC_WINBUF_START_ADDR_U);
			tegra_dc_writel(dc,
				(unsigned long)win->phys_addr_v,
				DC_WINBUF_START_ADDR_V);
			tegra_dc_writel(dc,
				LINE_STRIDE(win->stride) |
				UV_LINE_STRIDE(win->stride_uv),
				DC_WIN_LINE_STRIDE);
		}

		h_offset = win->x;
		if (invert_h) {
			h_offset.full += win->w.full - dfixed_const(1);
		}

		v_offset = win->y;
		if (invert_v) {
			v_offset.full += win->h.full - dfixed_const(1);
		}

		tegra_dc_writel(dc, dfixed_trunc(h_offset) * Bpp,
				DC_WINBUF_ADDR_H_OFFSET);
		tegra_dc_writel(dc, dfixed_trunc(v_offset),
				DC_WINBUF_ADDR_V_OFFSET);

		if (tegra_dc_feature_has_tiling(dc, win->idx)) {
			if (WIN_IS_TILED(win))
				tegra_dc_writel(dc,
					DC_WIN_BUFFER_ADDR_MODE_TILE |
					DC_WIN_BUFFER_ADDR_MODE_TILE_UV,
					DC_WIN_BUFFER_ADDR_MODE);
			else
				tegra_dc_writel(dc,
					DC_WIN_BUFFER_ADDR_MODE_LINEAR |
					DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV,
					DC_WIN_BUFFER_ADDR_MODE);
		}

		val = WIN_ENABLE;
		if (yuv)
			val |= CSC_ENABLE;
		else if (tegra_dc_fmt_bpp(win->fmt) < 24)
			val |= COLOR_EXPAND;

		if (win->ppflags & TEGRA_WIN_PPFLAG_CP_ENABLE)
			val |= CP_ENABLE;

		if (filter_h)
			val |= H_FILTER_ENABLE;
		if (filter_v)
			val |= V_FILTER_ENABLE;

		if (invert_h)
			val |= H_DIRECTION_DECREMENT;
		if (invert_v)
			val |= V_DIRECTION_DECREMENT;

		tegra_dc_writel(dc, val, DC_WIN_WIN_OPTIONS);

#ifdef CONFIG_ARCH_TEGRA_3x_SOC
		if (win->global_alpha == 255)
			tegra_dc_writel(dc, 0, DC_WIN_GLOBAL_ALPHA);
		else
			tegra_dc_writel(dc, GLOBAL_ALPHA_ENABLE |
				win->global_alpha, DC_WIN_GLOBAL_ALPHA);
#endif

		win->dirty = no_vsync ? 0 : 1;

		dev_dbg(&dc->ndev->dev, "%s():idx=%d z=%d x=%d y=%d w=%d h=%d "
			"out_x=%u out_y=%u out_w=%u out_h=%u "
			"fmt=%d yuvp=%d Bpp=%u filter_h=%d filter_v=%d",
			__func__, win->idx, win->z,
			dfixed_trunc(win->x), dfixed_trunc(win->y),
			dfixed_trunc(win->w), dfixed_trunc(win->h),
			win->out_x, win->out_y, win->out_w, win->out_h,
			win->fmt, yuvp, Bpp, filter_h, filter_v);
		trace_printk("%s:win%u in:%ux%u out:%ux%u fmt=%d\n",
			dc->ndev->name, win->idx, dfixed_trunc(win->w),
			dfixed_trunc(win->h), win->out_w, win->out_h, win->fmt);
	}

	if (update_blend) {
		tegra_dc_set_blending(dc, &dc->blend);
		for (i = 0; i < DC_N_WINDOWS; i++) {
			if (!no_vsync)
				dc->windows[i].dirty = 1;
			update_mask |= WIN_A_ACT_REQ << i;
		}
	}

	tegra_dc_set_dynamic_emc(windows, n);

	tegra_dc_writel(dc, update_mask << 8, DC_CMD_STATE_CONTROL);

	tegra_dc_writel(dc, FRAME_END_INT | V_BLANK_INT, DC_CMD_INT_STATUS);
	if (!no_vsync) {
		set_bit(V_BLANK_FLIP, &dc->vblank_ref_count);
		tegra_dc_unmask_interrupt(dc,
			FRAME_END_INT | V_BLANK_INT | ALL_UF_INT);
	} else {
		clear_bit(V_BLANK_FLIP, &dc->vblank_ref_count);
		tegra_dc_mask_interrupt(dc, V_BLANK_INT | ALL_UF_INT);
		if (!atomic_read(&frame_end_ref))
			tegra_dc_mask_interrupt(dc, FRAME_END_INT);
	}

	if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE)
		schedule_delayed_work(&dc->one_shot_work,
				msecs_to_jiffies(dc->one_shot_delay_ms));

