Esempio n. 1
0
/* Subroutine */ int dlasq1_(integer *n, doublereal *d__, doublereal *e, 
	doublereal *work, integer *info)
{
    /* System generated locals */
    integer i__1, i__2;
    doublereal d__1, d__2, d__3;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__;
    doublereal eps;
    extern /* Subroutine */ int dlas2_(doublereal *, doublereal *, doublereal 
	    *, doublereal *, doublereal *);
    doublereal scale;
    integer iinfo;
    doublereal sigmn;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    doublereal sigmx;
    extern /* Subroutine */ int dlasq2_(integer *, doublereal *, integer *);
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *);
    doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *), dlasrt_(
	    char *, integer *, doublereal *, integer *);


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASQ1 computes the singular values of a real N-by-N bidiagonal */
/*  matrix with diagonal D and off-diagonal E. The singular values */
/*  are computed to high relative accuracy, in the absence of */
/*  denormalization, underflow and overflow. The algorithm was first */
/*  presented in */

/*  "Accurate singular values and differential qd algorithms" by K. V. */
/*  Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230, */
/*  1994, */

/*  and the present implementation is described in "An implementation of */
/*  the dqds Algorithm (Positive Case)", LAPACK Working Note. */

/*  Arguments */
/*  ========= */

/*  N     (input) INTEGER */
/*        The number of rows and columns in the matrix. N >= 0. */

/*  D     (input/output) DOUBLE PRECISION array, dimension (N) */
/*        On entry, D contains the diagonal elements of the */
/*        bidiagonal matrix whose SVD is desired. On normal exit, */
/*        D contains the singular values in decreasing order. */

/*  E     (input/output) DOUBLE PRECISION array, dimension (N) */
/*        On entry, elements E(1:N-1) contain the off-diagonal elements */
/*        of the bidiagonal matrix whose SVD is desired. */
/*        On exit, E is overwritten. */

/*  WORK  (workspace) DOUBLE PRECISION array, dimension (4*N) */

/*  INFO  (output) INTEGER */
/*        = 0: successful exit */
/*        < 0: if INFO = -i, the i-th argument had an illegal value */
/*        > 0: the algorithm failed */
/*             = 1, a split was marked by a positive value in E */
/*             = 2, current block of Z not diagonalized after 30*N */
/*                  iterations (in inner while loop) */
/*             = 3, termination criterion of outer while loop not met */
/*                  (program created more than N unreduced blocks) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --work;
    --e;
    --d__;

    /* Function Body */
    *info = 0;
    if (*n < 0) {
	*info = -2;
	i__1 = -(*info);
	xerbla_("DLASQ1", &i__1);
	return 0;
    } else if (*n == 0) {
	return 0;
    } else if (*n == 1) {
	d__[1] = abs(d__[1]);
	return 0;
    } else if (*n == 2) {
	dlas2_(&d__[1], &e[1], &d__[2], &sigmn, &sigmx);
	d__[1] = sigmx;
	d__[2] = sigmn;
	return 0;
    }

/*     Estimate the largest singular value. */

    sigmx = 0.;
    i__1 = *n - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	d__[i__] = (d__1 = d__[i__], abs(d__1));
/* Computing MAX */
	d__2 = sigmx, d__3 = (d__1 = e[i__], abs(d__1));
	sigmx = max(d__2,d__3);
/* L10: */
    }
    d__[*n] = (d__1 = d__[*n], abs(d__1));

/*     Early return if SIGMX is zero (matrix is already diagonal). */

    if (sigmx == 0.) {
	dlasrt_("D", n, &d__[1], &iinfo);
	return 0;
    }

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	d__1 = sigmx, d__2 = d__[i__];
	sigmx = max(d__1,d__2);
/* L20: */
    }

/*     Copy D and E into WORK (in the Z format) and scale (squaring the */
/*     input data makes scaling by a power of the radix pointless). */

    eps = dlamch_("Precision");
    safmin = dlamch_("Safe minimum");
    scale = sqrt(eps / safmin);
    dcopy_(n, &d__[1], &c__1, &work[1], &c__2);
    i__1 = *n - 1;
    dcopy_(&i__1, &e[1], &c__1, &work[2], &c__2);
    i__1 = (*n << 1) - 1;
    i__2 = (*n << 1) - 1;
    dlascl_("G", &c__0, &c__0, &sigmx, &scale, &i__1, &c__1, &work[1], &i__2, 
	    &iinfo);

/*     Compute the q's and e's. */

    i__1 = (*n << 1) - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing 2nd power */
	d__1 = work[i__];
	work[i__] = d__1 * d__1;
/* L30: */
    }
    work[*n * 2] = 0.;

    dlasq2_(n, &work[1], info);

    if (*info == 0) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    d__[i__] = sqrt(work[i__]);
/* L40: */
	}
	dlascl_("G", &c__0, &c__0, &scale, &sigmx, n, &c__1, &d__[1], n, &
		iinfo);
    }

    return 0;

/*     End of DLASQ1 */

} /* dlasq1_ */
Esempio n. 2
0
/* Subroutine */ int dlarre_(char *range, integer *n, doublereal *vl, 
	doublereal *vu, integer *il, integer *iu, doublereal *d__, doublereal 
	*e, doublereal *e2, doublereal *rtol1, doublereal *rtol2, doublereal *
	spltol, integer *nsplit, integer *isplit, integer *m, doublereal *w, 
	doublereal *werr, doublereal *wgap, integer *iblock, integer *indexw, 
	doublereal *gers, doublereal *pivmin, doublereal *work, integer *
	iwork, integer *info)
{
/*  -- LAPACK auxiliary routine (version 3.1) --   
       Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..   
       November 2006   


    Purpose   
    =======   

    To find the desired eigenvalues of a given real symmetric   
    tridiagonal matrix T, DLARRE sets any "small" off-diagonal   
    elements to zero, and for each unreduced block T_i, it finds   
    (a) a suitable shift at one end of the block's spectrum,   
    (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and   
    (c) eigenvalues of each L_i D_i L_i^T.   
    The representations and eigenvalues found are then used by   
    DSTEMR to compute the eigenvectors of T.   
    The accuracy varies depending on whether bisection is used to   
    find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to   
    conpute all and then discard any unwanted one.   
    As an added benefit, DLARRE also outputs the n   
    Gerschgorin intervals for the matrices L_i D_i L_i^T.   

    Arguments   
    =========   

    RANGE   (input) CHARACTER   
            = 'A': ("All")   all eigenvalues will be found.   
            = 'V': ("Value") all eigenvalues in the half-open interval   
                             (VL, VU] will be found.   
            = 'I': ("Index") the IL-th through IU-th eigenvalues (of the   
                             entire matrix) will be found.   

    N       (input) INTEGER   
            The order of the matrix. N > 0.   

    VL      (input/output) DOUBLE PRECISION   
    VU      (input/output) DOUBLE PRECISION   
            If RANGE='V', the lower and upper bounds for the eigenvalues.   
            Eigenvalues less than or equal to VL, or greater than VU,   
            will not be returned.  VL < VU.   
            If RANGE='I' or ='A', DLARRE computes bounds on the desired   
            part of the spectrum.   

    IL      (input) INTEGER   
    IU      (input) INTEGER   
            If RANGE='I', the indices (in ascending order) of the   
            smallest and largest eigenvalues to be returned.   
            1 <= IL <= IU <= N.   

    D       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the N diagonal elements of the tridiagonal   
            matrix T.   
            On exit, the N diagonal elements of the diagonal   
            matrices D_i.   

    E       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the first (N-1) entries contain the subdiagonal   
            elements of the tridiagonal matrix T; E(N) need not be set.   
            On exit, E contains the subdiagonal elements of the unit   
            bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),   
            1 <= I <= NSPLIT, contain the base points sigma_i on output.   

    E2      (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the first (N-1) entries contain the SQUARES of the   
            subdiagonal elements of the tridiagonal matrix T;   
            E2(N) need not be set.   
            On exit, the entries E2( ISPLIT( I ) ),   
            1 <= I <= NSPLIT, have been set to zero   

    RTOL1   (input) DOUBLE PRECISION   
    RTOL2   (input) DOUBLE PRECISION   
             Parameters for bisection.   
             An interval [LEFT,RIGHT] has converged if   
             RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )   

    SPLTOL (input) DOUBLE PRECISION   
            The threshold for splitting.   

    NSPLIT  (output) INTEGER   
            The number of blocks T splits into. 1 <= NSPLIT <= N.   

    ISPLIT  (output) INTEGER array, dimension (N)   
            The splitting points, at which T breaks up into blocks.   
            The first block consists of rows/columns 1 to ISPLIT(1),   
            the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),   
            etc., and the NSPLIT-th consists of rows/columns   
            ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.   

    M       (output) INTEGER   
            The total number of eigenvalues (of all L_i D_i L_i^T)   
            found.   

