Esempio n. 1
0
void
SLAPrint::_infill_layer(size_t i, const Fill* _fill)
{
    Layer &layer = this->layers[i];
    
    const float shell_thickness = this->config.get_abs_value("perimeter_extrusion_width", this->config.layer_height.value);
    
    // In order to detect what regions of this layer need to be solid,
    // perform an intersection with layers within the requested shell thickness.
    Polygons internal = layer.slices;
    for (size_t j = 0; j < this->layers.size(); ++j) {
        const Layer &other = this->layers[j];
        if (abs(other.print_z - layer.print_z) > shell_thickness) continue;
    
        if (j == 0 || j == this->layers.size()-1) {
            internal.clear();
            break;
        } else if (i != j) {
            internal = intersection(internal, other.slices);
            if (internal.empty()) break;
        }
    }
    
    // If we have no internal infill, just print the whole layer as a solid slice.
    if (internal.empty()) return;
    layer.solid = false;
    
    const Polygons infill = offset(layer.slices, -scale_(shell_thickness));
    
    // Generate solid infill
    layer.solid_infill << diff_ex(infill, internal, true);
    
    // Generate internal infill
    {
        std::auto_ptr<Fill> fill(_fill->clone());
        fill->layer_id = i;
        fill->z        = layer.print_z;
        
        ExtrusionPath templ(erInternalInfill);
        templ.width = fill->spacing;
        const ExPolygons internal_ex = intersection_ex(infill, internal);
        for (ExPolygons::const_iterator it = internal_ex.begin(); it != internal_ex.end(); ++it) {
            Polylines polylines = fill->fill_surface(Surface(stInternal, *it));
            layer.infill.append(polylines, templ);
        }
    }
    
    // Generate perimeter(s).
    layer.perimeters << diff_ex(
        layer.slices,
        offset(layer.slices, -scale_(shell_thickness))
    );
}
Esempio n. 2
0
ExtrusionEntityCollection
PerimeterGenerator::_fill_gaps(double min, double max, double w,
    const Polygons &gaps) const
{
    ExtrusionEntityCollection coll;
    
    min *= (1 - INSET_OVERLAP_TOLERANCE);
    
    ExPolygons curr = diff_ex(
        offset2(gaps, -min/2, +min/2),
        offset2(gaps, -max/2, +max/2),
        true
    );
    
    Polylines polylines;
    for (ExPolygons::const_iterator ex = curr.begin(); ex != curr.end(); ++ex)
        ex->medial_axis(max, min/2, &polylines);
    if (polylines.empty())
        return coll;
    
    #ifdef SLIC3R_DEBUG
    if (!curr.empty())
        printf("  %zu gaps filled with extrusion width = %f\n", curr.size(), w);
    #endif
    
    //my $flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL, 0, $w);
    Flow flow(
        w, this->layer_height, this->solid_infill_flow.nozzle_diameter
    );
    
    double mm3_per_mm = flow.mm3_per_mm();
    
    for (Polylines::const_iterator p = polylines.begin(); p != polylines.end(); ++p) {
        ExtrusionPath path(erGapFill);
        path.polyline   = *p;
        path.mm3_per_mm = mm3_per_mm;
        path.width      = flow.width;
        path.height     = this->layer_height;
        
        if (p->is_valid() && p->first_point().coincides_with(p->last_point())) {
            // since medial_axis() now returns only Polyline objects, detect loops here
            ExtrusionLoop loop;
            loop.paths.push_back(path);
            coll.append(loop);
        } else {
            coll.append(path);
        }
    }
    
    return coll;
}
Esempio n. 3
0
void
MotionPlanner::initialize()
{
    if (this->initialized) return;
    if (this->islands.empty()) return;  // prevent initialization of empty BoundingBox
    
    // loop through islands in order to create inner expolygons and collect their contours
    Polygons outer_holes;
    for (std::vector<MotionPlannerEnv>::iterator island = this->islands.begin(); island != this->islands.end(); ++island) {
        // generate the internal env boundaries by shrinking the island
        // we'll use these inner rings for motion planning (endpoints of the Voronoi-based
        // graph, visibility check) in order to avoid moving too close to the boundaries
        island->env = offset_ex(island->island, -MP_INNER_MARGIN);
        
        // island contours are holes of our external environment
        outer_holes.push_back(island->island.contour);
    }
    
    // generate outer contour as bounding box of everything
    BoundingBox bb;
    for (Polygons::const_iterator contour = outer_holes.begin(); contour != outer_holes.end(); ++contour)
        bb.merge(contour->bounding_box());
    
    // grow outer contour
    Polygons contour = offset(bb.polygon(), +MP_OUTER_MARGIN*2);
    assert(contour.size() == 1);
    