	/* update EMC clock if calculated bandwidth has changed */
	tegra_dc_program_bandwidth(dc, false);

	if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE)
		update_mask |= NC_HOST_TRIG;

	tegra_dc_writel(dc, update_mask, DC_CMD_STATE_CONTROL);
	trace_printk("%s:update_mask=%#lx\n", dc->ndev->name, update_mask);

	tegra_dc_release_dc_out(dc);
	mutex_unlock(&dc->lock);
	if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE)
		mutex_unlock(&dc->one_shot_lock);

	return 0;
}
Esempio n. 10
0
/* does not support updating windows on multiple dcs in one call */
int tegra_dc_update_windows(struct tegra_dc_win *windows[], int n)
{
	struct tegra_dc *dc;
	unsigned long update_mask = GENERAL_ACT_REQ;
	unsigned long val;
	bool update_blend = false;
	int i;

	dc = windows[0]->dc;

	mutex_lock(&dc->lock);

	if (!dc->enabled) {
		mutex_unlock(&dc->lock);
		return -EFAULT;
	}

	if (no_vsync)
		tegra_dc_writel(dc, WRITE_MUX_ACTIVE | READ_MUX_ACTIVE, DC_CMD_STATE_ACCESS);
	else
		tegra_dc_writel(dc, WRITE_MUX_ASSEMBLY | READ_MUX_ASSEMBLY, DC_CMD_STATE_ACCESS);

	for (i = 0; i < n; i++) {
		struct tegra_dc_win *win = windows[i];
		unsigned h_dda;
		unsigned v_dda;
		bool yuvp = tegra_dc_is_yuv_planar(win->fmt);
		unsigned Bpp = tegra_dc_fmt_bpp(win->fmt) / 8;
		static const struct {
			bool h;
			bool v;
		} can_filter[] = {
			/* Window A has no filtering */
			{ false, false },
			/* Window B has both H and V filtering */
			{ true,  true  },
			/* Window C has only H filtering */
			{ false, true  },
		};
		const bool filter_h = can_filter[win->idx].h &&
			(win->w.full != dfixed_const(win->out_w));
		const bool filter_v = can_filter[win->idx].v &&
			(win->h.full != dfixed_const(win->out_h));

		if (win->z != dc->blend.z[win->idx]) {
			dc->blend.z[win->idx] = win->z;
			update_blend = true;
		}
		if ((win->flags & TEGRA_WIN_BLEND_FLAGS_MASK) !=
			dc->blend.flags[win->idx]) {
			dc->blend.flags[win->idx] =
				win->flags & TEGRA_WIN_BLEND_FLAGS_MASK;
			update_blend = true;
		}

		tegra_dc_writel(dc, WINDOW_A_SELECT << win->idx,
				DC_CMD_DISPLAY_WINDOW_HEADER);

		if (!no_vsync)
			update_mask |= WIN_A_ACT_REQ << win->idx;

		if (!(win->flags & TEGRA_WIN_FLAG_ENABLED)) {
			tegra_dc_writel(dc, 0, DC_WIN_WIN_OPTIONS);
			continue;
		}

		tegra_dc_writel(dc, win->fmt, DC_WIN_COLOR_DEPTH);
		tegra_dc_writel(dc, 0, DC_WIN_BYTE_SWAP);

		tegra_dc_writel(dc,
				V_POSITION(win->out_y) | H_POSITION(win->out_x),
				DC_WIN_POSITION);
		tegra_dc_writel(dc,
				V_SIZE(win->out_h) | H_SIZE(win->out_w),
				DC_WIN_SIZE);
		tegra_dc_writel(dc,
				V_PRESCALED_SIZE(dfixed_trunc(win->h)) |
				H_PRESCALED_SIZE(dfixed_trunc(win->w) * Bpp),
				DC_WIN_PRESCALED_SIZE);

		h_dda = compute_dda_inc(win->w, win->out_w, false, Bpp);
		v_dda = compute_dda_inc(win->h, win->out_h, true, Bpp);
		tegra_dc_writel(dc, V_DDA_INC(v_dda) | H_DDA_INC(h_dda),
				DC_WIN_DDA_INCREMENT);
		h_dda = compute_initial_dda(win->x);
		v_dda = compute_initial_dda(win->y);
		tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
		tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);

		tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
		tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
		tegra_dc_writel(dc, (unsigned long)win->phys_addr,
				DC_WINBUF_START_ADDR);