    W       (output) DOUBLE PRECISION array, dimension (N)   
            The first M elements contain the eigenvalues. The   
            eigenvalues of each of the blocks, L_i D_i L_i^T, are   
            sorted in ascending order ( DLARRE may use the   
            remaining N-M elements as workspace).   

    WERR    (output) DOUBLE PRECISION array, dimension (N)   
            The error bound on the corresponding eigenvalue in W.   

    WGAP    (output) DOUBLE PRECISION array, dimension (N)   
            The separation from the right neighbor eigenvalue in W.   
            The gap is only with respect to the eigenvalues of the same block   
            as each block has its own representation tree.   
            Exception: at the right end of a block we store the left gap   

    IBLOCK  (output) INTEGER array, dimension (N)   
            The indices of the blocks (submatrices) associated with the   
            corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue   
            W(i) belongs to the first block from the top, =2 if W(i)   
            belongs to the second block, etc.   

    INDEXW  (output) INTEGER array, dimension (N)   
            The indices of the eigenvalues within each block (submatrix);   
            for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the   
            i-th eigenvalue W(i) is the 10-th eigenvalue in block 2   

    GERS    (output) DOUBLE PRECISION array, dimension (2*N)   
            The N Gerschgorin intervals (the i-th Gerschgorin interval   
            is (GERS(2*i-1), GERS(2*i)).   

    PIVMIN  (output) DOUBLE PRECISION   
            The minimum pivot in the Sturm sequence for T.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (6*N)   
            Workspace.   

    IWORK   (workspace) INTEGER array, dimension (5*N)   
            Workspace.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            > 0:  A problem occured in DLARRE.   
            < 0:  One of the called subroutines signaled an internal problem.   
                  Needs inspection of the corresponding parameter IINFO   
                  for further information.   

            =-1:  Problem in DLARRD.   
            = 2:  No base representation could be found in MAXTRY iterations.   
                  Increasing MAXTRY and recompilation might be a remedy.   
            =-3:  Problem in DLARRB when computing the refined root   
                  representation for DLASQ2.   
            =-4:  Problem in DLARRB when preforming bisection on the   
                  desired part of the spectrum.   
            =-5:  Problem in DLASQ2.   
            =-6:  Problem in DLASQ2.   

    Further Details   
    The base representations are required to suffer very little   
    element growth and consequently define all their eigenvalues to   
    high relative accuracy.   
    ===============   

    Based on contributions by   
       Beresford Parlett, University of California, Berkeley, USA   
       Jim Demmel, University of California, Berkeley, USA   
       Inderjit Dhillon, University of Texas, Austin, USA   
       Osni Marques, LBNL/NERSC, USA   
       Christof Voemel, University of California, Berkeley, USA   

    =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c__2 = 2;
    
    /* System generated locals */
    integer i__1, i__2;
    doublereal d__1, d__2, d__3;
    /* Builtin functions */
    double sqrt(doublereal), log(doublereal);
    /* Local variables */
    static integer i__, j;
    static doublereal s1, s2;
    static integer mb;
    static doublereal gl;
    static integer in, mm;
    static doublereal gu;
    static integer cnt;
    static doublereal eps, tau, tmp, rtl;
    static integer cnt1, cnt2;
    static doublereal tmp1, eabs;
    static integer iend, jblk;
    static doublereal eold;
    static integer indl;
    static doublereal dmax__, emax;
    static integer wend, idum, indu;
    static doublereal rtol;
    static integer iseed[4];
    static doublereal avgap, sigma;
    extern logical lsame_(char *, char *);
    static integer iinfo;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static logical norep;
    extern /* Subroutine */ int dlasq2_(integer *, doublereal *, integer *);
    extern doublereal dlamch_(char *);
    static integer ibegin;
    static logical forceb;
    static integer irange;
    static doublereal sgndef;
    extern /* Subroutine */ int dlarra_(integer *, doublereal *, doublereal *,
	     doublereal *, doublereal *, doublereal *, integer *, integer *, 
	    integer *), dlarrb_(integer *, doublereal *, doublereal *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
	     doublereal *, doublereal *, integer *, integer *), dlarrc_(char *
	    , integer *, doublereal *, doublereal *, doublereal *, doublereal 
	    *, doublereal *, integer *, integer *, integer *, integer *);
    static integer wbegin;
    extern /* Subroutine */ int dlarrd_(char *, char *, integer *, doublereal 
	    *, doublereal *, integer *, integer *, doublereal *, doublereal *,
	     doublereal *, doublereal *, doublereal *, doublereal *, integer *
	    , integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *);
    static doublereal safmin, spdiam;
    extern /* Subroutine */ int dlarrk_(integer *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *);
    static logical usedqd;
    static doublereal clwdth, isleft;
    extern /* Subroutine */ int dlarnv_(integer *, integer *, integer *, 
	    doublereal *);
    static doublereal isrght, bsrtol, dpivot;


    --iwork;
    --work;
    --gers;
    --indexw;
    --iblock;
    --wgap;
    --werr;
    --w;
    --isplit;
    --e2;
    --e;
    --d__;

    /* Function Body */
    *info = 0;

/*     Decode RANGE */

    if (lsame_(range, "A")) {
	irange = 1;
    } else if (lsame_(range, "V")) {
	irange = 3;
    } else if (lsame_(range, "I")) {
	irange = 2;
    }
    *m = 0;
/*     Get machine constants */
    safmin = dlamch_("S");
    eps = dlamch_("P");
/*     Set parameters */
    rtl = sqrt(eps);
    bsrtol = sqrt(eps);
/*     Treat case of 1x1 matrix for quick return */
    if (*n == 1) {
	if (irange == 1 || irange == 3 && d__[1] > *vl && d__[1] <= *vu || 
		irange == 2 && *il == 1 && *iu == 1) {
	    *m = 1;
	    w[1] = d__[1];
/*           The computation error of the eigenvalue is zero */
	    werr[1] = 0.;
	    wgap[1] = 0.;
	    iblock[1] = 1;
	    indexw[1] = 1;
	    gers[1] = d__[1];
	    gers[2] = d__[1];
	}
/*        store the shift for the initial RRR, which is zero in this case */
	e[1] = 0.;
	return 0;
    }
/*     General case: tridiagonal matrix of order > 1   

       Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter.   
       Compute maximum off-diagonal entry and pivmin. */
    gl = d__[1];
    gu = d__[1];
    eold = 0.;
    emax = 0.;
    e[*n] = 0.;
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	werr[i__] = 0.;
	wgap[i__] = 0.;
	eabs = (d__1 = e[i__], abs(d__1));
	if (eabs >= emax) {
	    emax = eabs;
	}
	tmp1 = eabs + eold;
	gers[(i__ << 1) - 1] = d__[i__] - tmp1;
/* Computing MIN */
	d__1 = gl, d__2 = gers[(i__ << 1) - 1];
	gl = min(d__1,d__2);
	gers[i__ * 2] = d__[i__] + tmp1;
/* Computing MAX */
	d__1 = gu, d__2 = gers[i__ * 2];
	gu = max(d__1,d__2);
	eold = eabs;
/* L5: */
    }
/*     The minimum pivot allowed in the Sturm sequence for T   
   Computing MAX   
   Computing 2nd power */
    d__3 = emax;
    d__1 = 1., d__2 = d__3 * d__3;
    *pivmin = safmin * max(d__1,d__2);
/*     Compute spectral diameter. The Gerschgorin bounds give an   
       estimate that is wrong by at most a factor of SQRT(2) */
    spdiam = gu - gl;
/*     Compute splitting points */
    dlarra_(n, &d__[1], &e[1], &e2[1], spltol, &spdiam, nsplit, &isplit[1], &
	    iinfo);
/*     Can force use of bisection instead of faster DQDS.   
       Option left in the code for future multisection work. */
    forceb = FALSE_;
    if (irange == 1 && ! forceb) {
/*        Set interval [VL,VU] that contains all eigenvalues */
	*vl = gl;
	*vu = gu;
    } else {
/*        We call DLARRD to find crude approximations to the eigenvalues   
          in the desired range. In case IRANGE = INDRNG, we also obtain the   
          interval (VL,VU] that contains all the wanted eigenvalues.   
          An interval [LEFT,RIGHT] has converged if   
          RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT))   
          DLARRD needs a WORK of size 4*N, IWORK of size 3*N */
	dlarrd_(range, "B", n, vl, vu, il, iu, &gers[1], &bsrtol, &d__[1], &e[
		1], &e2[1], pivmin, nsplit, &isplit[1], &mm, &w[1], &werr[1], 
		vl, vu, &iblock[1], &indexw[1], &work[1], &iwork[1], &iinfo);
	if (iinfo != 0) {
	    *info = -1;
	    return 0;
	}
/*        Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0 */
	i__1 = *n;
	for (i__ = mm + 1; i__ <= i__1; ++i__) {
	    w[i__] = 0.;
	    werr[i__] = 0.;
	    iblock[i__] = 0;
	    indexw[i__] = 0;
/* L14: */
	}
    }
/* **   
       Loop over unreduced blocks */
    ibegin = 1;
    wbegin = 1;
    i__1 = *nsplit;
    for (jblk = 1; jblk <= i__1; ++jblk) {
	iend = isplit[jblk];
	in = iend - ibegin + 1;
/*        1 X 1 block */
	if (in == 1) {
	    if (irange == 1 || irange == 3 && d__[ibegin] > *vl && d__[ibegin]
		     <= *vu || irange == 2 && iblock[wbegin] == jblk) {
		++(*m);
		w[*m] = d__[ibegin];
		werr[*m] = 0.;
/*              The gap for a single block doesn't matter for the later   
                algorithm and is assigned an arbitrary large value */
		wgap[*m] = 0.;
		iblock[*m] = jblk;
		indexw[*m] = 1;
		++wbegin;
	    }
/*           E( IEND ) holds the shift for the initial RRR */
	    e[iend] = 0.;
	    ibegin = iend + 1;
	    goto L170;
	}