    // make expolygon for outer environment
    ExPolygons outer = diff_ex(contour, outer_holes);
    assert(outer.size() == 1);
    this->outer.island = outer.front();
    
    this->outer.env = ExPolygonCollection(diff_ex(contour, offset(outer_holes, +MP_OUTER_MARGIN)));
    
    this->graphs.resize(this->islands.size() + 1, NULL);
    this->initialized = true;
}
Esempio n. 4
0
void
LayerRegion::process_external_surfaces(const Layer* lower_layer)
{
    const Surfaces &surfaces = this->fill_surfaces.surfaces;
    const double margin = scale_(EXTERNAL_INFILL_MARGIN);
    
    SurfaceCollection bottom;
    for (Surfaces::const_iterator surface = surfaces.begin(); surface != surfaces.end(); ++surface) {
        if (!surface->is_bottom()) continue;
        
        ExPolygons grown = offset_ex(surface->expolygon, +margin);
        
        /*  detect bridge direction before merging grown surfaces otherwise adjacent bridges
            would get merged into a single one while they need different directions
            also, supply the original expolygon instead of the grown one, because in case
            of very thin (but still working) anchors, the grown expolygon would go beyond them */
        double angle = -1;
        if (lower_layer != NULL) {
            BridgeDetector bd(
                surface->expolygon,
                lower_layer->slices,
                this->flow(frInfill, this->layer()->height, true).scaled_width()
            );
            
            #ifdef SLIC3R_DEBUG
            printf("Processing bridge at layer %zu:\n", this->layer()->id());
            #endif
            
            if (bd.detect_angle()) {
                angle = bd.angle;
            
                if (this->layer()->object()->config.support_material) {
                    Polygons coverage = bd.coverage();
                    this->bridged.insert(this->bridged.end(), coverage.begin(), coverage.end());
                    this->unsupported_bridge_edges.append(bd.unsupported_edges()); 
                }
            }
        }
        
        for (ExPolygons::const_iterator it = grown.begin(); it != grown.end(); ++it) {
            Surface s       = *surface;
            s.expolygon     = *it;
            s.bridge_angle  = angle;
            bottom.surfaces.push_back(s);
        }
    }
    
    SurfaceCollection top;
    for (Surfaces::const_iterator surface = surfaces.begin(); surface != surfaces.end(); ++surface) {
        if (surface->surface_type != stTop) continue;
        
        // give priority to bottom surfaces
        ExPolygons grown = diff_ex(
            offset(surface->expolygon, +margin),
            (Polygons)bottom
        );
        for (ExPolygons::const_iterator it = grown.begin(); it != grown.end(); ++it) {
            Surface s   = *surface;
            s.expolygon = *it;
            top.surfaces.push_back(s);
        }
    }
    
    /*  if we're slicing with no infill, we can't extend external surfaces
        over non-existent infill */
    SurfaceCollection fill_boundaries;
    if (this->region()->config.fill_density.value > 0) {
        fill_boundaries = SurfaceCollection(surfaces);
    } else {
        for (Surfaces::const_iterator it = surfaces.begin(); it != surfaces.end(); ++it) {
            if (it->surface_type != stInternal)
                fill_boundaries.surfaces.push_back(*it);
        }
    }
    
    // intersect the grown surfaces with the actual fill boundaries
    SurfaceCollection new_surfaces;
    {
        // merge top and bottom in a single collection
        SurfaceCollection tb = top;
        tb.append(bottom);
        
        // group surfaces
        std::vector<SurfacesConstPtr> groups;
        tb.group(&groups);
        
        for (std::vector<SurfacesConstPtr>::const_iterator g = groups.begin(); g != groups.end(); ++g) {
            Polygons subject;
            for (SurfacesConstPtr::const_iterator s = g->begin(); s != g->end(); ++s)
                append_to(subject, (Polygons)**s);
            
            ExPolygons expp = intersection_ex(
                subject,
                (Polygons)fill_boundaries,
                true // to ensure adjacent expolygons are unified
            );
            
            for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) {
                Surface s = *g->front();
                s.expolygon = *ex;
                new_surfaces.surfaces.push_back(s);
            }
        }
    }
    
    /* subtract the new top surfaces from the other non-top surfaces and re-add them */
    {
        SurfaceCollection other;
        for (Surfaces::const_iterator s = surfaces.begin(); s != surfaces.end(); ++s) {
            if (s->surface_type != stTop && !s->is_bottom())
                other.surfaces.push_back(*s);
        }
        
        // group surfaces
        std::vector<SurfacesConstPtr> groups;
        other.group(&groups);
        
        for (std::vector<SurfacesConstPtr>::const_iterator g = groups.begin(); g != groups.end(); ++g) {
            Polygons subject;
            for (SurfacesConstPtr::const_iterator s = g->begin(); s != g->end(); ++s)
                append_to(subject, (Polygons)**s);
            