		if (!yuvp) {
			tegra_dc_writel(dc, win->stride, DC_WIN_LINE_STRIDE);
		} else {
			tegra_dc_writel(dc,
					(unsigned long)win->phys_addr +
					(unsigned long)win->offset_u,
					DC_WINBUF_START_ADDR_U);
			tegra_dc_writel(dc,
					(unsigned long)win->phys_addr +
					(unsigned long)win->offset_v,
					DC_WINBUF_START_ADDR_V);
			tegra_dc_writel(dc,
					LINE_STRIDE(win->stride) |
					UV_LINE_STRIDE(win->stride_uv),
					DC_WIN_LINE_STRIDE);
		}

		tegra_dc_writel(dc, dfixed_trunc(win->x) * Bpp,
				DC_WINBUF_ADDR_H_OFFSET);
		tegra_dc_writel(dc, dfixed_trunc(win->y),
				DC_WINBUF_ADDR_V_OFFSET);

		val = WIN_ENABLE;
		if (yuvp)
			val |= CSC_ENABLE;
		else if (tegra_dc_fmt_bpp(win->fmt) < 24)
			val |= COLOR_EXPAND;

		if (filter_h)
			val |= H_FILTER_ENABLE;
		if (filter_v)
			val |= V_FILTER_ENABLE;

		tegra_dc_writel(dc, val, DC_WIN_WIN_OPTIONS);

		win->dirty = no_vsync ? 0 : 1;
	}

	if (update_blend) {
		tegra_dc_set_blending(dc, &dc->blend);
		for (i = 0; i < DC_N_WINDOWS; i++) {
			if (!no_vsync)
				dc->windows[i].dirty = 1;
			update_mask |= WIN_A_ACT_REQ << i;
		}
	}

	tegra_dc_writel(dc, update_mask << 8, DC_CMD_STATE_CONTROL);

	if (!no_vsync) {
		val = tegra_dc_readl(dc, DC_CMD_INT_ENABLE);
		val |= FRAME_END_INT;
		tegra_dc_writel(dc, val, DC_CMD_INT_ENABLE);

		val = tegra_dc_readl(dc, DC_CMD_INT_MASK);
		val |= FRAME_END_INT;
		tegra_dc_writel(dc, val, DC_CMD_INT_MASK);
	}

	tegra_dc_writel(dc, update_mask, DC_CMD_STATE_CONTROL);
	mutex_unlock(&dc->lock);

	return 0;
}
Esempio n. 11
0
/* Does not support updating windows on multiple dcs in one call.
 * Requires a matching sync_windows to avoid leaking ref-count on clocks. */
int tegra_dc_update_windows(struct tegra_dc_win *windows[], int n)
{
	struct tegra_dc *dc;
	unsigned long update_mask = GENERAL_ACT_REQ;
	unsigned long win_options;
	bool update_blend_par = false;
	bool update_blend_seq = false;
	int i;

	dc = windows[0]->dc;
	trace_update_windows(dc);

	if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE) {
		/* Acquire one_shot_lock to avoid race condition between
		 * cancellation of old delayed work and schedule of new
		 * delayed work. */
		mutex_lock(&dc->one_shot_lock);
		cancel_delayed_work_sync(&dc->one_shot_work);
	}
	mutex_lock(&dc->lock);

	if (!dc->enabled) {
		mutex_unlock(&dc->lock);
		if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE)
			mutex_unlock(&dc->one_shot_lock);
		return -EFAULT;
	}

	tegra_dc_io_start(dc);
	tegra_dc_hold_dc_out(dc);

	if (no_vsync)
		tegra_dc_writel(dc, WRITE_MUX_ACTIVE | READ_MUX_ACTIVE,
			DC_CMD_STATE_ACCESS);
	else
		tegra_dc_writel(dc, WRITE_MUX_ASSEMBLY | READ_MUX_ASSEMBLY,
			DC_CMD_STATE_ACCESS);

	for (i = 0; i < n; i++) {
		struct tegra_dc_win *win = windows[i];
		struct tegra_dc_win *dc_win = tegra_dc_get_window(dc, win->idx);
		bool scan_column = 0;
		fixed20_12 h_offset, v_offset;
		bool invert_h = (win->flags & TEGRA_WIN_FLAG_INVERT_H) != 0;
		bool invert_v = (win->flags & TEGRA_WIN_FLAG_INVERT_V) != 0;
		bool yuv = tegra_dc_is_yuv(win->fmt);
		bool yuvp = tegra_dc_is_yuv_planar(win->fmt);
		unsigned Bpp = tegra_dc_fmt_bpp(win->fmt) / 8;
		/* Bytes per pixel of bandwidth, used for dda_inc calculation */
		unsigned Bpp_bw = Bpp * (yuvp ? 2 : 1);
		const bool filter_h = win_use_h_filter(dc, win);
		const bool filter_v = win_use_v_filter(dc, win);
#if defined(CONFIG_TEGRA_DC_SCAN_COLUMN)
		scan_column = (win->flags & TEGRA_WIN_FLAG_SCAN_COLUMN);
#endif