/*        Blocks of size larger than 1x1   

          E( IEND ) will hold the shift for the initial RRR, for now set it =0 */
	e[iend] = 0.;

/*        Find local outer bounds GL,GU for the block */
	gl = d__[ibegin];
	gu = d__[ibegin];
	i__2 = iend;
	for (i__ = ibegin; i__ <= i__2; ++i__) {
/* Computing MIN */
	    d__1 = gers[(i__ << 1) - 1];
	    gl = min(d__1,gl);
/* Computing MAX */
	    d__1 = gers[i__ * 2];
	    gu = max(d__1,gu);
/* L15: */
	}
	spdiam = gu - gl;
	if (! (irange == 1 && ! forceb)) {
/*           Count the number of eigenvalues in the current block. */
	    mb = 0;
	    i__2 = mm;
	    for (i__ = wbegin; i__ <= i__2; ++i__) {
		if (iblock[i__] == jblk) {
		    ++mb;
		} else {
		    goto L21;
		}
/* L20: */
	    }
L21:
	    if (mb == 0) {
/*              No eigenvalue in the current block lies in the desired range   
                E( IEND ) holds the shift for the initial RRR */
		e[iend] = 0.;
		ibegin = iend + 1;
		goto L170;
	    } else {
/*              Decide whether dqds or bisection is more efficient */
		usedqd = (doublereal) mb > in * .5 && ! forceb;
		wend = wbegin + mb - 1;
/*              Calculate gaps for the current block   
                In later stages, when representations for individual   
                eigenvalues are different, we use SIGMA = E( IEND ). */
		sigma = 0.;
		i__2 = wend - 1;
		for (i__ = wbegin; i__ <= i__2; ++i__) {
/* Computing MAX */
		    d__1 = 0., d__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + 
			    werr[i__]);
		    wgap[i__] = max(d__1,d__2);
/* L30: */
		}
/* Computing MAX */
		d__1 = 0., d__2 = *vu - sigma - (w[wend] + werr[wend]);
		wgap[wend] = max(d__1,d__2);
/*              Find local index of the first and last desired evalue. */
		indl = indexw[wbegin];
		indu = indexw[wend];
	    }
	}
	if (irange == 1 && ! forceb || usedqd) {
/*           Case of DQDS   
             Find approximations to the extremal eigenvalues of the block */
	    dlarrk_(&in, &c__1, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, &
		    rtl, &tmp, &tmp1, &iinfo);
	    if (iinfo != 0) {
		*info = -1;
		return 0;
	    }
/* Computing MAX */
	    d__2 = gl, d__3 = tmp - tmp1 - eps * 100. * (d__1 = tmp - tmp1, 
		    abs(d__1));
	    isleft = max(d__2,d__3);
	    dlarrk_(&in, &in, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, &
		    rtl, &tmp, &tmp1, &iinfo);
	    if (iinfo != 0) {
		*info = -1;
		return 0;
	    }
/* Computing MIN */
	    d__2 = gu, d__3 = tmp + tmp1 + eps * 100. * (d__1 = tmp + tmp1, 
		    abs(d__1));
	    isrght = min(d__2,d__3);
/*           Improve the estimate of the spectral diameter */
	    spdiam = isrght - isleft;
	} else {
/*           Case of bisection   
             Find approximations to the wanted extremal eigenvalues   
   Computing MAX */
	    d__2 = gl, d__3 = w[wbegin] - werr[wbegin] - eps * 100. * (d__1 = 
		    w[wbegin] - werr[wbegin], abs(d__1));
	    isleft = max(d__2,d__3);
/* Computing MIN */
	    d__2 = gu, d__3 = w[wend] + werr[wend] + eps * 100. * (d__1 = w[
		    wend] + werr[wend], abs(d__1));
	    isrght = min(d__2,d__3);
	}
/*        Decide whether the base representation for the current block   
          L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I   
          should be on the left or the right end of the current block.   
          The strategy is to shift to the end which is "more populated"   
          Furthermore, decide whether to use DQDS for the computation of   
          the eigenvalue approximations at the end of DLARRE or bisection.   
          dqds is chosen if all eigenvalues are desired or the number of   
          eigenvalues to be computed is large compared to the blocksize. */
	if (irange == 1 && ! forceb) {
/*           If all the eigenvalues have to be computed, we use dqd */
	    usedqd = TRUE_;
/*           INDL is the local index of the first eigenvalue to compute */
	    indl = 1;
	    indu = in;
/*           MB =  number of eigenvalues to compute */
	    mb = in;
	    wend = wbegin + mb - 1;
/*           Define 1/4 and 3/4 points of the spectrum */
	    s1 = isleft + spdiam * .25;
	    s2 = isrght - spdiam * .25;
	} else {
/*           DLARRD has computed IBLOCK and INDEXW for each eigenvalue   
             approximation.   
             choose sigma */
	    if (usedqd) {
		s1 = isleft + spdiam * .25;
		s2 = isrght - spdiam * .25;
	    } else {
		tmp = min(isrght,*vu) - max(isleft,*vl);
		s1 = max(isleft,*vl) + tmp * .25;
		s2 = min(isrght,*vu) - tmp * .25;
	    }
	}
/*        Compute the negcount at the 1/4 and 3/4 points */
	if (mb > 1) {
	    dlarrc_("T", &in, &s1, &s2, &d__[ibegin], &e[ibegin], pivmin, &
		    cnt, &cnt1, &cnt2, &iinfo);
	}
	if (mb == 1) {
	    sigma = gl;
	    sgndef = 1.;
	} else if (cnt1 - indl >= indu - cnt2) {
	    if (irange == 1 && ! forceb) {
		sigma = max(isleft,gl);
	    } else if (usedqd) {
/*              use Gerschgorin bound as shift to get pos def matrix   
                for dqds */
		sigma = isleft;
	    } else {
/*              use approximation of the first desired eigenvalue of the   
                block as shift */
		sigma = max(isleft,*vl);
	    }
	    sgndef = 1.;
	} else {
	    if (irange == 1 && ! forceb) {
		sigma = min(isrght,gu);
	    } else if (usedqd) {
/*              use Gerschgorin bound as shift to get neg def matrix   
                for dqds */
		sigma = isrght;
	    } else {
/*              use approximation of the first desired eigenvalue of the   
                block as shift */
		sigma = min(isrght,*vu);
	    }
	    sgndef = -1.;
	}
/*        An initial SIGMA has been chosen that will be used for computing   
          T - SIGMA I = L D L^T   
          Define the increment TAU of the shift in case the initial shift   
          needs to be refined to obtain a factorization with not too much   
          element growth. */
	if (usedqd) {
/*           The initial SIGMA was to the outer end of the spectrum   
             the matrix is definite and we need not retreat. */
	    tau = spdiam * eps * *n + *pivmin * 2.;
	} else {
	    if (mb > 1) {
		clwdth = w[wend] + werr[wend] - w[wbegin] - werr[wbegin];
		avgap = (d__1 = clwdth / (doublereal) (wend - wbegin), abs(
			d__1));
		if (sgndef == 1.) {
/* Computing MAX */
		    d__1 = wgap[wbegin];
		    tau = max(d__1,avgap) * .5;
/* Computing MAX */
		    d__1 = tau, d__2 = werr[wbegin];
		    tau = max(d__1,d__2);
		} else {
/* Computing MAX */
		    d__1 = wgap[wend - 1];
		    tau = max(d__1,avgap) * .5;
/* Computing MAX */
		    d__1 = tau, d__2 = werr[wend];
		    tau = max(d__1,d__2);
		}
	    } else {
		tau = werr[wbegin];
	    }
	}

