/* Subroutine */ int dgbcon_(char *norm, integer *n, integer *kl, integer *ku, doublereal *ab, integer *ldab, integer *ipiv, doublereal *anorm, doublereal *rcond, doublereal *work, integer *iwork, integer *info, ftnlen norm_len) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3; doublereal d__1; /* Local variables */ static integer j; static doublereal t; static integer kd, lm, jp, ix, kase; extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); static integer kase1; static doublereal scale; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *, integer *); static logical lnoti; extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); extern doublereal dlamch_(char *, ftnlen); extern /* Subroutine */ int dlacon_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int dlatbs_(char *, char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen), xerbla_(char *, integer *, ftnlen); static doublereal ainvnm; static logical onenrm; static char normin[1]; static doublereal smlnum; /* -- LAPACK routine (version 3.0) -- */ /* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */ /* Courant Institute, Argonne National Lab, and Rice University */ /* September 30, 1994 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGBCON estimates the reciprocal of the condition number of a real */ /* general band matrix A, in either the 1-norm or the infinity-norm, */ /* using the LU factorization computed by DGBTRF. */ /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* condition number is computed as */ /* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KL (input) INTEGER */ /* The number of subdiagonals within the band of A. KL >= 0. */ /* KU (input) INTEGER */ /* The number of superdiagonals within the band of A. KU >= 0. */ /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */ /* Details of the LU factorization of the band matrix A, as */ /* computed by DGBTRF. U is stored as an upper triangular band */ /* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */ /* the multipliers used during the factorization are stored in */ /* rows KL+KU+2 to 2*KL+KU+1. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices; for 1 <= i <= N, row i of the matrix was */ /* interchanged with row IPIV(i). */ /* ANORM (input) DOUBLE PRECISION */ /* If NORM = '1' or 'O', the 1-norm of the original matrix A. */ /* If NORM = 'I', the infinity-norm of the original matrix A. */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(norm(A) * norm(inv(A))). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --ipiv; --work; --iwork; /* Function Body */ *info = 0; onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O", (ftnlen)1, ( ftnlen)1); if (! onenrm && ! lsame_(norm, "I", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kl < 0) { *info = -3; } else if (*ku < 0) { *info = -4; } else if (*ldab < (*kl << 1) + *ku + 1) { *info = -6; } else if (*anorm < 0.) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("DGBCON", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm == 0.) { return 0; } smlnum = dlamch_("Safe minimum", (ftnlen)12); /* Estimate the norm of inv(A). */ ainvnm = 0.; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kd = *kl + *ku + 1; lnoti = *kl > 0; kase = 0; L10: dlacon_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(L). */ if (lnoti) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__2 = *kl, i__3 = *n - j; lm = min(i__2,i__3); jp = ipiv[j]; t = work[jp]; if (jp != j) { work[jp] = work[j]; work[j] = t; } d__1 = -t; daxpy_(&lm, &d__1, &ab[kd + 1 + j * ab_dim1], &c__1, & work[j + 1], &c__1); /* L20: */ } } /* Multiply by inv(U). */ i__1 = *kl + *ku; dlatbs_("Upper", "No transpose", "Non-unit", normin, n, &i__1, & ab[ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 1], info, (ftnlen)5, (ftnlen)12, (ftnlen)8, (ftnlen)1); } else { /* Multiply by inv(U'). */ i__1 = *kl + *ku; dlatbs_("Upper", "Transpose", "Non-unit", normin, n, &i__1, &ab[ ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 1], info, (ftnlen)5, (ftnlen)9, (ftnlen)8, (ftnlen)1); /* Multiply by inv(L'). */ if (lnoti) { for (j = *n - 1; j >= 1; --j) { /* Computing MIN */ i__1 = *kl, i__2 = *n - j; lm = min(i__1,i__2); work[j] -= ddot_(&lm, &ab[kd + 1 + j * ab_dim1], &c__1, & work[j + 1], &c__1); jp = ipiv[j]; if (jp != j) { t = work[jp]; work[jp] = work[j]; work[j] = t; } /* L30: */ } } } /* Divide X by 1/SCALE if doing so will not cause overflow. */ *(unsigned char *)normin = 'Y'; if (scale != 1.) { ix = idamax_(n, &work[1], &c__1); if (scale < (d__1 = work[ix], abs(d__1)) * smlnum || scale == 0.) { goto L40; } drscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } L40: return 0; /* End of DGBCON */ } /* dgbcon_ */