		/* Update blender */
		if ((win->z != dc->blend.z[win->idx]) ||
			((win->flags & TEGRA_WIN_BLEND_FLAGS_MASK) !=
			dc->blend.flags[win->idx])) {
			dc->blend.z[win->idx] = win->z;
			dc->blend.flags[win->idx] =
				win->flags & TEGRA_WIN_BLEND_FLAGS_MASK;
			if (tegra_dc_feature_is_gen2_blender(dc, win->idx))
				update_blend_seq = true;
			else
				update_blend_par = true;
		}

		tegra_dc_writel(dc, WINDOW_A_SELECT << win->idx,
				DC_CMD_DISPLAY_WINDOW_HEADER);

		if (!no_vsync)
			update_mask |= WIN_A_ACT_REQ << win->idx;

		if (!WIN_IS_ENABLED(win)) {
			dc_win->dirty = no_vsync ? 0 : 1;
			tegra_dc_writel(dc, 0, DC_WIN_WIN_OPTIONS);
			continue;
		}

		tegra_dc_writel(dc, win->fmt & 0x1f, DC_WIN_COLOR_DEPTH);
		tegra_dc_writel(dc, win->fmt >> 6, DC_WIN_BYTE_SWAP);

		tegra_dc_writel(dc,
			V_POSITION(win->out_y) | H_POSITION(win->out_x),
			DC_WIN_POSITION);
		tegra_dc_writel(dc,
			V_SIZE(win->out_h) | H_SIZE(win->out_w),
			DC_WIN_SIZE);

		/* Check scan_column flag to set window size and scaling. */
		win_options = WIN_ENABLE;
		if (scan_column) {
			win_options |= WIN_SCAN_COLUMN;
			win_options |= H_FILTER_ENABLE(filter_v);
			win_options |= V_FILTER_ENABLE(filter_h);
		} else {
			win_options |= H_FILTER_ENABLE(filter_h);
			win_options |= V_FILTER_ENABLE(filter_v);
		}

		/* Update scaling registers if window supports scaling. */
		if (likely(tegra_dc_feature_has_scaling(dc, win->idx)))
			tegra_dc_update_scaling(dc, win, Bpp, Bpp_bw,
								scan_column);

#if defined(CONFIG_ARCH_TEGRA_2x_SOC) || defined(CONFIG_ARCH_TEGRA_3x_SOC)
		tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
		tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
#endif
		tegra_dc_writel(dc, (unsigned long)win->phys_addr,
			DC_WINBUF_START_ADDR);

		if (!yuvp) {
			tegra_dc_writel(dc, win->stride, DC_WIN_LINE_STRIDE);
		} else {
			tegra_dc_writel(dc,
				(unsigned long)win->phys_addr_u,
				DC_WINBUF_START_ADDR_U);
			tegra_dc_writel(dc,
				(unsigned long)win->phys_addr_v,
				DC_WINBUF_START_ADDR_V);
			tegra_dc_writel(dc,
				LINE_STRIDE(win->stride) |
				UV_LINE_STRIDE(win->stride_uv),
				DC_WIN_LINE_STRIDE);
		}

		if (invert_h) {
			h_offset.full = win->x.full + win->w.full;
			h_offset.full = dfixed_floor(h_offset) * Bpp;
			h_offset.full -= dfixed_const(1);
		} else {
			h_offset.full = dfixed_floor(win->x) * Bpp;
		}

		v_offset = win->y;
		if (invert_v) {
			v_offset.full += win->h.full - dfixed_const(1);
		}

		tegra_dc_writel(dc, dfixed_trunc(h_offset),
				DC_WINBUF_ADDR_H_OFFSET);
		tegra_dc_writel(dc, dfixed_trunc(v_offset),
				DC_WINBUF_ADDR_V_OFFSET);

		if (tegra_dc_feature_has_tiling(dc, win->idx)) {
			if (WIN_IS_TILED(win))
				tegra_dc_writel(dc,
					DC_WIN_BUFFER_ADDR_MODE_TILE |
					DC_WIN_BUFFER_ADDR_MODE_TILE_UV,
					DC_WIN_BUFFER_ADDR_MODE);
			else
				tegra_dc_writel(dc,
					DC_WIN_BUFFER_ADDR_MODE_LINEAR |
					DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV,
					DC_WIN_BUFFER_ADDR_MODE);
		}

		if (yuv)
			win_options |= CSC_ENABLE;
		else if (tegra_dc_fmt_bpp(win->fmt) < 24)
			win_options |= COLOR_EXPAND;