            ExPolygons expp = diff_ex(
                subject,
                (Polygons)new_surfaces
            );
            
            for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) {
                Surface s = *g->front();
                s.expolygon = *ex;
                new_surfaces.surfaces.push_back(s);
            }
        }
    }
    
    this->fill_surfaces = new_surfaces;
}
Esempio n. 5
0
void
PerimeterGenerator::process()
{
    // other perimeters
    this->_mm3_per_mm           = this->perimeter_flow.mm3_per_mm();
    coord_t pwidth              = this->perimeter_flow.scaled_width();
    coord_t pspacing            = this->perimeter_flow.scaled_spacing();
    
    // external perimeters
    this->_ext_mm3_per_mm       = this->ext_perimeter_flow.mm3_per_mm();
    coord_t ext_pwidth          = this->ext_perimeter_flow.scaled_width();
    coord_t ext_pspacing        = this->ext_perimeter_flow.scaled_spacing();
    coord_t ext_pspacing2       = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow);
    
    // overhang perimeters
    this->_mm3_per_mm_overhang  = this->overhang_flow.mm3_per_mm();
    
    // solid infill
    coord_t ispacing            = this->solid_infill_flow.scaled_spacing();
    coord_t gap_area_threshold  = pwidth * pwidth;
    
    // Calculate the minimum required spacing between two adjacent traces.
    // This should be equal to the nominal flow spacing but we experiment
    // with some tolerance in order to avoid triggering medial axis when
    // some squishing might work. Loops are still spaced by the entire
    // flow spacing; this only applies to collapsing parts.
    // For ext_min_spacing we use the ext_pspacing calculated for two adjacent
    // external loops (which is the correct way) instead of using ext_pspacing2
    // which is the spacing between external and internal, which is not correct
    // and would make the collapsing (thus the details resolution) dependent on 
    // internal flow which is unrelated.
    coord_t min_spacing         = pspacing      * (1 - INSET_OVERLAP_TOLERANCE);
    coord_t ext_min_spacing     = ext_pspacing  * (1 - INSET_OVERLAP_TOLERANCE);
    
    // prepare grown lower layer slices for overhang detection
    if (this->lower_slices != NULL && this->config->overhangs) {
        // We consider overhang any part where the entire nozzle diameter is not supported by the
        // lower layer, so we take lower slices and offset them by half the nozzle diameter used 
        // in the current layer
        double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
        
        this->_lower_slices_p = offset(*this->lower_slices, scale_(+nozzle_diameter/2));
    }
    
    // we need to process each island separately because we might have different
    // extra perimeters for each one
    for (Surfaces::const_iterator surface = this->slices->surfaces.begin();
        surface != this->slices->surfaces.end(); ++surface) {
        // detect how many perimeters must be generated for this island
        signed short loop_number = this->config->perimeters + surface->extra_perimeters;
        loop_number--;  // 0-indexed loops
        
        Polygons gaps;
        
        Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION);
        if (loop_number >= 0) {  // no loops = -1
            
            std::vector<PerimeterGeneratorLoops> contours(loop_number+1);    // depth => loops
            std::vector<PerimeterGeneratorLoops> holes(loop_number+1);       // depth => loops
            Polylines thin_walls;
            
            // we loop one time more than needed in order to find gaps after the last perimeter was applied
            for (signed short i = 0; i <= loop_number+1; ++i) {  // outer loop is 0
                Polygons offsets;
                if (i == 0) {
                    // the minimum thickness of a single loop is:
                    // ext_width/2 + ext_spacing/2 + spacing/2 + width/2
                    if (this->config->thin_walls) {
                        offsets = offset2(
                            last,
                            -(ext_pwidth/2 + ext_min_spacing/2 - 1),
                            +(ext_min_spacing/2 - 1)
                        );
                    } else {
                        offsets = offset(last, -ext_pwidth/2);
                    }
                    
                    // look for thin walls
                    if (this->config->thin_walls) {
                        Polygons diffpp = diff(
                            last,
                            offset(offsets, +ext_pwidth/2),
                            true  // medial axis requires non-overlapping geometry
                        );
                        
                        // the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
                        // (actually, something larger than that still may exist due to mitering or other causes)
                        coord_t min_width = ext_pwidth / 2;
                        ExPolygons expp = offset2_ex(diffpp, -min_width/2, +min_width/2);
                        
                        // the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
                        Polylines pp;
                        for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
                            ex->medial_axis(ext_pwidth + ext_pspacing2, min_width, &pp);
                        
                        double threshold = ext_pwidth * 2;
                        for (Polylines::const_iterator p = pp.begin(); p != pp.end(); ++p) {
                            if (p->length() > threshold) {
                                thin_walls.push_back(*p);
                            }
                        }
                        
                        #ifdef DEBUG
                        printf("  %zu thin walls detected\n", thin_walls.size());
                        #endif
                        