	for (idum = 1; idum <= 6; ++idum) {
/*           Compute L D L^T factorization of tridiagonal matrix T - sigma I.   
             Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of   
             pivots in WORK(2*IN+1:3*IN) */
	    dpivot = d__[ibegin] - sigma;
	    work[1] = dpivot;
	    dmax__ = abs(work[1]);
	    j = ibegin;
	    i__2 = in - 1;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		work[(in << 1) + i__] = 1. / work[i__];
		tmp = e[j] * work[(in << 1) + i__];
		work[in + i__] = tmp;
		dpivot = d__[j + 1] - sigma - tmp * e[j];
		work[i__ + 1] = dpivot;
/* Computing MAX */
		d__1 = dmax__, d__2 = abs(dpivot);
		dmax__ = max(d__1,d__2);
		++j;
/* L70: */
	    }
/*           check for element growth */
	    if (dmax__ > spdiam * 64.) {
		norep = TRUE_;
	    } else {
		norep = FALSE_;
	    }
	    if (usedqd && ! norep) {
/*              Ensure the definiteness of the representation   
                All entries of D (of L D L^T) must have the same sign */
		i__2 = in;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    tmp = sgndef * work[i__];
		    if (tmp < 0.) {
			norep = TRUE_;
		    }
/* L71: */
		}
	    }
	    if (norep) {
/*              Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin   
                shift which makes the matrix definite. So we should end up   
                here really only in the case of IRANGE = VALRNG or INDRNG. */
		if (idum == 5) {
		    if (sgndef == 1.) {
/*                    The fudged Gerschgorin shift should succeed */
			sigma = gl - spdiam * 2. * eps * *n - *pivmin * 4.;
		    } else {
			sigma = gu + spdiam * 2. * eps * *n + *pivmin * 4.;
		    }
		} else {
		    sigma -= sgndef * tau;
		    tau *= 2.;
		}
	    } else {
/*              an initial RRR is found */
		goto L83;
	    }
/* L80: */
	}
/*        if the program reaches this point, no base representation could be   
          found in MAXTRY iterations. */
	*info = 2;
	return 0;
L83:
/*        At this point, we have found an initial base representation   
          T - SIGMA I = L D L^T with not too much element growth.   
          Store the shift. */
	e[iend] = sigma;
/*        Store D and L. */
	dcopy_(&in, &work[1], &c__1, &d__[ibegin], &c__1);
	i__2 = in - 1;
	dcopy_(&i__2, &work[in + 1], &c__1, &e[ibegin], &c__1);
	if (mb > 1) {

/*           Perturb each entry of the base representation by a small   
             (but random) relative amount to overcome difficulties with   
             glued matrices. */

	    for (i__ = 1; i__ <= 4; ++i__) {
		iseed[i__ - 1] = 1;
/* L122: */
	    }
	    i__2 = (in << 1) - 1;
	    dlarnv_(&c__2, iseed, &i__2, &work[1]);
	    i__2 = in - 1;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		d__[ibegin + i__ - 1] *= eps * 8. * work[i__] + 1.;
		e[ibegin + i__ - 1] *= eps * 8. * work[in + i__] + 1.;
/* L125: */
	    }
	    d__[iend] *= eps * 4. * work[in] + 1.;

	}

/*        Don't update the Gerschgorin intervals because keeping track   
          of the updates would be too much work in DLARRV.   
          We update W instead and use it to locate the proper Gerschgorin   
          intervals.   
          Compute the required eigenvalues of L D L' by bisection or dqds */
	if (! usedqd) {
/*           If DLARRD has been used, shift the eigenvalue approximations   
             according to their representation. This is necessary for   
             a uniform DLARRV since dqds computes eigenvalues of the   
             shifted representation. In DLARRV, W will always hold the   
             UNshifted eigenvalue approximation. */
	    i__2 = wend;
	    for (j = wbegin; j <= i__2; ++j) {
		w[j] -= sigma;
		werr[j] += (d__1 = w[j], abs(d__1)) * eps;
/* L134: */
	    }
/*           call DLARRB to reduce eigenvalue error of the approximations   
             from DLARRD */
	    i__2 = iend - 1;
	    for (i__ = ibegin; i__ <= i__2; ++i__) {
/* Computing 2nd power */
		d__1 = e[i__];
		work[i__] = d__[i__] * (d__1 * d__1);
/* L135: */
	    }
/*           use bisection to find EV from INDL to INDU */
	    i__2 = indl - 1;
	    dlarrb_(&in, &d__[ibegin], &work[ibegin], &indl, &indu, rtol1, 
		    rtol2, &i__2, &w[wbegin], &wgap[wbegin], &werr[wbegin], &
		    work[(*n << 1) + 1], &iwork[1], pivmin, &spdiam, &in, &
		    iinfo);
	    if (iinfo != 0) {
		*info = -4;
		return 0;
	    }
/*           DLARRB computes all gaps correctly except for the last one   
             Record distance to VU/GU   
   Computing MAX */
	    d__1 = 0., d__2 = *vu - sigma - (w[wend] + werr[wend]);
	    wgap[wend] = max(d__1,d__2);
	    i__2 = indu;
	    for (i__ = indl; i__ <= i__2; ++i__) {
		++(*m);
		iblock[*m] = jblk;
		indexw[*m] = i__;
/* L138: */
	    }
	} else {
/*           Call dqds to get all eigs (and then possibly delete unwanted   
             eigenvalues).   
             Note that dqds finds the eigenvalues of the L D L^T representation   
             of T to high relative accuracy. High relative accuracy   
             might be lost when the shift of the RRR is subtracted to obtain   
             the eigenvalues of T. However, T is not guaranteed to define its   
             eigenvalues to high relative accuracy anyway.   
             Set RTOL to the order of the tolerance used in DLASQ2   
             This is an ESTIMATED error, the worst case bound is 4*N*EPS   
             which is usually too large and requires unnecessary work to be   
             done by bisection when computing the eigenvectors */
	    rtol = log((doublereal) in) * 4. * eps;
	    j = ibegin;
	    i__2 = in - 1;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		work[(i__ << 1) - 1] = (d__1 = d__[j], abs(d__1));
		work[i__ * 2] = e[j] * e[j] * work[(i__ << 1) - 1];
		++j;
/* L140: */
	    }
	    work[(in << 1) - 1] = (d__1 = d__[iend], abs(d__1));
	    work[in * 2] = 0.;
	    dlasq2_(&in, &work[1], &iinfo);
	    if (iinfo != 0) {
/*              If IINFO = -5 then an index is part of a tight cluster   
                and should be changed. The index is in IWORK(1) and the   
                gap is in WORK(N+1) */
		*info = -5;
		return 0;
	    } else {
/*              Test that all eigenvalues are positive as expected */
		i__2 = in;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    if (work[i__] < 0.) {
			*info = -6;
			return 0;
		    }
/* L149: */
		}
	    }
	    if (sgndef > 0.) {
		i__2 = indu;
		for (i__ = indl; i__ <= i__2; ++i__) {
		    ++(*m);
		    w[*m] = work[in - i__ + 1];
		    iblock[*m] = jblk;
		    indexw[*m] = i__;
/* L150: */
		}
	    } else {
		i__2 = indu;
		for (i__ = indl; i__ <= i__2; ++i__) {
		    ++(*m);
		    w[*m] = -work[i__];
		    iblock[*m] = jblk;
		    indexw[*m] = i__;
/* L160: */
		}
	    }
	    i__2 = *m;
	    for (i__ = *m - mb + 1; i__ <= i__2; ++i__) {
/*              the value of RTOL below should be the tolerance in DLASQ2 */
		werr[i__] = rtol * (d__1 = w[i__], abs(d__1));
/* L165: */
	    }
	    i__2 = *m - 1;
	    for (i__ = *m - mb + 1; i__ <= i__2; ++i__) {
/*              compute the right gap between the intervals   
   Computing MAX */
		d__1 = 0., d__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + werr[
			i__]);
		wgap[i__] = max(d__1,d__2);
/* L166: */
	    }
/* Computing MAX */
	    d__1 = 0., d__2 = *vu - sigma - (w[*m] + werr[*m]);
	    wgap[*m] = max(d__1,d__2);
	}
/*        proceed with next block */
	ibegin = iend + 1;
	wbegin = wend + 1;
L170:
	;
    }

    return 0;

/*     end of DLARRE */

} /* dlarre_ */
Esempio n. 3
0
/* Subroutine */ int dlarre_(integer *n, doublereal *d__, doublereal *e, 
	doublereal *tol, integer *nsplit, integer *isplit, integer *m, 
	doublereal *w, doublereal *woff, doublereal *gersch, doublereal *work,
	 integer *info)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    Given the tridiagonal matrix T, DLARRE sets "small" off-diagonal   
    elements to zero, and for each unreduced block T_i, it finds   
    (i) the numbers sigma_i   
    (ii) the base T_i - sigma_i I = L_i D_i L_i^T representations and   
    (iii) eigenvalues of each L_i D_i L_i^T.   
    The representations and eigenvalues found are then used by   
    DSTEGR to compute the eigenvectors of a symmetric tridiagonal   
    matrix. Currently, the base representations are limited to being   
    positive or negative definite, and the eigenvalues of the definite   
    matrices are found by the dqds algorithm (subroutine DLASQ2). As   
    an added benefit, DLARRE also outputs the n Gerschgorin   
    intervals for each L_i D_i L_i^T.   