#if  defined(CONFIG_ARCH_TEGRA_3x_SOC) || defined(CONFIG_ARCH_TEGRA_11x_SOC)
		if (win->global_alpha == 255) {
			tegra_dc_writel(dc, 0, DC_WIN_GLOBAL_ALPHA);
		} else {
			tegra_dc_writel(dc, GLOBAL_ALPHA_ENABLE |
				win->global_alpha, DC_WIN_GLOBAL_ALPHA);
			win_options |= CP_ENABLE;
		}
#endif

		if (win->ppflags & TEGRA_WIN_PPFLAG_CP_ENABLE)
			win_options |= CP_ENABLE;

		win_options |= H_DIRECTION_DECREMENT(invert_h);
		win_options |= V_DIRECTION_DECREMENT(invert_v);

		tegra_dc_writel(dc, win_options, DC_WIN_WIN_OPTIONS);

		dc_win->dirty = no_vsync ? 0 : 1;

		trace_window_update(dc, win);
	}

	if (update_blend_par || update_blend_seq) {
		if (update_blend_par)
			tegra_dc_blend_parallel(dc, &dc->blend);
		if (update_blend_seq)
			tegra_dc_blend_sequential(dc, &dc->blend);
		for (i = 0; i < DC_N_WINDOWS; i++) {
			if (!no_vsync)
				dc->windows[i].dirty = 1;
			update_mask |= WIN_A_ACT_REQ << i;
		}
	}

	tegra_dc_set_dynamic_emc(windows, n);

	tegra_dc_writel(dc, update_mask << 8, DC_CMD_STATE_CONTROL);

	tegra_dc_writel(dc, FRAME_END_INT | V_BLANK_INT, DC_CMD_INT_STATUS);
	if (!no_vsync) {
		set_bit(V_BLANK_FLIP, &dc->vblank_ref_count);
		tegra_dc_unmask_interrupt(dc,
			FRAME_END_INT | V_BLANK_INT | ALL_UF_INT);
#if !defined(CONFIG_ARCH_TEGRA_2x_SOC) && !defined(CONFIG_ARCH_TEGRA_3x_SOC)
		set_bit(V_PULSE2_FLIP, &dc->vpulse2_ref_count);
		tegra_dc_unmask_interrupt(dc, V_PULSE2_INT);
#endif
	} else {
		clear_bit(V_BLANK_FLIP, &dc->vblank_ref_count);
		tegra_dc_mask_interrupt(dc, V_BLANK_INT | ALL_UF_INT);
#if !defined(CONFIG_ARCH_TEGRA_2x_SOC) && !defined(CONFIG_ARCH_TEGRA_3x_SOC)
		clear_bit(V_PULSE2_FLIP, &dc->vpulse2_ref_count);
		tegra_dc_mask_interrupt(dc, V_PULSE2_INT);
#endif
		if (!atomic_read(&frame_end_ref))
			tegra_dc_mask_interrupt(dc, FRAME_END_INT);
	}

	if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE)
		schedule_delayed_work(&dc->one_shot_work,
				msecs_to_jiffies(dc->one_shot_delay_ms));

	/* update EMC clock if calculated bandwidth has changed */
	tegra_dc_program_bandwidth(dc, false);

	if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE)
		update_mask |= NC_HOST_TRIG;

	tegra_dc_writel(dc, update_mask, DC_CMD_STATE_CONTROL);

	tegra_dc_release_dc_out(dc);
	/* tegra_dc_io_end() is called in tegra_dc_sync_windows() */
	mutex_unlock(&dc->lock);
	if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE)
		mutex_unlock(&dc->one_shot_lock);

	return 0;
}
Esempio n. 12
0
static int nvsd_set_brightness(struct tegra_dc *dc)
{
	u32 bin_width;
	int i, j;
	int val;
	int pix;
	int bin_idx;

	int incr;
	int base;

	u32 histo[32];
	u32 histo_total = 0;		/* count of pixels */
	fixed20_12 nonhisto_gain;	/* gain of pixels not in histogram */
	fixed20_12 est_achieved_gain;	/* final gain of pixels */
	fixed20_12 histo_gain = dfixed_init(0);	/* gain of pixels */
	fixed20_12 k, threshold;	/* k is the fractional part of HW_K */
	fixed20_12 den, num, out;
	fixed20_12 pix_avg, pix_avg_softclip;