                        /*
                        if (false) {
                            require "Slic3r/SVG.pm";
                            Slic3r::SVG::output(
                                "medial_axis.svg",
                                no_arrows       => 1,
                                #expolygons      => \@expp,
                                polylines       => \@thin_walls,
                            );
                        }
                        */
                    }
                } else {
                    coord_t distance = (i == 1) ? ext_pspacing2 : pspacing;
                    
                    if (this->config->thin_walls) {
                        offsets = offset2(
                            last,
                            -(distance + min_spacing/2 - 1),
                            +(min_spacing/2 - 1)
                        );
                    } else {
                        offsets = offset(
                            last,
                            -distance
                        );
                    }
                    
                    // look for gaps
                    if (this->config->gap_fill_speed.value > 0 && this->config->fill_density.value > 0) {
                        // not using safety offset here would "detect" very narrow gaps
                        // (but still long enough to escape the area threshold) that gap fill
                        // won't be able to fill but we'd still remove from infill area
                        ExPolygons diff_expp = diff_ex(
                            offset(last, -0.5*distance),
                            offset(offsets, +0.5*distance + 10)  // safety offset
                        );
                        for (ExPolygons::const_iterator ex = diff_expp.begin(); ex != diff_expp.end(); ++ex) {
                            if (fabs(ex->area()) >= gap_area_threshold) {
                                Polygons pp = *ex;
                                gaps.insert(gaps.end(), pp.begin(), pp.end());
                            }
                        }
                    }
                }
                
                if (offsets.empty()) break;
                if (i > loop_number) break; // we were only looking for gaps this time
                
                last = offsets;
                for (Polygons::const_iterator polygon = offsets.begin(); polygon != offsets.end(); ++polygon) {
                    PerimeterGeneratorLoop loop(*polygon, i);
                    loop.is_contour = polygon->is_counter_clockwise();
                    if (loop.is_contour) {
                        contours[i].push_back(loop);
                    } else {
                        holes[i].push_back(loop);
                    }
                }
            }
            
            // nest loops: holes first
            for (signed short d = 0; d <= loop_number; ++d) {
                PerimeterGeneratorLoops &holes_d = holes[d];
                
                // loop through all holes having depth == d
                for (signed short i = 0; i < holes_d.size(); ++i) {
                    const PerimeterGeneratorLoop &loop = holes_d[i];
                    
                    // find the hole loop that contains this one, if any
                    for (signed short t = d+1; t <= loop_number; ++t) {
                        for (signed short j = 0; j < holes[t].size(); ++j) {
                            PerimeterGeneratorLoop &candidate_parent = holes[t][j];
                            if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
                                candidate_parent.children.push_back(loop);
                                holes_d.erase(holes_d.begin() + i);
                                --i;
                                goto NEXT_LOOP;
                            }
                        }
                    }
                    
                    // if no hole contains this hole, find the contour loop that contains it
                    for (signed short t = loop_number; t >= 0; --t) {
                        for (signed short j = 0; j < contours[t].size(); ++j) {
                            PerimeterGeneratorLoop &candidate_parent = contours[t][j];
                            if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
                                candidate_parent.children.push_back(loop);
                                holes_d.erase(holes_d.begin() + i);
                                --i;
                                goto NEXT_LOOP;
                            }
                        }
                    }
                    NEXT_LOOP: ;
                }
            }
        
            // nest contour loops
            for (signed short d = loop_number; d >= 1; --d) {
                PerimeterGeneratorLoops &contours_d = contours[d];
                
                // loop through all contours having depth == d
                for (signed short i = 0; i < contours_d.size(); ++i) {
                    const PerimeterGeneratorLoop &loop = contours_d[i];
                
                    // find the contour loop that contains it
                    for (signed short t = d-1; t >= 0; --t) {
                        for (signed short j = 0; j < contours[t].size(); ++j) {
                            PerimeterGeneratorLoop &candidate_parent = contours[t][j];
                            if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
                                candidate_parent.children.push_back(loop);
                                contours_d.erase(contours_d.begin() + i);
                                --i;
                                goto NEXT_CONTOUR;
                            }
                        }
                    }
                    
                    NEXT_CONTOUR: ;
                }
            }
        
            // at this point, all loops should be in contours[0]
            
            ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls);
            
            // if brim will be printed, reverse the order of perimeters so that
            // we continue inwards after having finished the brim
            // TODO: add test for perimeter order
            if (this->config->external_perimeters_first
                || (this->layer_id == 0 && this->print_config->brim_width.value > 0))
                    entities.reverse();
            
            // append perimeters for this slice as a collection
            if (!entities.empty())
                this->loops->append(entities);
        }
        
        // fill gaps
        if (!gaps.empty()) {
            /*
            if (false) {
                require "Slic3r/SVG.pm";
                Slic3r::SVG::output(
                    "gaps.svg",
                    expolygons => union_ex(\@gaps),
                );
            }
            */
            