    Arguments   
    =========   

    N       (input) INTEGER   
            The order of the matrix.   

    D       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the n diagonal elements of the tridiagonal   
            matrix T.   
            On exit, the n diagonal elements of the diagonal   
            matrices D_i.   

    E       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the (n-1) subdiagonal elements of the tridiagonal   
            matrix T; E(N) need not be set.   
            On exit, the subdiagonal elements of the unit bidiagonal   
            matrices L_i.   

    TOL     (input) DOUBLE PRECISION   
            The threshold for splitting. If on input |E(i)| < TOL, then   
            the matrix T is split into smaller blocks.   

    NSPLIT  (input) INTEGER   
            The number of blocks T splits into. 1 <= NSPLIT <= N.   

    ISPLIT  (output) INTEGER array, dimension (2*N)   
            The splitting points, at which T breaks up into submatrices.   
            The first submatrix consists of rows/columns 1 to ISPLIT(1),   
            the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),   
            etc., and the NSPLIT-th consists of rows/columns   
            ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.   

    M       (output) INTEGER   
            The total number of eigenvalues (of all the L_i D_i L_i^T)   
            found.   

    W       (output) DOUBLE PRECISION array, dimension (N)   
            The first M elements contain the eigenvalues. The   
            eigenvalues of each of the blocks, L_i D_i L_i^T, are   
            sorted in ascending order.   

    WOFF    (output) DOUBLE PRECISION array, dimension (N)   
            The NSPLIT base points sigma_i.   

    GERSCH  (output) DOUBLE PRECISION array, dimension (2*N)   
            The n Gerschgorin intervals.   

    WORK    (input) DOUBLE PRECISION array, dimension (4*N???)   
            Workspace.   

    INFO    (output) INTEGER   
            Output error code from DLASQ2   

    Further Details   
    ===============   

    Based on contributions by   
       Inderjit Dhillon, IBM Almaden, USA   
       Osni Marques, LBNL/NERSC, USA   

    =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer i__1, i__2;
    doublereal d__1, d__2;
    /* Local variables */
    static doublereal offd;
    static integer iend, jblk, i__, j;
    static doublereal s, delta, sigma;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static doublereal width;
    extern /* Subroutine */ int dlasq2_(integer *, doublereal *, integer *);
    static doublereal gl;
    static integer in;
    extern doublereal dlamch_(char *);
    static doublereal gu;
    static integer ibegin;
    static doublereal sgndef;
    static integer maxcnt, cnt;
    static doublereal eps, tau, nrm, tmp1;


    --work;
    --gersch;
    --woff;
    --w;
    --isplit;
    --e;
    --d__;

    /* Function Body */
    *info = 0;
    eps = dlamch_("Precision");

/*     Compute Splitting Points */

    *nsplit = 1;
    i__1 = *n - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if ((d__1 = e[i__], abs(d__1)) <= *tol) {
	    isplit[*nsplit] = i__;
	    ++(*nsplit);
	}
/* L10: */
    }
    isplit[*nsplit] = *n;

    ibegin = 1;
    i__1 = *nsplit;
    for (jblk = 1; jblk <= i__1; ++jblk) {
	iend = isplit[jblk];
	if (ibegin == iend) {
	    w[ibegin] = d__[ibegin];
	    woff[jblk] = 0.;
	    ibegin = iend + 1;
	    goto L170;
	}
	in = iend - ibegin + 1;

/*        Form the n Gerschgorin intervals */

	gl = d__[ibegin] - (d__1 = e[ibegin], abs(d__1));
	gu = d__[ibegin] + (d__1 = e[ibegin], abs(d__1));
	gersch[(ibegin << 1) - 1] = gl;
	gersch[ibegin * 2] = gu;
	gersch[(iend << 1) - 1] = d__[iend] - (d__1 = e[iend - 1], abs(d__1));
	gersch[iend * 2] = d__[iend] + (d__1 = e[iend - 1], abs(d__1));
/* Computing MIN */
	d__1 = gersch[(iend << 1) - 1];
	gl = min(d__1,gl);
/* Computing MAX */
	d__1 = gersch[iend * 2];
	gu = max(d__1,gu);
	i__2 = iend - 1;
	for (i__ = ibegin + 1; i__ <= i__2; ++i__) {
	    offd = (d__1 = e[i__ - 1], abs(d__1)) + (d__2 = e[i__], abs(d__2))
		    ;
	    gersch[(i__ << 1) - 1] = d__[i__] - offd;
/* Computing MIN */
	    d__1 = gersch[(i__ << 1) - 1];
	    gl = min(d__1,gl);
	    gersch[i__ * 2] = d__[i__] + offd;
/* Computing MAX */
	    d__1 = gersch[i__ * 2];
	    gu = max(d__1,gu);
/* L20: */
	}
/* Computing MAX */
	d__1 = abs(gl), d__2 = abs(gu);
	nrm = max(d__1,d__2);

/*        Find the number SIGMA where the base representation   
          T - sigma I = L D L^T is to be formed. */

	width = gu - gl;
	i__2 = iend - 1;
	for (i__ = ibegin; i__ <= i__2; ++i__) {
	    work[i__] = e[i__] * e[i__];
/* L30: */
	}
	for (j = 1; j <= 2; ++j) {
	    if (j == 1) {
		tau = gl + width * .25;
	    } else {
		tau = gu - width * .25;
	    }
	    tmp1 = d__[ibegin] - tau;
	    if (tmp1 < 0.) {
		cnt = 1;
	    } else {
		cnt = 0;
	    }
	    i__2 = iend;
	    for (i__ = ibegin + 1; i__ <= i__2; ++i__) {
		tmp1 = d__[i__] - tau - work[i__ - 1] / tmp1;
		if (tmp1 < 0.) {
		    ++cnt;
		}
/* L40: */
	    }
	    if (cnt == 0) {
		gl = tau;
	    } else if (cnt == in) {
		gu = tau;
	    }
	    if (j == 1) {
		maxcnt = cnt;
		sigma = gl;
		sgndef = 1.;
	    } else {
		if (in - cnt > maxcnt) {
		    sigma = gu;
		    sgndef = -1.;
		}
	    }
/* L50: */
	}

/*        Find the base L D L^T representation */

	work[in * 3] = 1.;
	delta = eps;
	tau = sgndef * nrm;
L60:
	sigma -= delta * tau;
	work[1] = d__[ibegin] - sigma;
	j = ibegin;
	i__2 = in - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[(in << 1) + i__] = 1. / work[(i__ << 1) - 1];
	    tmp1 = e[j] * work[(in << 1) + i__];
	    work[(i__ << 1) + 1] = d__[j + 1] - sigma - tmp1 * e[j];
	    work[i__ * 2] = tmp1;
	    ++j;
/* L70: */
	}
	for (i__ = in; i__ >= 1; --i__) {
	    tmp1 = sgndef * work[(i__ << 1) - 1];
	    if (tmp1 < 0. || work[(in << 1) + i__] == 0. || ! (tmp1 > 0. || 
		    tmp1 < 1.)) {
		delta *= 2.;
		goto L60;
	    }
	    --j;
/* L80: */
	}

	j = ibegin;
	d__[ibegin] = work[1];
	work[1] = abs(work[1]);
	i__2 = in - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    tmp1 = e[j];
	    e[j] = work[i__ * 2];
	    work[i__ * 2] = (d__1 = tmp1 * work[i__ * 2], abs(d__1));
	    ++j;
	    d__[j] = work[(i__ << 1) + 1];
	    work[(i__ << 1) + 1] = (d__1 = work[(i__ << 1) + 1], abs(d__1));
/* L90: */
	}

	dlasq2_(&in, &work[1], info);

	tau = sgndef * work[in];
	work[in * 3] = 1.;
	delta = eps * 2.;
L100:
	tau *= 1. - delta;

	s = -tau;
	j = ibegin;
	i__2 = in - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[i__] = d__[j] + s;
	    work[(in << 1) + i__] = 1. / work[i__];
/*           WORK( N+I ) = ( E( I ) * D( I ) ) / WORK( I ) */
	    work[in + i__] = e[j] * d__[j] * work[(in << 1) + i__];
	    s = s * work[in + i__] * e[j] - tau;
	    ++j;
/* L110: */
	}
	work[in] = d__[iend] + s;