	/* Collet the inputs of the algorithm */
	for (i = 0; i < DC_DISP_SD_HISTOGRAM_NUM; i++) {
		val = tegra_dc_readl(dc, DC_DISP_SD_HISTOGRAM(i));
		for (j = 0; j < 4; j++)
			histo[i * 4 + j] = SD_HISTOGRAM_BIN(val, (j * 8));
	}

	val = tegra_dc_readl(dc, DC_DISP_SD_HW_K_VALUES);
	k.full = dfixed_const(SD_HW_K_R(val));
	den.full = dfixed_const(1024);
	k.full = dfixed_div(k, den);

	val = tegra_dc_readl(dc, DC_DISP_SD_SOFT_CLIPPING);
	threshold.full = dfixed_const(SD_SOFT_CLIPPING_THRESHOLD(val));

	val = tegra_dc_readl(dc, DC_DISP_SD_CONTROL);
	bin_width = SD_BIN_WIDTH_VAL(val);
	incr = 1 << bin_width;
	base = 256 - 32 * incr;

	for (pix = base, bin_idx = 0; pix < 256; pix += incr, bin_idx++) {
		num.full = dfixed_const(pix + pix + incr);
		den.full = dfixed_const(2);
		pix_avg.full = dfixed_div(num, den);
		pix_avg_softclip.full = nvsd_softclip(pix_avg, k, threshold);

		num.full = dfixed_const(histo[bin_idx]);
		den.full = dfixed_const(256);
		out.full = dfixed_div(num, den);
		num.full = dfixed_mul(out, pix_avg_softclip);
		out.full = dfixed_div(num, pix_avg);
		histo_gain.full += out.full;
		histo_total += histo[bin_idx];
	}

	out.full = dfixed_const(256 - histo_total);
	den.full = dfixed_const(1) + k.full;
	num.full = dfixed_mul(out, den);
	den.full = dfixed_const(256);
	nonhisto_gain.full = dfixed_div(num, den);

	den.full = nonhisto_gain.full + histo_gain.full;
	num.full = dfixed_const(1);
	out.full = dfixed_div(num, den);
	num.full = dfixed_const(255);
	est_achieved_gain.full = dfixed_mul(num, out);
	val = dfixed_trunc(est_achieved_gain);

	return nvsd_backlght_interplate(val, 128);
}
Esempio n. 13
0
/* Functional initialization */
void nvsd_init(struct tegra_dc *dc, struct tegra_dc_sd_settings *settings)
{
	u32 i = 0;
	u32 val = 0;
	u32 bw = 0;
	u32 bw_idx = 0;
	/* TODO: check if HW says SD's available */

	tegra_dc_io_start(dc);
	/* If SD's not present or disabled, clear the register and return. */
	if (!settings || settings->enable == 0) {
		/* clear the brightness val, too. */
		if (_sd_brightness)
			atomic_set(_sd_brightness, 255);

		_sd_brightness = NULL;

		if (settings)
			settings->phase_settings_step = 0;
		tegra_dc_writel(dc, 0, DC_DISP_SD_CONTROL);
		tegra_dc_io_end(dc);
		return;
	}

	dev_dbg(&dc->ndev->dev, "NVSD Init:\n");

	/* init agg_priorities */
	if (!settings->agg_priorities.agg[0])
		settings->agg_priorities.agg[0] = settings->aggressiveness;

	/* WAR: Settings will not be valid until the next flip.
	 * Thus, set manual K to either HW's current value (if
	 * we're already enabled) or a non-effective value (if
	 * we're about to enable). */
	val = tegra_dc_readl(dc, DC_DISP_SD_CONTROL);

	if (val & SD_ENABLE_NORMAL)
		if (settings->phase_in_adjustments)
			i = tegra_dc_readl(dc, DC_DISP_SD_MAN_K_VALUES);
		else
			i = tegra_dc_readl(dc, DC_DISP_SD_HW_K_VALUES);
	else
		i = 0; /* 0 values for RGB = 1.0, i.e. non-affected */

	tegra_dc_writel(dc, i, DC_DISP_SD_MAN_K_VALUES);
	/* Enable manual correction mode here so that changing the
	 * settings won't immediately impact display dehavior. */
	val |= SD_CORRECTION_MODE_MAN;
	tegra_dc_writel(dc, val, DC_DISP_SD_CONTROL);

	bw_idx = nvsd_get_bw_idx(settings);
	bw = SD_BIN_WIDTH(bw_idx);