            // where $pwidth < thickness < 2*$pspacing, infill with width = 2*$pwidth
            // where 0.1*$pwidth < thickness < $pwidth, infill with width = 1*$pwidth
            std::vector<PerimeterGeneratorGapSize> gap_sizes;
            gap_sizes.push_back(PerimeterGeneratorGapSize(pwidth, 2*pspacing, 2*pwidth));
            gap_sizes.push_back(PerimeterGeneratorGapSize(0.1*pwidth, pwidth, 1*pwidth));
            
            for (std::vector<PerimeterGeneratorGapSize>::const_iterator gap_size = gap_sizes.begin();
                gap_size != gap_sizes.end(); ++gap_size) {
                ExtrusionEntityCollection gap_fill = this->_fill_gaps(gap_size->min, 
                    gap_size->max, unscale(gap_size->width), gaps);
                this->gap_fill->append(gap_fill.entities);
                
                // Make sure we don't infill narrow parts that are already gap-filled
                // (we only consider this surface's gaps to reduce the diff() complexity).
                // Growing actual extrusions ensures that gaps not filled by medial axis
                // are not subtracted from fill surfaces (they might be too short gaps
                // that medial axis skips but infill might join with other infill regions
                // and use zigzag).
                coord_t dist = gap_size->width/2;
                Polygons filled;
                for (ExtrusionEntitiesPtr::const_iterator it = gap_fill.entities.begin();
                    it != gap_fill.entities.end(); ++it) {
                    Polygons f;
                    offset((*it)->as_polyline(), &f, dist);
                    filled.insert(filled.end(), f.begin(), f.end());
                }
                last = diff(last, filled);
                gaps = diff(gaps, filled);  // prevent more gap fill here
            }
        }
        
        // create one more offset to be used as boundary for fill
        // we offset by half the perimeter spacing (to get to the actual infill boundary)
        // and then we offset back and forth by half the infill spacing to only consider the
        // non-collapsing regions
        coord_t inset = 0;
        if (loop_number == 0) {
            // one loop
            inset += ext_pspacing2/2;
        } else if (loop_number > 0) {
            // two or more loops
            inset += pspacing/2;
        }
        
        // only apply infill overlap if we actually have one perimeter
        if (inset > 0)
            inset -= this->config->get_abs_value("infill_overlap", inset + ispacing/2);
        
        {
            ExPolygons expp = union_ex(last);
            
            // simplify infill contours according to resolution
            Polygons pp;
            for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
                ex->simplify_p(SCALED_RESOLUTION, &pp);
            
            // collapse too narrow infill areas
            coord_t min_perimeter_infill_spacing = ispacing * (1 - INSET_OVERLAP_TOLERANCE);
            expp = offset2_ex(
                pp,
                -inset -min_perimeter_infill_spacing/2,
                +min_perimeter_infill_spacing/2
            );
            
            // append infill areas to fill_surfaces
            for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
                this->fill_surfaces->surfaces.push_back(Surface(stInternal, *ex));  // use a bogus surface type
        }
    }
}
Esempio n. 6
0
void
SVGExport::writeSVG(const std::string &outputfile)
{
    // align to origin taking raft into account
    BoundingBoxf3 bb = this->mesh.bounding_box();
    if (this->config.raft_layers > 0) {
        bb.min.x -= this->config.raft_offset.value;
        bb.min.y -= this->config.raft_offset.value;
        bb.max.x += this->config.raft_offset.value;
        bb.max.y += this->config.raft_offset.value;
    }
    this->mesh.translate(-bb.min.x, -bb.min.y, -bb.min.z);  // align to origin
    bb.translate(-bb.min.x, -bb.min.y, -bb.min.z);          // align to origin
    const Sizef3 size = bb.size();
    
    // if we are generating a raft, first_layer_height will not affect mesh slicing
    const float lh = this->config.layer_height.value;
    const float first_lh = this->config.first_layer_height.value;
    
    // generate the list of Z coordinates for mesh slicing
    // (we slice each layer at half of its thickness)
    std::vector<float> slice_z, layer_z;
    {
        const float first_slice_lh = (this->config.raft_layers > 0) ? lh : first_lh;
        slice_z.push_back(first_slice_lh/2);
        layer_z.push_back(first_slice_lh);
    }
    while (layer_z.back() + lh/2 <= this->mesh.stl.stats.max.z) {
        slice_z.push_back(layer_z.back() + lh/2);
        layer_z.push_back(layer_z.back() + lh);
    }
    
    // perform the slicing
    std::vector<ExPolygons> layers;
    TriangleMeshSlicer(&this->mesh).slice(slice_z, &layers);
    
    // generate a solid raft if requested
    if (this->config.raft_layers > 0) {
        ExPolygons raft = offset_ex(layers.front(), scale_(this->config.raft_offset));
        for (int i = this->config.raft_layers; i >= 1; --i) {
            layer_z.insert(layer_z.begin(), first_lh + lh * (i-1));
            layers.insert(layers.begin(), raft);
        }
        