/* Subroutine */ int dpbcon_(char *uplo, integer *n, integer *kd, doublereal * ab, integer *ldab, doublereal *anorm, doublereal *rcond, doublereal * work, integer *iwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1; doublereal d__1; /* Local variables */ integer ix, kase; doublereal scale; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *, integer *); logical upper; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); doublereal scalel; extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int dlatbs_(char *, char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *); doublereal scaleu; extern /* Subroutine */ int xerbla_(char *, integer *); doublereal ainvnm; char normin[1]; doublereal smlnum; /* -- LAPACK computational routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --work; --iwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kd < 0) { *info = -3; } else if (*ldab < *kd + 1) { *info = -5; } else if (*anorm < 0.) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("DPBCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm == 0.) { return 0; } smlnum = dlamch_("Safe minimum"); /* Estimate the 1-norm of the inverse. */ kase = 0; *(unsigned char *)normin = 'N'; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (upper) { /* Multiply by inv(U**T). */ dlatbs_("Upper", "Transpose", "Non-unit", normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scalel, &work[(*n << 1) + 1], info); *(unsigned char *)normin = 'Y'; /* Multiply by inv(U). */ dlatbs_("Upper", "No transpose", "Non-unit", normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scaleu, &work[(*n << 1) + 1], info); } else { /* Multiply by inv(L). */ dlatbs_("Lower", "No transpose", "Non-unit", normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scalel, &work[(*n << 1) + 1], info); *(unsigned char *)normin = 'Y'; /* Multiply by inv(L**T). */ dlatbs_("Lower", "Transpose", "Non-unit", normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scaleu, &work[(*n << 1) + 1], info); } /* Multiply by 1/SCALE if doing so will not cause overflow. */ scale = scalel * scaleu; if (scale != 1.) { ix = idamax_(n, &work[1], &c__1); if (scale < (d__1 = work[ix], f2c_abs(d__1)) * smlnum || scale == 0.) { goto L20; } drscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } L20: return 0; /* End of DPBCON */ }
/* Subroutine */ int dtbcon_(char *norm, char *uplo, char *diag, integer *n, integer *kd, doublereal *ab, integer *ldab, doublereal *rcond, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1; doublereal d__1; /* Local variables */ integer ix, kase, kase1; doublereal scale; integer isave[3]; doublereal anorm; logical upper; doublereal xnorm; doublereal ainvnm; logical onenrm; char normin[1]; doublereal smlnum; logical nounit; /* -- LAPACK routine (version 3.2) -- */ /* November 2006 */ /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ /* Purpose */ /* ======= */ /* DTBCON estimates the reciprocal of the condition number of a */ /* triangular band matrix A, in either the 1-norm or the infinity-norm. */ /* The norm of A is computed and an estimate is obtained for */ /* norm(inv(A)), then the reciprocal of the condition number is */ /* computed as */ /* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* DIAG (input) CHARACTER*1 */ /* = 'N': A is non-unit triangular; */ /* = 'U': A is unit triangular. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals or subdiagonals of the */ /* triangular band matrix A. KD >= 0. */ /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */ /* The upper or lower triangular band matrix A, stored in the */ /* first kd+1 rows of the array. The j-th column of A is stored */ /* in the j-th column of the array AB as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* If DIAG = 'U', the diagonal elements of A are not referenced */ /* and are assumed to be 1. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD+1. */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(norm(A) * norm(inv(A))). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --work; --iwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); nounit = lsame_(diag, "N"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (! nounit && ! lsame_(diag, "U")) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*kd < 0) { *info = -5; } else if (*ldab < *kd + 1) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("DTBCON", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { *rcond = 1.; return 0; } *rcond = 0.; smlnum = dlamch_("Safe minimum") * (doublereal) max(1,*n); /* Compute the norm of the triangular matrix A. */ anorm = dlantb_(norm, uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1]); /* Continue only if ANORM > 0. */ if (anorm > 0.) { /* Estimate the norm of the inverse of A. */ ainvnm = 0.; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(A). */ dlatbs_(uplo, "No transpose", diag, normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 1], info) ; } else { /* Multiply by inv(A'). */ dlatbs_(uplo, "Transpose", diag, normin, n, kd, &ab[ab_offset] , ldab, &work[1], &scale, &work[(*n << 1) + 1], info); } *(unsigned char *)normin = 'Y'; /* Multiply by 1/SCALE if doing so will not cause overflow. */ if (scale != 1.) { ix = idamax_(n, &work[1], &c__1); xnorm = (d__1 = work[ix], abs(d__1)); if (scale < xnorm * smlnum || scale == 0.) { goto L20; } drscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / anorm / ainvnm; } } L20: return 0; /* End of DTBCON */ } /* dtbcon_ */