	/* Values of SD LUT & BL TF are different according to bin_width on T30
	 * due to HW bug. Therefore we use bin_width to select the correct table
	 * on T30. On T114, we will use 1st table by default.*/
#ifdef CONFIG_TEGRA_SD_GEN2
	bw_idx = 0;
#endif
	/* Write LUT */
	if (!settings->cmd) {
		dev_dbg(&dc->ndev->dev, "  LUT:\n");

		for (i = 0; i < DC_DISP_SD_LUT_NUM; i++) {
			val = SD_LUT_R(settings->lut[bw_idx][i].r) |
				SD_LUT_G(settings->lut[bw_idx][i].g) |
				SD_LUT_B(settings->lut[bw_idx][i].b);
			tegra_dc_writel(dc, val, DC_DISP_SD_LUT(i));

			dev_dbg(&dc->ndev->dev, "    %d: 0x%08x\n", i, val);
		}
	}

	/* Write BL TF */
	if (!settings->cmd) {
		dev_dbg(&dc->ndev->dev, "  BL_TF:\n");

		for (i = 0; i < DC_DISP_SD_BL_TF_NUM; i++) {
			val = SD_BL_TF_POINT_0(settings->bltf[bw_idx][i][0]) |
				SD_BL_TF_POINT_1(settings->bltf[bw_idx][i][1]) |
				SD_BL_TF_POINT_2(settings->bltf[bw_idx][i][2]) |
				SD_BL_TF_POINT_3(settings->bltf[bw_idx][i][3]);

			tegra_dc_writel(dc, val, DC_DISP_SD_BL_TF(i));

			dev_dbg(&dc->ndev->dev, "    %d: 0x%08x\n", i, val);
		}
	} else if ((settings->cmd & PHASE_IN)) {
		settings->cmd &= ~PHASE_IN;
		/* Write NO_OP values for BLTF */
		for (i = 0; i < DC_DISP_SD_BL_TF_NUM; i++) {
			val = SD_BL_TF_POINT_0(0xFF) |
				SD_BL_TF_POINT_1(0xFF) |
				SD_BL_TF_POINT_2(0xFF) |
				SD_BL_TF_POINT_3(0xFF);

			tegra_dc_writel(dc, val, DC_DISP_SD_BL_TF(i));

			dev_dbg(&dc->ndev->dev, "    %d: 0x%08x\n", i, val);
		}
	}

	/* Set step correctly on init */
	if (!settings->cmd && settings->phase_in_settings) {
		settings->num_phase_in_steps = STEPS_PER_AGG_LVL *
			settings->aggressiveness;
		settings->phase_settings_step = settings->enable ?
			settings->num_phase_in_steps : 0;
	}

	/* Write Coeff */
	val = SD_CSC_COEFF_R(settings->coeff.r) |
		SD_CSC_COEFF_G(settings->coeff.g) |
		SD_CSC_COEFF_B(settings->coeff.b);
	tegra_dc_writel(dc, val, DC_DISP_SD_CSC_COEFF);
	dev_dbg(&dc->ndev->dev, "  COEFF: 0x%08x\n", val);

	/* Write BL Params */
	val = SD_BLP_TIME_CONSTANT(settings->blp.time_constant) |
		SD_BLP_STEP(settings->blp.step);
	tegra_dc_writel(dc, val, DC_DISP_SD_BL_PARAMETERS);
	dev_dbg(&dc->ndev->dev, "  BLP: 0x%08x\n", val);

	/* Write Auto/Manual PWM */
	val = (settings->use_auto_pwm) ? SD_BLC_MODE_AUTO : SD_BLC_MODE_MAN;
	tegra_dc_writel(dc, val, DC_DISP_SD_BL_CONTROL);
	dev_dbg(&dc->ndev->dev, "  BL_CONTROL: 0x%08x\n", val);

	/* Write Flicker Control */
	val = SD_FC_TIME_LIMIT(settings->fc.time_limit) |
		SD_FC_THRESHOLD(settings->fc.threshold);
	tegra_dc_writel(dc, val, DC_DISP_SD_FLICKER_CONTROL);
	dev_dbg(&dc->ndev->dev, "  FLICKER_CONTROL: 0x%08x\n", val);