        // prepend total raft height to all sliced layers
        for (int i = this->config.raft_layers; i < layer_z.size(); ++i)
            layer_z[i] += first_lh + lh * (this->config.raft_layers-1);
    }
    
    // generate support material
    std::vector<Points> support_material(layers.size());
    if (this->config.support_material) {
        // generate a grid of points according to the configured spacing,
        // covering the entire object bounding box
        Points support_material_points;
        for (coordf_t x = bb.min.x; x <= bb.max.x; x += this->config.support_material_spacing) {
            for (coordf_t y = bb.min.y; y <= bb.max.y; y += this->config.support_material_spacing) {
                support_material_points.push_back(Point(scale_(x), scale_(y)));
            }
        }
        
        // check overhangs, starting from the upper layer, and detect which points apply 
        // to each layer
        ExPolygons overhangs;
        for (int i = layer_z.size()-1; i >= 0; --i) {
            overhangs = diff_ex(union_(overhangs, layers[i+1]), layers[i]);
            for (Points::const_iterator it = support_material_points.begin(); it != support_material_points.end(); ++it) {
                for (ExPolygons::const_iterator e = overhangs.begin(); e != overhangs.end(); ++e) {
                    if (e->contains(*it)) {
                        support_material[i].push_back(*it);
                        break;
                    }
                }
            }
        }
    }
    
    double support_material_radius = this->config.support_material_extrusion_width.get_abs_value(this->config.layer_height)/2;
    
    FILE* f = fopen(outputfile.c_str(), "w");
    fprintf(f,
        "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n"
        "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\" \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n"
        "<svg width=\"%f\" height=\"%f\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xmlns:slic3r=\"http://slic3r.org/namespaces/slic3r\" viewport-fill=\"black\">\n"
        "<!-- Generated using Slic3r %s http://slic3r.org/ -->\n"
        , size.x, size.y, SLIC3R_VERSION);
    
    for (size_t i = 0; i < layer_z.size(); ++i) {
        fprintf(f, "\t<g id=\"layer%zu\" slic3r:z=\"%0.4f\">\n", i, layer_z[i]);
        for (ExPolygons::const_iterator it = layers[i].begin(); it != layers[i].end(); ++it) {
            std::string pd;
            Polygons pp = *it;
            for (Polygons::const_iterator mp = pp.begin(); mp != pp.end(); ++mp) {
                std::ostringstream d;
                d << "M ";
                for (Points::const_iterator p = mp->points.begin(); p != mp->points.end(); ++p) {
                    d << unscale(p->x) << " ";
                    d << unscale(p->y) << " ";
                }
                d << "z";
                pd += d.str() + " ";
            }
            fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:area=\"%0.4f\" />\n",
                pd.c_str(), "white", "black", "0", unscale(unscale(it->area()))
            );
        }
        for (Points::const_iterator it = support_material[i].begin(); it != support_material[i].end(); ++it) {
            fprintf(f,"\t\t<circle cx=\"%f\" cy=\"%f\" r=\"%f\" stroke-width=\"0\" fill=\"white\" slic3r:type=\"support\" />\n",
                unscale(it->x), unscale(it->y), support_material_radius
            );
        }
        fprintf(f,"\t</g>\n");
    }
    fprintf(f,"</svg>\n");
}
Esempio n. 7
0
/// The LayerRegion at this point of time may contain
/// surfaces of various types (internal/bridge/top/bottom/solid).
/// The infills are generated on the groups of surfaces with a compatible type.
/// Fills an array of ExtrusionPathCollection objects containing the infills generated now
/// and the thin fills generated by generate_perimeters().
void
LayerRegion::make_fill()
{
    this->fills.clear();
    
    const double fill_density          = this->region()->config.fill_density;
    const Flow   infill_flow           = this->flow(frInfill);
    const Flow   solid_infill_flow     = this->flow(frSolidInfill);
    const Flow   top_solid_infill_flow = this->flow(frTopSolidInfill);
    const coord_t perimeter_spacing    = this->flow(frPerimeter).scaled_spacing();

    SurfaceCollection surfaces;
    
    // merge adjacent surfaces
    // in case of bridge surfaces, the ones with defined angle will be attached to the ones
    // without any angle (shouldn't this logic be moved to process_external_surfaces()?)
    {
        Polygons polygons_bridged;
        polygons_bridged.reserve(this->fill_surfaces.surfaces.size());
        for (Surfaces::const_iterator it = this->fill_surfaces.surfaces.begin(); it != this->fill_surfaces.surfaces.end(); ++it)
            if (it->is_bridge() && it->bridge_angle >= 0)
                append_to(polygons_bridged, (Polygons)*it);
        
        // group surfaces by distinct properties (equal surface_type, thickness, thickness_layers, bridge_angle)
        // group is of type SurfaceCollection
        // FIXME: Use some smart heuristics to merge similar surfaces to eliminate tiny regions.
        std::vector<SurfacesConstPtr> groups;
        this->fill_surfaces.group(&groups);
        