/*        Checking to see if all the diagonal elements of the new   
          L D L^T representation have the same sign */

	for (i__ = in; i__ >= 1; --i__) {
	    tmp1 = sgndef * work[i__];
	    if (tmp1 < 0. || work[(in << 1) + i__] == 0. || ! (tmp1 > 0. || 
		    tmp1 < 1.)) {
		delta *= 2.;
		goto L100;
	    }
/* L120: */
	}

	sigma += tau;
	dcopy_(&in, &work[1], &c__1, &d__[ibegin], &c__1);
	i__2 = in - 1;
	dcopy_(&i__2, &work[in + 1], &c__1, &e[ibegin], &c__1);
	woff[jblk] = sigma;

/*        Update the n Gerschgorin intervals */

	i__2 = iend;
	for (i__ = ibegin; i__ <= i__2; ++i__) {
	    gersch[(i__ << 1) - 1] -= sigma;
	    gersch[i__ * 2] -= sigma;
/* L130: */
	}

/*        Compute the eigenvalues of L D L^T. */

	j = ibegin;
	i__2 = in - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[(i__ << 1) - 1] = (d__1 = d__[j], abs(d__1));
	    work[i__ * 2] = e[j] * e[j] * work[(i__ << 1) - 1];
	    ++j;
/* L140: */
	}
	work[(in << 1) - 1] = (d__1 = d__[iend], abs(d__1));

	dlasq2_(&in, &work[1], info);

	j = ibegin;
	if (sgndef > 0.) {
	    i__2 = in;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		w[j] = work[in - i__ + 1];
		++j;
/* L150: */
	    }
	} else {
	    i__2 = in;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		w[j] = -work[i__];
		++j;
/* L160: */
	    }
	}
	ibegin = iend + 1;
L170:
	;
    }
    *m = *n;

    return 0;