#ifdef CONFIG_TEGRA_SD_GEN2
	/* Write K limit */
	if (settings->k_limit_enable) {
		val = settings->k_limit;
		if (val < 128)
			val = 128;
		else if (val > 255)
			val = 255;
		val = SD_K_LIMIT(val);
		tegra_dc_writel(dc, val, DC_DISP_SD_K_LIMIT);
		dev_dbg(&dc->ndev->dev, "  K_LIMIT: 0x%08x\n", val);
	}

	if (settings->sd_window_enable) {
		/* Write sd window */
		val = SD_WIN_H_POSITION(settings->sd_window.h_position) |
			SD_WIN_V_POSITION(settings->sd_window.v_position);
		tegra_dc_writel(dc, val, DC_DISP_SD_WINDOW_POSITION);
		dev_dbg(&dc->ndev->dev, "  SD_WINDOW_POSITION: 0x%08x\n", val);

		val = SD_WIN_H_POSITION(settings->sd_window.h_size) |
			SD_WIN_V_POSITION(settings->sd_window.v_size);
		tegra_dc_writel(dc, val, DC_DISP_SD_WINDOW_SIZE);
		dev_dbg(&dc->ndev->dev, "  SD_WINDOW_SIZE: 0x%08x\n", val);
	}

	if (settings->soft_clipping_enable) {
		/* Write soft clipping */
		val = (64 * 1024) / (256 - settings->soft_clipping_threshold);
		val = SD_SOFT_CLIPPING_RECIP(val) |
		SD_SOFT_CLIPPING_THRESHOLD(settings->soft_clipping_threshold);
		tegra_dc_writel(dc, val, DC_DISP_SD_SOFT_CLIPPING);
		dev_dbg(&dc->ndev->dev, "  SOFT_CLIPPING: 0x%08x\n", val);
	}

	if (settings->smooth_k_enable) {
		fixed20_12 smooth_k_incr;
		fixed20_12 num;

		/* Write K incr value */
		val = SD_SMOOTH_K_INCR(settings->smooth_k_incr);
		tegra_dc_writel(dc, val, DC_DISP_SD_SMOOTH_K);
		dev_dbg(&dc->ndev->dev, "  SMOOTH_K: 0x%08x\n", val);

		/* Convert 8.6 fixed-point to 20.12 fixed-point */
		smooth_k_incr.full = val << 6;

		/* In the BL_TF LUT, raw K is specified in steps of 8 */
		num.full = dfixed_const(8);

		num.full = dfixed_div(num, smooth_k_incr);
		num.full = dfixed_ceil(num);
		smooth_k_frames_left = dfixed_trunc(num);
		smooth_k_duration_frames = smooth_k_frames_left;
		dev_dbg(&dc->ndev->dev, "  Smooth K duration (frames): %d\n",
			smooth_k_frames_left);
	}
#endif

	/* Manage SD Control */
	val = 0;
	/* Stay in manual correction mode until the next flip. */
	val |= SD_CORRECTION_MODE_MAN;
	/* Enable / One-Shot */
	val |= (settings->enable == 2) ?
		(SD_ENABLE_ONESHOT | SD_ONESHOT_ENABLE) :
		SD_ENABLE_NORMAL;
	/* HW Update Delay */
	val |= SD_HW_UPDATE_DLY(settings->hw_update_delay);
	/* Video Luma */
	val |= (settings->use_vid_luma) ? SD_USE_VID_LUMA : 0;
	/* Aggressiveness */
	val |= SD_AGGRESSIVENESS(settings->aggressiveness);
	/* Bin Width (value derived above) */
	val |= bw;
#ifdef CONFIG_TEGRA_SD_GEN2
	/* K limit enable */
	val |= (settings->k_limit_enable) ? SD_K_LIMIT_ENABLE : 0;
	/* Programmable sd window enable */
	val |= (settings->sd_window_enable) ? SD_WINDOW_ENABLE : 0;
	/* Soft clipping enable */
	val |= (settings->soft_clipping_enable) ? SD_SOFT_CLIPPING_ENABLE : 0;
	/* Smooth K enable */
	val |= (settings->smooth_k_enable) ? SD_SMOOTH_K_ENABLE : 0;
	/* SD proc control */
	val |= (settings->use_vpulse2) ? SD_VPULSE2 : SD_VSYNC;
#endif
	/* Finally, Write SD Control */
	tegra_dc_writel(dc, val, DC_DISP_SD_CONTROL);
	dev_dbg(&dc->ndev->dev, "  SD_CONTROL: 0x%08x\n", val);
	tegra_dc_io_end(dc);

	/* set the brightness pointer */
	_sd_brightness = settings->sd_brightness;

	/* note that we're in manual K until the next flip */
	atomic_set(&man_k_until_blank, 1);
}