        // merge compatible solid groups (we can generate continuous infill for them)
        {
            // cache flow widths and patterns used for all solid groups
            // (we'll use them for comparing compatible groups)
            std::vector<SurfaceGroupAttrib> group_attrib(groups.size());
            for (size_t i = 0; i < groups.size(); ++i) {
                const Surface &surface = *groups[i].front();
                // we can only merge solid non-bridge surfaces, so discard
                // non-solid or bridge surfaces
                if (!surface.is_solid() || surface.is_bridge()) continue;
                
                group_attrib[i].is_solid = true;
                group_attrib[i].fw = (surface.is_top()) ? top_solid_infill_flow.width : solid_infill_flow.width;
                group_attrib[i].pattern = surface.is_top() ? this->region()->config.top_infill_pattern.value
                    : surface.is_bottom() ? this->region()->config.bottom_infill_pattern.value
                    : ipRectilinear;
            }
            // Loop through solid groups, find compatible groups and append them to this one.
            for (size_t i = 0; i < groups.size(); ++i) {
                if (!group_attrib[i].is_solid)
                    continue;
                for (size_t j = i + 1; j < groups.size();) {
                    if (group_attrib[i] == group_attrib[j]) {
                        // groups are compatible, merge them
                        append_to(groups[i], groups[j]);
                        groups.erase(groups.begin() + j);
                        group_attrib.erase(group_attrib.begin() + j);
                    } else {
                        ++j;
                    }
                }
            }
        }
        
        // Give priority to oriented bridges. Process the bridges in the first round, the rest of the surfaces in the 2nd round.
        for (size_t round = 0; round < 2; ++ round) {
            for (std::vector<SurfacesConstPtr>::const_iterator it_group = groups.begin(); it_group != groups.end(); ++ it_group) {
                const SurfacesConstPtr &group = *it_group;
                const bool is_oriented_bridge = group.front()->is_bridge() && group.front()->bridge_angle >= 0;
                if (is_oriented_bridge != (round == 0))
                    continue;
                
                // Make a union of polygons defining the infiill regions of a group, use a safety offset.
                Polygons union_p = union_(to_polygons(group), true);
                
                // Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
                if (!is_oriented_bridge && !polygons_bridged.empty())
                    union_p = diff(union_p, polygons_bridged, true);
                
                // subtract any other surface already processed
                //FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
                surfaces.append(
                    diff_ex(union_p, to_polygons(surfaces), true),
                    *group.front()  // template
                );
            }
        }
    }
    
    // we need to detect any narrow surfaces that might collapse
    // when adding spacing below
    // such narrow surfaces are often generated in sloping walls
    // by bridge_over_infill() and combine_infill() as a result of the
    // subtraction of the combinable area from the layer infill area,
    // which leaves small areas near the perimeters
    // we are going to grow such regions by overlapping them with the void (if any)
    // TODO: detect and investigate whether there could be narrow regions without
    // any void neighbors
    {
        coord_t distance_between_surfaces = std::max(
            std::max(infill_flow.scaled_spacing(), solid_infill_flow.scaled_spacing()),
            top_solid_infill_flow.scaled_spacing()
        );
        
        Polygons surfaces_polygons = (Polygons)surfaces;
        Polygons collapsed = diff(
            surfaces_polygons,
            offset2(surfaces_polygons, -distance_between_surfaces/2, +distance_between_surfaces/2),
            true
        );
            
        Polygons to_subtract;
        surfaces.filter_by_type((stInternal | stVoid), &to_subtract);
                
        append_to(to_subtract, collapsed);
        surfaces.append(
            intersection_ex(
                offset(collapsed, distance_between_surfaces),
                to_subtract,
                true
            ),
            (stInternal | stSolid)
        );
    }

    if (false) {
//        require "Slic3r/SVG.pm";
//        Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
//            expolygons      => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
//            red_expolygons  => [ map $_->expolygon, grep  $_->is_solid, @surfaces ],
//        );
    }

    for (Surfaces::const_iterator surface_it = surfaces.surfaces.begin();
        surface_it != surfaces.surfaces.end(); ++surface_it) {
        
        const Surface &surface = *surface_it;
        if (surface.surface_type == (stInternal | stVoid))
            continue;
        
        InfillPattern fill_pattern = this->region()->config.fill_pattern.value;
        double density = fill_density;
        FlowRole role = (surface.is_top()) ? frTopSolidInfill
            : surface.is_solid() ? frSolidInfill
            : frInfill;
        const bool is_bridge = this->layer()->id() > 0 && surface.is_bridge();
        
        if (surface.is_solid()) {
            density = 100.;
            fill_pattern = (surface.is_top()) ? this->region()->config.top_infill_pattern.value
                : (surface.is_bottom() && !is_bridge) ? this->region()->config.bottom_infill_pattern.value
                : ipRectilinear;
        } else if (density <= 0)
            continue;
        