/*     End of DLARRE */

} /* dlarre_ */
Esempio n. 4
0
/* Subroutine */
int dlarre_(char *range, integer *n, doublereal *vl, doublereal *vu, integer *il, integer *iu, doublereal *d__, doublereal *e, doublereal *e2, doublereal *rtol1, doublereal *rtol2, doublereal * spltol, integer *nsplit, integer *isplit, integer *m, doublereal *w, doublereal *werr, doublereal *wgap, integer *iblock, integer *indexw, doublereal *gers, doublereal *pivmin, doublereal *work, integer * iwork, integer *info)
{
    /* System generated locals */
    integer i__1, i__2;
    doublereal d__1, d__2, d__3;
    /* Builtin functions */
    double sqrt(doublereal), log(doublereal);
    /* Local variables */
    integer i__, j;
    doublereal s1, s2;
    integer mb;
    doublereal gl;
    integer in, mm;
    doublereal gu;
    integer cnt;
    doublereal eps, tau, tmp, rtl;
    integer cnt1, cnt2;
    doublereal tmp1, eabs;
    integer iend, jblk;
    doublereal eold;
    integer indl;
    doublereal dmax__, emax;
    integer wend, idum, indu;
    doublereal rtol;
    integer iseed[4];
    doublereal avgap, sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */
    int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *);
    logical norep;
    extern /* Subroutine */
    int dlasq2_(integer *, doublereal *, integer *);
    extern doublereal dlamch_(char *);
    integer ibegin;
    logical forceb;
    integer irange;
    doublereal sgndef;
    extern /* Subroutine */
    int dlarra_(integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *), dlarrb_(integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), dlarrc_(char * , integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, integer *);
    integer wbegin;
    extern /* Subroutine */
    int dlarrd_(char *, char *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer * , integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *);
    doublereal safmin, spdiam;
    extern /* Subroutine */
    int dlarrk_(integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *);
    logical usedqd;
    doublereal clwdth, isleft;
    extern /* Subroutine */
    int dlarnv_(integer *, integer *, integer *, doublereal *);
    doublereal isrght, bsrtol, dpivot;
    /* -- LAPACK auxiliary routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Local Arrays .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Parameter adjustments */
    --iwork;
    --work;
    --gers;
    --indexw;
    --iblock;
    --wgap;
    --werr;
    --w;
    --isplit;
    --e2;
    --e;
    --d__;
    /* Function Body */
    *info = 0;
    /* Decode RANGE */
    irange = 0;
    if (lsame_(range, "A"))
    {
        irange = 1;
    }
    else if (lsame_(range, "V"))
    {
        irange = 3;
    }
    else if (lsame_(range, "I"))
    {
        irange = 2;
    }
    *m = 0;
    /* Get machine constants */
    safmin = dlamch_("S");
    eps = dlamch_("P");
    /* Set parameters */
    rtl = sqrt(eps);
    bsrtol = sqrt(eps);
    /* Treat case of 1x1 matrix for quick return */
    if (*n == 1)
    {
        if (irange == 1 || irange == 3 && d__[1] > *vl && d__[1] <= *vu || irange == 2 && *il == 1 && *iu == 1)
        {
            *m = 1;
            w[1] = d__[1];
            /* The computation error of the eigenvalue is zero */
            werr[1] = 0.;
            wgap[1] = 0.;
            iblock[1] = 1;
            indexw[1] = 1;
            gers[1] = d__[1];
            gers[2] = d__[1];
        }
        /* store the shift for the initial RRR, which is zero in this case */
        e[1] = 0.;
        return 0;
    }
    /* General case: tridiagonal matrix of order > 1 */
    /* Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter. */
    /* Compute maximum off-diagonal entry and pivmin. */
    gl = d__[1];
    gu = d__[1];
    eold = 0.;
    emax = 0.;
    e[*n] = 0.;
    i__1 = *n;
    for (i__ = 1;
            i__ <= i__1;
            ++i__)
    {
        werr[i__] = 0.;
        wgap[i__] = 0.;
        eabs = (d__1 = e[i__], abs(d__1));
        if (eabs >= emax)
        {
            emax = eabs;
        }
        tmp1 = eabs + eold;
        gers[(i__ << 1) - 1] = d__[i__] - tmp1;
        /* Computing MIN */
        d__1 = gl;
        d__2 = gers[(i__ << 1) - 1]; // , expr subst
        gl = min(d__1,d__2);
        gers[i__ * 2] = d__[i__] + tmp1;
        /* Computing MAX */
        d__1 = gu;
        d__2 = gers[i__ * 2]; // , expr subst
        gu = max(d__1,d__2);
        eold = eabs;
        /* L5: */
    }
    /* The minimum pivot allowed in the Sturm sequence for T */
    /* Computing MAX */
    /* Computing 2nd power */
    d__3 = emax;
    d__1 = 1.;
    d__2 = d__3 * d__3; // , expr subst
    *pivmin = safmin * max(d__1,d__2);
    /* Compute spectral diameter. The Gerschgorin bounds give an */
    /* estimate that is wrong by at most a factor of SQRT(2) */
    spdiam = gu - gl;
    /* Compute splitting points */
    dlarra_(n, &d__[1], &e[1], &e2[1], spltol, &spdiam, nsplit, &isplit[1], & iinfo);
    /* Can force use of bisection instead of faster DQDS. */
    /* Option left in the code for future multisection work. */
    forceb = FALSE_;
    /* Initialize USEDQD, DQDS should be used for ALLRNG unless someone */
    /* explicitly wants bisection. */
    usedqd = irange == 1 && ! forceb;
    if (irange == 1 && ! forceb)
    {
        /* Set interval [VL,VU] that contains all eigenvalues */
        *vl = gl;
        *vu = gu;
    }
    else
    {
        /* We call DLARRD to find crude approximations to the eigenvalues */
        /* in the desired range. In case IRANGE = INDRNG, we also obtain the */
        /* interval (VL,VU] that contains all the wanted eigenvalues. */
        /* An interval [LEFT,RIGHT] has converged if */
        /* RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT)) */
        /* DLARRD needs a WORK of size 4*N, IWORK of size 3*N */
        dlarrd_(range, "B", n, vl, vu, il, iu, &gers[1], &bsrtol, &d__[1], &e[ 1], &e2[1], pivmin, nsplit, &isplit[1], &mm, &w[1], &werr[1], vl, vu, &iblock[1], &indexw[1], &work[1], &iwork[1], &iinfo);
        if (iinfo != 0)
        {
            *info = -1;
            return 0;
        }
        /* Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0 */
        i__1 = *n;
        for (i__ = mm + 1;
                i__ <= i__1;
                ++i__)
        {
            w[i__] = 0.;
            werr[i__] = 0.;
            iblock[i__] = 0;
            indexw[i__] = 0;
            /* L14: */
        }
    }
    /* ** */
    /* Loop over unreduced blocks */
    ibegin = 1;
    wbegin = 1;
    i__1 = *nsplit;
    for (jblk = 1;
            jblk <= i__1;
            ++jblk)
    {
        iend = isplit[jblk];
        in = iend - ibegin + 1;
        /* 1 X 1 block */
        if (in == 1)
        {
            if (irange == 1 || irange == 3 && d__[ibegin] > *vl && d__[ibegin] <= *vu || irange == 2 && iblock[wbegin] == jblk)
            {
                ++(*m);
                w[*m] = d__[ibegin];
                werr[*m] = 0.;
                /* The gap for a single block doesn't matter for the later */
                /* algorithm and is assigned an arbitrary large value */
                wgap[*m] = 0.;
                iblock[*m] = jblk;
                indexw[*m] = 1;
                ++wbegin;
            }
            /* E( IEND ) holds the shift for the initial RRR */
            e[iend] = 0.;
            ibegin = iend + 1;
            goto L170;
        }
        /* Blocks of size larger than 1x1 */
        /* E( IEND ) will hold the shift for the initial RRR, for now set it =0 */
        e[iend] = 0.;
        /* Find local outer bounds GL,GU for the block */
        gl = d__[ibegin];
        gu = d__[ibegin];
        i__2 = iend;
        for (i__ = ibegin;
                i__ <= i__2;
                ++i__)
        {
            /* Computing MIN */
            d__1 = gers[(i__ << 1) - 1];
            gl = min(d__1,gl);
            /* Computing MAX */
            d__1 = gers[i__ * 2];
            gu = max(d__1,gu);
            /* L15: */
        }
        spdiam = gu - gl;
        if (! (irange == 1 && ! forceb))
        {
            /* Count the number of eigenvalues in the current block. */
            mb = 0;
            i__2 = mm;
            for (i__ = wbegin;
                    i__ <= i__2;
                    ++i__)
            {
                if (iblock[i__] == jblk)
                {
                    ++mb;
                }
                else
                {
                    goto L21;
                }
                /* L20: */
            }
L21:
            if (mb == 0)
            {
                /* No eigenvalue in the current block lies in the desired range */
                /* E( IEND ) holds the shift for the initial RRR */
                e[iend] = 0.;
                ibegin = iend + 1;
                goto L170;
            }
            else
            {
                /* Decide whether dqds or bisection is more efficient */
                usedqd = (doublereal) mb > in * .5 && ! forceb;
                wend = wbegin + mb - 1;
                /* Calculate gaps for the current block */
                /* In later stages, when representations for individual */
                /* eigenvalues are different, we use SIGMA = E( IEND ). */
                sigma = 0.;
                i__2 = wend - 1;
                for (i__ = wbegin;
                        i__ <= i__2;
                        ++i__)
                {
                    /* Computing MAX */
                    d__1 = 0.;
                    d__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + werr[i__]); // , expr subst
                    wgap[i__] = max(d__1,d__2);
                    /* L30: */
                }
                /* Computing MAX */
                d__1 = 0.;
                d__2 = *vu - sigma - (w[wend] + werr[wend]); // , expr subst
                wgap[wend] = max(d__1,d__2);
                /* Find local index of the first and last desired evalue. */
                indl = indexw[wbegin];
                indu = indexw[wend];
            }
        }
        if (irange == 1 && ! forceb || usedqd)
        {
            /* Case of DQDS */
            /* Find approximations to the extremal eigenvalues of the block */
            dlarrk_(&in, &c__1, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, & rtl, &tmp, &tmp1, &iinfo);
            if (iinfo != 0)
            {
                *info = -1;
                return 0;
            }
            /* Computing MAX */
            d__2 = gl;
            d__3 = tmp - tmp1 - eps * 100. * (d__1 = tmp - tmp1, abs(d__1)); // , expr subst
            isleft = max(d__2,d__3);
            dlarrk_(&in, &in, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, & rtl, &tmp, &tmp1, &iinfo);
            if (iinfo != 0)
            {
                *info = -1;
                return 0;
            }
            /* Computing MIN */
            d__2 = gu;
            d__3 = tmp + tmp1 + eps * 100. * (d__1 = tmp + tmp1, abs(d__1)); // , expr subst
            isrght = min(d__2,d__3);
            /* Improve the estimate of the spectral diameter */
            spdiam = isrght - isleft;
        }
        else
        {
            /* Case of bisection */
            /* Find approximations to the wanted extremal eigenvalues */
            /* Computing MAX */
            d__2 = gl;
            d__3 = w[wbegin] - werr[wbegin] - eps * 100. * (d__1 = w[wbegin] - werr[wbegin], abs(d__1)); // , expr subst
            isleft = max(d__2,d__3);
            /* Computing MIN */
            d__2 = gu;
            d__3 = w[wend] + werr[wend] + eps * 100. * (d__1 = w[ wend] + werr[wend], abs(d__1)); // , expr subst
            isrght = min(d__2,d__3);
        }
        /* Decide whether the base representation for the current block */
        /* L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I */
        /* should be on the left or the right end of the current block. */
        /* The strategy is to shift to the end which is "more populated" */
        /* Furthermore, decide whether to use DQDS for the computation of */
        /* the eigenvalue approximations at the end of DLARRE or bisection. */
        /* dqds is chosen if all eigenvalues are desired or the number of */
        /* eigenvalues to be computed is large compared to the blocksize. */
        if (irange == 1 && ! forceb)
        {
            /* If all the eigenvalues have to be computed, we use dqd */
            usedqd = TRUE_;
            /* INDL is the local index of the first eigenvalue to compute */
            indl = 1;
            indu = in;
            /* MB = number of eigenvalues to compute */
            mb = in;
            wend = wbegin + mb - 1;
            /* Define 1/4 and 3/4 points of the spectrum */
            s1 = isleft + spdiam * .25;
            s2 = isrght - spdiam * .25;
        }
        else
        {
            /* DLARRD has computed IBLOCK and INDEXW for each eigenvalue */
            /* approximation. */
            /* choose sigma */
            if (usedqd)
            {
                s1 = isleft + spdiam * .25;
                s2 = isrght - spdiam * .25;
            }
            else
            {
                tmp = min(isrght,*vu) - max(isleft,*vl);
                s1 = max(isleft,*vl) + tmp * .25;
                s2 = min(isrght,*vu) - tmp * .25;
            }
        }
        /* Compute the negcount at the 1/4 and 3/4 points */
        if (mb > 1)
        {