        // get filler object
        #if SLIC3R_CPPVER >= 11
            std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(fill_pattern));
        #else
            std::auto_ptr<Fill> f = std::auto_ptr<Fill>(Fill::new_from_type(fill_pattern));
        #endif
        
        // switch to rectilinear if this pattern doesn't support solid infill
        if (density > 99 && !f->can_solid())
            #if SLIC3R_CPPVER >= 11
                f = std::unique_ptr<Fill>(Fill::new_from_type(ipRectilinear));
            #else
                f = std::auto_ptr<Fill>(Fill::new_from_type(ipRectilinear));
            #endif
        
        f->bounding_box = this->layer()->object()->bounding_box();
        
        // calculate the actual flow we'll be using for this infill
        coordf_t h = (surface.thickness == -1) ? this->layer()->height : surface.thickness;
        Flow flow = this->region()->flow(
            role,
            h,
            is_bridge || f->use_bridge_flow(),  // bridge flow?
            this->layer()->id() == 0,           // first layer?
            -1,                                 // auto width
            *this->layer()->object()
        );
        
        // calculate flow spacing for infill pattern generation
        bool using_internal_flow = false;
        if (!surface.is_solid() && !is_bridge) {
            // it's internal infill, so we can calculate a generic flow spacing
            // for all layers, for avoiding the ugly effect of
            // misaligned infill on first layer because of different extrusion width and
            // layer height
            Flow internal_flow = this->region()->flow(
                frInfill,
                h,  // use the calculated surface thickness here for internal infill instead of the layer height to account for infill_every_layers
                false,  // no bridge
                false,  // no first layer
                -1,     // auto width
                *this->layer()->object()
            );
            f->min_spacing = internal_flow.spacing();
            using_internal_flow = true;
        } else {
            f->min_spacing = flow.spacing();
        }
        
        f->endpoints_overlap = scale_(this->region()->config.get_abs_value("infill_overlap",
            (unscale(perimeter_spacing) + (f->min_spacing))/2));
        f->layer_id = this->layer()->id();
        f->z        = this->layer()->print_z;
        f->angle    = Geometry::deg2rad(this->region()->config.fill_angle.value);
        
        // Maximum length of the perimeter segment linking two infill lines.
        f->link_max_length = (!is_bridge && density > 80)
            ? scale_(3 * f->min_spacing)
            : 0;
        
        // Used by the concentric infill pattern to clip the loops to create extrusion paths.
        f->loop_clipping = scale_(flow.nozzle_diameter) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER;
        
        // apply half spacing using this flow's own spacing and generate infill
        f->density = density/100;
        f->dont_adjust = false;
        /*
        std::cout << surface.expolygon.dump_perl() << std::endl
            << " layer_id: " << f->layer_id << " z: " << f->z
            << " angle: " << f->angle << " min-spacing: " << f->min_spacing
            << " endpoints_overlap: " << f->endpoints_overlap << std::endl << std::endl;
        */
        Polylines polylines = f->fill_surface(surface);
        if (polylines.empty())
            continue;

        // calculate actual flow from spacing (which might have been adjusted by the infill
        // pattern generator)
        if (using_internal_flow) {
            // if we used the internal flow we're not doing a solid infill
            // so we can safely ignore the slight variation that might have
            // been applied to f->spacing()
        } else {
            flow = Flow::new_from_spacing(f->spacing(), flow.nozzle_diameter, h, is_bridge || f->use_bridge_flow());
        }

        // Save into layer.
        ExtrusionEntityCollection* coll = new ExtrusionEntityCollection();
        coll->no_sort = f->no_sort();
        this->fills.entities.push_back(coll);
        
        {
            ExtrusionRole role;
            if (is_bridge) {
                role = erBridgeInfill;
            } else if (surface.is_solid()) {
                role = (surface.is_top()) ? erTopSolidInfill : erSolidInfill;
            } else {
                role = erInternalInfill;
            }
            
            ExtrusionPath templ(role);
            templ.mm3_per_mm    = flow.mm3_per_mm();
            templ.width         = flow.width;
            templ.height        = flow.height;
            
            coll->append(STDMOVE(polylines), templ);
        }
    }

    // add thin fill regions
    // thin_fills are of C++ Slic3r::ExtrusionEntityCollection, perl type Slic3r::ExtrusionPath::Collection
    // Unpacks the collection, creates multiple collections per path so that they will
    // be individually included in the nearest neighbor search.
    // The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
    for (ExtrusionEntitiesPtr::const_iterator thin_fill = this->thin_fills.entities.begin(); thin_fill != this->thin_fills.entities.end(); ++ thin_fill) {
        ExtrusionEntityCollection* coll = new ExtrusionEntityCollection();
        this->fills.entities.push_back(coll);
        coll->append(**thin_fill);
    }
}