            dlarrc_("T", &in, &s1, &s2, &d__[ibegin], &e[ibegin], pivmin, & cnt, &cnt1, &cnt2, &iinfo);
        }
        if (mb == 1)
        {
            sigma = gl;
            sgndef = 1.;
        }
        else if (cnt1 - indl >= indu - cnt2)
        {
            if (irange == 1 && ! forceb)
            {
                sigma = max(isleft,gl);
            }
            else if (usedqd)
            {
                /* use Gerschgorin bound as shift to get pos def matrix */
                /* for dqds */
                sigma = isleft;
            }
            else
            {
                /* use approximation of the first desired eigenvalue of the */
                /* block as shift */
                sigma = max(isleft,*vl);
            }
            sgndef = 1.;
        }
        else
        {
            if (irange == 1 && ! forceb)
            {
                sigma = min(isrght,gu);
            }
            else if (usedqd)
            {
                /* use Gerschgorin bound as shift to get neg def matrix */
                /* for dqds */
                sigma = isrght;
            }
            else
            {
                /* use approximation of the first desired eigenvalue of the */
                /* block as shift */
                sigma = min(isrght,*vu);
            }
            sgndef = -1.;
        }
        /* An initial SIGMA has been chosen that will be used for computing */
        /* T - SIGMA I = L D L^T */
        /* Define the increment TAU of the shift in case the initial shift */
        /* needs to be refined to obtain a factorization with not too much */
        /* element growth. */
        if (usedqd)
        {
            /* The initial SIGMA was to the outer end of the spectrum */
            /* the matrix is definite and we need not retreat. */
            tau = spdiam * eps * *n + *pivmin * 2.;
            /* Computing MAX */
            d__1 = tau;
            d__2 = eps * 2. * abs(sigma); // , expr subst
            tau = max(d__1,d__2);
        }
        else
        {
            if (mb > 1)
            {
                clwdth = w[wend] + werr[wend] - w[wbegin] - werr[wbegin];
                avgap = (d__1 = clwdth / (doublereal) (wend - wbegin), abs( d__1));
                if (sgndef == 1.)
                {
                    /* Computing MAX */
                    d__1 = wgap[wbegin];
                    tau = max(d__1,avgap) * .5;
                    /* Computing MAX */
                    d__1 = tau;
                    d__2 = werr[wbegin]; // , expr subst
                    tau = max(d__1,d__2);
                }
                else
                {
                    /* Computing MAX */
                    d__1 = wgap[wend - 1];
                    tau = max(d__1,avgap) * .5;
                    /* Computing MAX */
                    d__1 = tau;
                    d__2 = werr[wend]; // , expr subst
                    tau = max(d__1,d__2);
                }
            }
            else
            {
                tau = werr[wbegin];
            }
        }
        for (idum = 1;
                idum <= 6;
                ++idum)
        {
            /* Compute L D L^T factorization of tridiagonal matrix T - sigma I. */
            /* Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of */
            /* pivots in WORK(2*IN+1:3*IN) */
            dpivot = d__[ibegin] - sigma;
            work[1] = dpivot;
            dmax__ = abs(work[1]);
            j = ibegin;
            i__2 = in - 1;
            for (i__ = 1;
                    i__ <= i__2;
                    ++i__)
            {
                work[(in << 1) + i__] = 1. / work[i__];
                tmp = e[j] * work[(in << 1) + i__];
                work[in + i__] = tmp;
                dpivot = d__[j + 1] - sigma - tmp * e[j];
                work[i__ + 1] = dpivot;
                /* Computing MAX */
                d__1 = dmax__;
                d__2 = abs(dpivot); // , expr subst
                dmax__ = max(d__1,d__2);
                ++j;
                /* L70: */
            }
            /* check for element growth */
            if (dmax__ > spdiam * 64.)
            {
                norep = TRUE_;
            }
            else
            {
                norep = FALSE_;
            }
            if (usedqd && ! norep)
            {
                /* Ensure the definiteness of the representation */
                /* All entries of D (of L D L^T) must have the same sign */
                i__2 = in;
                for (i__ = 1;
                        i__ <= i__2;
                        ++i__)
                {
                    tmp = sgndef * work[i__];
                    if (tmp < 0.)
                    {
                        norep = TRUE_;
                    }
                    /* L71: */
                }
            }
            if (norep)
            {
                /* Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin */
                /* shift which makes the matrix definite. So we should end up */
                /* here really only in the case of IRANGE = VALRNG or INDRNG. */
                if (idum == 5)
                {
                    if (sgndef == 1.)
                    {
                        /* The fudged Gerschgorin shift should succeed */
                        sigma = gl - spdiam * 2. * eps * *n - *pivmin * 4.;
                    }
                    else
                    {
                        sigma = gu + spdiam * 2. * eps * *n + *pivmin * 4.;
                    }
                }
                else
                {
                    sigma -= sgndef * tau;
                    tau *= 2.;
                }
            }
            else
            {
                /* an initial RRR is found */
                goto L83;
            }
            /* L80: */
        }
        /* if the program reaches this point, no base representation could be */
        /* found in MAXTRY iterations. */
        *info = 2;
        return 0;
L83: /* At this point, we have found an initial base representation */
        /* T - SIGMA I = L D L^T with not too much element growth. */
        /* Store the shift. */
        e[iend] = sigma;
        /* Store D and L. */
        dcopy_(&in, &work[1], &c__1, &d__[ibegin], &c__1);
        i__2 = in - 1;
        dcopy_(&i__2, &work[in + 1], &c__1, &e[ibegin], &c__1);
        if (mb > 1)
        {
            /* Perturb each entry of the base representation by a small */
            /* (but random) relative amount to overcome difficulties with */
            /* glued matrices. */
            for (i__ = 1;
                    i__ <= 4;
                    ++i__)
            {
                iseed[i__ - 1] = 1;
                /* L122: */
            }
            i__2 = (in << 1) - 1;
            dlarnv_(&c__2, iseed, &i__2, &work[1]);
            i__2 = in - 1;
            for (i__ = 1;
                    i__ <= i__2;
                    ++i__)
            {
                d__[ibegin + i__ - 1] *= eps * 8. * work[i__] + 1.;
                e[ibegin + i__ - 1] *= eps * 8. * work[in + i__] + 1.;
                /* L125: */
            }
            d__[iend] *= eps * 4. * work[in] + 1.;
        }
        /* Don't update the Gerschgorin intervals because keeping track */
        /* of the updates would be too much work in DLARRV. */
        /* We update W instead and use it to locate the proper Gerschgorin */
        /* intervals. */
        /* Compute the required eigenvalues of L D L' by bisection or dqds */
        if (! usedqd)
        {
            /* If DLARRD has been used, shift the eigenvalue approximations */
            /* according to their representation. This is necessary for */
            /* a uniform DLARRV since dqds computes eigenvalues of the */
            /* shifted representation. In DLARRV, W will always hold the */
            /* UNshifted eigenvalue approximation. */
            i__2 = wend;
            for (j = wbegin;
                    j <= i__2;
                    ++j)
            {
                w[j] -= sigma;
                werr[j] += (d__1 = w[j], abs(d__1)) * eps;
                /* L134: */
            }
            /* call DLARRB to reduce eigenvalue error of the approximations */
            /* from DLARRD */
            i__2 = iend - 1;
            for (i__ = ibegin;
                    i__ <= i__2;
                    ++i__)
            {
                /* Computing 2nd power */
                d__1 = e[i__];
                work[i__] = d__[i__] * (d__1 * d__1);
                /* L135: */
            }
            /* use bisection to find EV from INDL to INDU */
            i__2 = indl - 1;
            dlarrb_(&in, &d__[ibegin], &work[ibegin], &indl, &indu, rtol1, rtol2, &i__2, &w[wbegin], &wgap[wbegin], &werr[wbegin], & work[(*n << 1) + 1], &iwork[1], pivmin, &spdiam, &in, & iinfo);
            if (iinfo != 0)
            {
                *info = -4;
                return 0;
            }
            /* DLARRB computes all gaps correctly except for the last one */
            /* Record distance to VU/GU */
            /* Computing MAX */
            d__1 = 0.;
            d__2 = *vu - sigma - (w[wend] + werr[wend]); // , expr subst
            wgap[wend] = max(d__1,d__2);
            i__2 = indu;
            for (i__ = indl;
                    i__ <= i__2;
                    ++i__)
            {
                ++(*m);
                iblock[*m] = jblk;
                indexw[*m] = i__;
                /* L138: */
            }
        }
        else
        {
            /* Call dqds to get all eigs (and then possibly delete unwanted */
            /* eigenvalues). */
            /* Note that dqds finds the eigenvalues of the L D L^T representation */
            /* of T to high relative accuracy. High relative accuracy */
            /* might be lost when the shift of the RRR is subtracted to obtain */
            /* the eigenvalues of T. However, T is not guaranteed to define its */
            /* eigenvalues to high relative accuracy anyway. */
            /* Set RTOL to the order of the tolerance used in DLASQ2 */
            /* This is an ESTIMATED error, the worst case bound is 4*N*EPS */
            /* which is usually too large and requires unnecessary work to be */
            /* done by bisection when computing the eigenvectors */
            rtol = log((doublereal) in) * 4. * eps;
            j = ibegin;
            i__2 = in - 1;
            for (i__ = 1;
                    i__ <= i__2;
                    ++i__)
            {
                work[(i__ << 1) - 1] = (d__1 = d__[j], abs(d__1));
                work[i__ * 2] = e[j] * e[j] * work[(i__ << 1) - 1];
                ++j;
                /* L140: */
            }
            work[(in << 1) - 1] = (d__1 = d__[iend], abs(d__1));
            work[in * 2] = 0.;
            dlasq2_(&in, &work[1], &iinfo);
            if (iinfo != 0)
            {
                /* If IINFO = -5 then an index is part of a tight cluster */
                /* and should be changed. The index is in IWORK(1) and the */
                /* gap is in WORK(N+1) */
                *info = -5;
                return 0;
            }
            else
            {
                /* Test that all eigenvalues are positive as expected */
                i__2 = in;
                for (i__ = 1;
                        i__ <= i__2;
                        ++i__)
                {
                    if (work[i__] < 0.)
                    {
                        *info = -6;
                        return 0;
                    }
                    /* L149: */
                }
            }
            if (sgndef > 0.)
            {
                i__2 = indu;
                for (i__ = indl;
                        i__ <= i__2;
                        ++i__)
                {
                    ++(*m);
                    w[*m] = work[in - i__ + 1];
                    iblock[*m] = jblk;
                    indexw[*m] = i__;
                    /* L150: */
                }
            }
            else
            {
                i__2 = indu;
                for (i__ = indl;
                        i__ <= i__2;
                        ++i__)
                {
                    ++(*m);
                    w[*m] = -work[i__];
                    iblock[*m] = jblk;
                    indexw[*m] = i__;
                    /* L160: */
                }
            }
            i__2 = *m;
            for (i__ = *m - mb + 1;
                    i__ <= i__2;
                    ++i__)
            {
                /* the value of RTOL below should be the tolerance in DLASQ2 */
                werr[i__] = rtol * (d__1 = w[i__], abs(d__1));
                /* L165: */
            }
            i__2 = *m - 1;
            for (i__ = *m - mb + 1;
                    i__ <= i__2;
                    ++i__)
            {
                /* compute the right gap between the intervals */
                /* Computing MAX */
                d__1 = 0.;
                d__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + werr[ i__]); // , expr subst
                wgap[i__] = max(d__1,d__2);
                /* L166: */
            }
            /* Computing MAX */
            d__1 = 0.;
            d__2 = *vu - sigma - (w[*m] + werr[*m]); // , expr subst
            wgap[*m] = max(d__1,d__2);
        }
        /* proceed with next block */
        ibegin = iend + 1;
        wbegin = wend + 1;
L170:
        ;
    }
    return 0;
    /* end of DLARRE */
}